Gabriel Osei Forkuo | Machine Learning | Best Researcher Award

Mr. Gabriel Osei Forkuo | Machine Learning | Best Researcher Award

Doctoral Researcher/ Research Assistant at Transilvania University of Brasov, Romania

Gabriel Osei Forkuo is a dedicated forestry specialist and researcher with an extensive background in forest operations engineering, postural ergonomics, and machine learning applications. He has built a career that merges practical field experience with academic research, contributing significantly to the development of innovative and cost-effective technologies in forest monitoring and conservation. Currently pursuing a Ph.D. in Forest Operations Engineering at Transilvania University of Brasov, Romania, Gabriel has emerged as a leading figure in the exploration of low-cost LiDAR technologies and smart solutions for ergonomic assessments in forestry. His multifaceted expertise is grounded in over two decades of professional service in teaching, field operations, and advanced scientific investigations.

Profile

Orcid

Education

Gabriel’s educational journey is marked by academic excellence and a continuous drive for specialized knowledge. He is currently enrolled in a Ph.D. program in Forest Operations Engineering at Transilvania University of Brasov, where his research focuses on integrating machine learning and computer vision for ergonomic assessments in forest operations. He previously earned a Master’s degree in Multiple Purpose Forestry from the same university, achieving excellent grades and a cumulative ECTS average of 9.76. His foundational studies include a Bachelor of Science degree in Natural Resources Management from Kwame Nkrumah University of Science and Technology, Kumasi, Ghana, where he graduated with First Class Honours. Earlier academic milestones include completing his GCE A-Level in science subjects and his GCE O-Level in science, supported by performance scholarships recognizing his consistent academic distinction.

Experience

Gabriel’s professional experience spans across teaching, research, and forest management. Between 2002 and 2011, he worked as a Forest Range Manager and Supervisor at the Forestry Commission Ghana, where he was instrumental in nursery planning, restoration of degraded forests, and report writing. From 1999 to 2001, he served as a Science and Maths Teacher at Maria Montessori School in Kumasi, followed by a role as a Teaching Assistant at his alma mater, Kwame Nkrumah University of Science and Technology. In this capacity, he conducted laboratory classes, supervised research data collection, and participated in academic presentations, establishing a strong foundation in both pedagogical and research methodologies. His leadership in afforestation programs and practical forest management further reflects his field-based competency and organizational capability.

Research Interest

Gabriel’s research interests are centered on forest operations engineering, with a special focus on postural ergonomics, machine learning applications, and smart technologies for environmental monitoring. He is passionate about developing affordable and efficient technological solutions, particularly the use of mobile LiDAR and AI-driven tools for soil disturbance estimation and posture evaluation in forest labor. His interdisciplinary approach merges forestry, computer science, and ergonomics, contributing to sustainable and safe forestry practices. Through these interests, he aims to bridge the gap between traditional forestry operations and modern intelligent systems.

Award

Gabriel’s academic and professional contributions have been recognized through several prestigious scholarships and awards. He has twice secured first place in the “My Bachelor/Dissertation Project” competitions held in 2022 and 2023, scoring nearly perfect marks. In 2022, he received the “Premiul special pentru studenti straini” award at the Premiul AFCO. He has also been a recipient of multiple scholarships, including the Transilvania Academica Scholarship, UNITBV Ph.D. Scholarship for International Graduates, and funding from “Proiectul Meu de Diploma” programs. Earlier in his career, he was awarded performance scholarships by the Government of Ghana and Poku Transport Ghana for his outstanding performance in forest sciences.

Publication

Gabriel has authored several notable publications that demonstrate his expertise in forest operations and technological innovation. His key works include:

Forkuo, G.O., & Borz, S.A. (2023). Accuracy and inter-cloud precision of low-cost mobile LiDAR technology in estimating soil disturbance in forest operations. Frontiers in Forests and Global Change, 6. Cited in multiple studies on forest soil impact monitoring.

Forkuo, G.O. (2023). A systematic survey of conventional and new postural assessment methods. Revista Padurilor, 138(3), 1-34.

Borz, S.A., Morocho Toaza, J.M., Forkuo, G.O., Marcu, M.V. (2022). Potential of measure app in estimating log biometrics: a comparison with conventional log measurement. Forests, 13(7), 1028.

Borz, S.A., Forkuo, G.O., Oprea-Sorescu, O., & Proto, A.R. (2022). Development of a robust machine learning model to monitor the operational performance of sawing machines. Forests, 13(7), 1115.

Forkuo, G.O., Proto, A.R., & Borz, S.A. (2024). Feasibility of low-cost mobile LiDAR technology in estimating soil disturbance in forest operations. SSRN.

Forkuo, G.O. (1999). Post-fire tree regeneration studies in the Kumawu Water Supply Forest Reserve. B.Sc. Thesis, KNUST-Kumasi.

Presented paper at FORMEC 2023 in Florence, Italy, highlighting applications of mobile LiDAR in operational environments.

Conclusion

Gabriel Osei Forkuo exemplifies the intersection of academic rigor, practical expertise, and technological innovation in the field of forest operations. His work continues to advance the integration of smart technologies into sustainable forestry, driven by a deep commitment to both ecological preservation and worker safety. Through his research, publications, and leadership roles, Gabriel has built a profile of excellence, contributing significantly to forestry engineering and shaping the next generation of sustainable forest management solutions.

Ruchun Jia | Artificial Intelligence | Best Researcher Award

Assoc. Prof. Dr. Ruchun Jia | Artificial Intelligence | Best Researcher Award

Professor at College of Computer Science, Sichuan University, China

Ruchun Jia is an Associate Professor at Sichuan University with a specialization in artificial intelligence, system security, data security, industrial control security, Internet of Things security, and internet security. Over the past decade, he has made significant contributions to the field of information security, particularly in the areas of network security technologies and secure system design. Jia has extensive experience leading and participating in numerous national and provincial projects, including the development of several national patents and scientific research papers. His academic and practical knowledge has made him a key figure in both research and development, as well as the education of future experts in the field.

Profile

Orcid

Education

Ruchun Jia completed his Ph.D. at Sichuan University, where he developed a deep understanding of the complexities surrounding information security and the evolving threats in modern computing systems. During his time as a graduate student, he became involved in several advanced research projects that laid the foundation for his future contributions in academia and industry. His academic journey has been marked by a continuous pursuit of knowledge in the realms of secure storage, network security, and cloud computing technologies.

Experience

Throughout his ten-year career, Jia has gained extensive experience in both academic and practical aspects of information security. He has presided over and contributed to multiple high-profile national and provincial research projects, with a focus on developing innovative solutions for information and network security. His leadership has been instrumental in guiding students to success in numerous national and provincial competitions. Additionally, he has managed large-scale projects in the areas of e-commerce, education, and governmental digital transformation, demonstrating his versatility and proficiency in both technical and managerial roles. His professional contributions have also extended to the development of various multimedia and web-based applications, showcasing his broad skill set.

Research Interest

Ruchun Jia’s research interests span several key areas within the domain of cybersecurity and artificial intelligence. His work primarily focuses on artificial intelligence in security systems, the development of secure storage solutions, and the deployment of integrated network security technologies. He is particularly interested in the security implications of the Internet of Things (IoT) and industrial control systems. His research also delves into cloud computing technologies, with a particular emphasis on Big Data platforms, MapReduce design methods, and virtualization technologies such as VMware and KVM. Jia’s research extends to security architecture design for both enterprise systems and cloud computing infrastructures.

Award

Ruchun Jia’s outstanding contributions to information security have been recognized through multiple accolades. He has been awarded national prizes for his leadership in security-related competitions, with his students earning first and second prizes at the national and provincial levels. His research and development efforts have earned him several honors, including the recognition of his national patents and scientific publications. His work in creating educational resources in the field of information security has also been widely acknowledged, further cementing his reputation as a leader in both academia and industry.

Publication

Ruchun Jia has authored over 60 scientific research papers, with more than 20 published in SCI and Peking University core journals. His research is widely cited in the field, and his contributions to cybersecurity are frequently referenced in scholarly articles. Notable publications include works on network security technologies, data disaster recovery, and the design of secure system architectures. Some of his key publications include:

Jia, R. (2015). “Design of Secure Network Systems for Industrial Control.” Journal of Information Security and Applications, 23(2), 45-59.

Jia, R., & Han, X. (2016). “Secure Storage Mechanisms for Cloud Platforms.” Journal of Cybersecurity, 15(4), 232-245.

Jia, R. (2017). “AI-based Security Solutions for IoT Systems.” Journal of Artificial Intelligence and Security, 8(1), 12-23.

Jia, R., et al. (2018). “Big Data Security in Cloud Computing.” International Journal of Cloud Computing and Security, 6(3), 167-178.

Jia, R., & Liu, Y. (2019). “Secure E-commerce Platforms: A Study on Web Attack Prevention.” Journal of Web Security, 10(2), 134-145.

Jia, R. (2020). “Building Smart City Platforms with Security in Mind.” Journal of Smart Cities and Technology, 12(1), 56-68.

Jia, R. (2021). “Advanced Network Attack Defense Techniques for Information Security.” Journal of Network Security Technologies, 9(4), 89-101.

Conclusion

Ruchun Jia’s career reflects a profound commitment to advancing the field of information security, particularly in the realms of AI and IoT security. His work has not only contributed to the academic community but has also had a significant impact on industrial practices and national security policies. As an educator, researcher, and project manager, Jia has shaped the direction of cybersecurity research and has been instrumental in the development of innovative solutions for secure information systems. His continued contributions to the field promise to further strengthen the global efforts in combating emerging cyber threats and securing digital infrastructures.

Hemad Zareiforoush | Machine Learning | Best Academic Researcher Award

Dr. Hemad Zareiforoush | Machine Learning | Best Academic Researcher Award

Associate Professor at University of Guilan, Rasht, Iran

Dr. Hemad Zareiforoush is an Assistant Professor at the Department of Biosystems Engineering, University of Guilan, Rasht, Iran, where he has been contributing to both academic and practical advancements in biosystems engineering since 2015. With a focus on agricultural machinery, automation, and quality inspection systems, his work bridges engineering and food science, particularly in areas like computer vision, image processing, and renewable energy applications. His research is highly interdisciplinary, combining mechanical engineering principles with computational intelligence for improving the agricultural industry’s efficiency.

Profile

Google Scholar

Education

Dr. Zareiforoush’s educational background is robust, with a PhD in Mechanical and Biosystems Engineering from Tarbiat Modares University in Tehran, Iran, completed in 2014. His academic excellence is evident in his GPA of 17.84 out of 20. He earned his MSc in Mechanical Engineering of Agricultural Machinery at Urmia University in 2010, where he graduated with a remarkable GPA of 19.29 out of 20. Earlier, Dr. Zareiforoush obtained his BSc in the same field from Urmia University in 2007, graduating with a GPA of 15.75 out of 20. He also attended a specialized governmental high school for excellent pupils, where he focused on mathematics and physics, graduating with a GPA of 18.71 out of 20.

Experience

Since joining the University of Guilan in 2015, Dr. Zareiforoush has been teaching various courses, including Engineering Properties of Food and Agricultural Products, Renewable Energy, and Measurement and Instrumentation Principles. His practical experience spans various engineering disciplines, with a particular emphasis on instrumentation, automation in agriculture, and food quality monitoring. Notably, his research has led to the development of innovative systems for rice quality inspection using computer vision and fuzzy logic. Additionally, he has been involved in numerous projects related to agricultural machinery, renewable energy, and automation for optimizing food production processes.

Research Interests

Dr. Zareiforoush’s research interests lie at the intersection of biosystems engineering, computational intelligence, and food science. He is particularly interested in computer vision applications for food quality inspection, using advanced image processing techniques to enhance product quality and safety. His work also explores hyperspectral imaging and spectroscopy for monitoring the quality of food materials. Another key area of his research is the application of machine learning algorithms for modeling and classifying food products based on their quality attributes. Additionally, he is involved in renewable energy applications in agriculture, focusing on solar-assisted drying systems and energy-efficient food processing methods.

Awards

Dr. Zareiforoush has received several prestigious awards throughout his academic career. He was honored with the Iran Ministry of Science, Research, and Technology Scholarship in 2012 and the National Elite Scholarship by the Iran National Foundation for Elites (INFE) in 2011. His exceptional academic performance earned him the title of “Best Student” at Urmia University in 2009. Additionally, he has been recognized as a “Talented Student” at Tarbiat Modares University and ranked 1st among MSc students in his department.

Publications

Dr. Zareiforoush has published several influential papers in high-impact journals. Some of his notable publications include:

Bakhshipour, A., Zareiforoush, H., Bagheri, I. (2020). Application of decision trees and fuzzy inference system for quality classification and modeling of black and green tea based on visual features. Journal of Food Measurement and Characterization, 14: 1402–1416, Cited by: 43.

Bakhshipour, A., Zareiforoush, H., Bagheri, I. (2020). Development of a fuzzy model for differentiating peanut plant from broadleaf weeds using image features. Plant Methods, 16:153, Cited by: 25.

Bakhshipour, A., Zareiforoush, H., Bagheri, I. (2021). Mathematical and intelligent modeling of stevia (Stevia Rebaudiana) leaves drying in an infrared-assisted continuous hybrid solar dryer. Food Science & Nutrition (JCR), 9(1), 532-543, Cited by: 12.

Zareiforoush, H., Minaei, S., Alizadeh, M.R., Banakar, A. (2016). Design, Development, and Performance Evaluation of an Automatic Control System for Rice Whitening Machine Based on Computer Vision and Fuzzy Logic. Computers and Electronics in Agriculture, 124: 14-22, Cited by: 67.

Soodmand-Moghaddam, S., Sharifi, M., Zareiforoush, H. (2020). Mathematical modeling of lemon verbena leaves drying in a continuous flow dryer equipped with a solar pre-heating system. Quality Assurance and Safety of Crops & Foods, 12(1): 57-66, Cited by: 30.

Zareiforoush, H., Minaei, S., Alizadeh, M.R., Banakar, A. (2015). Qualitative Classification of Milled Rice Grains Using Computer Vision and Metaheuristic Techniques. Journal of Food Science and Technology (Springer), 53(1): 118-131, Cited by: 45.

Zareiforoush, H., Komarizadeh, M.H., Alizadeh, M.R. (2010). Effects of crop-screw parameters on rough rice grain damage in handling with a horizontal screw auger. Journal of Food, Agriculture and Environment, 8(3): 132-138, Cited by: 19.

Conclusion

Dr. Hemad Zareiforoush’s academic and professional contributions significantly impact the fields of biosystems engineering, food science, and agricultural machinery. His work in developing intelligent systems for quality inspection and automation has improved agricultural productivity and food safety. His expertise in computational techniques, including fuzzy logic and machine learning, continues to shape the future of smart farming and food processing. With numerous awards, highly cited publications, and a track record of excellence, Dr. Zareiforoush is a leading figure in his field.

Ouafae El Melhaoui | Machine Learning | Best Researcher Award

Dr. Ouafae El Melhaoui | Machine Learning | Best Researcher Award

Electronic and System Laboratory National School of Applied Sciences, ENSA Mohammed first University, Morocco

Dr. Ouafae El Melhaoui is a distinguished researcher in the field of electronics and artificial intelligence, specializing in data classification through innovative AI approaches. With extensive experience in teaching and research, she has contributed significantly to the development of machine learning algorithms, deep learning models, genetic optimization techniques, and convolutional neural networks. Her expertise spans various domains, including signal processing, data mining, and fuzzy classification. Dr. El Melhaoui’s academic journey and professional career reflect her commitment to advancing AI-driven methodologies for complex data analysis.

Profile

Orcid

Education

Dr. El Melhaoui earned her Ph.D. in Electronics with a specialization in artificial intelligence from Mohammed Premier University in 2013. Her doctoral research focused on developing new data classification techniques through advanced signal processing methods. Prior to that, she obtained a Diploma of Advanced Studies (D.E.S.A) in Physics and Technology of Microelectronic Devices and Sensors from Cadi Ayyad University in 2007, where she explored the structural and optical properties of boron nitride. She also holds a Bachelor’s degree in Electronics from Mohammed Premier University, solidifying her strong foundation in electronic systems and computational methodologies.

Professional Experience

Dr. El Melhaoui has an extensive teaching and research background, having worked at various academic institutions. She has supervised numerous undergraduate and graduate projects, focusing on machine learning applications, image processing, and signal analysis. Her professional journey includes collaborations with research laboratories such as LETSER and LETAS, where she contributed to projects in electromagnetism, renewable energy, and electronic systems. She has also been involved in industrial collaborations, developing AI-based solutions for quality control, object recognition, and signal denoising in real-world applications.

Research Interests

Dr. El Melhaoui’s research focuses on artificial intelligence applications in electronics and signal processing. She is particularly interested in computer vision, deep learning, convolutional neural networks, data mining, and optimization algorithms. Her work involves developing novel classification methods for complex data structures, integrating evolutionary computing techniques, and enhancing predictive analytics for diverse applications. Her contributions aim to bridge the gap between theoretical advancements in AI and their practical implementations in engineering and medical diagnostics.

Awards and Recognitions

Dr. El Melhaoui has received several accolades for her research contributions. She has been recognized for her innovative approaches in AI-driven signal processing and has participated in multiple national and international scientific conferences. Her work has been instrumental in advancing knowledge in AI-based classification techniques, earning her a reputation as a leading researcher in her field.

Publications

Novel Classification Algorithm for Complex Class Structures, e-Prime – Advances in Electrical Engineering, Electronics and Energy (Under Review, 2024). Scopus Q1, SJR=0.65.

Hybridization Denoising Method for EMG Signals Using EWT and EMD Techniques, International Journal on Engineering Applications (Under Review, 2024). Scopus Q2, SJR=0.28.

A Novel Signature Recognition System Using a Convolutional Neural Network and Fuzzy Classifier, International Journal of Computational Vision and Robotics (2024). Scopus Q4, SJR=0.21.

Improved Signature Recognition System Based on Statistical Features and Fuzzy Logic, e-Prime – Advances in Electrical Engineering, Electronics and Energy (2024). Scopus Q1, SJR=0.65.

Optimized Framework for Signature Recognition Using Genetic Algorithm, Loci Method, and Fuzzy Classifier, Engineered Science Publisher (2024). Scopus Q1, SJR=0.87.

Design of a Patch Antenna for High-Gain Applications Using One-Dimensional Electromagnetic Band Gap Structures, Engineered Science Publisher (2024). Scopus Q1, SJR=0.87.

Enhancing Signature Recognition Performance through Convolutional Neural Network and K-Nearest Neighbors, International Journal of Technical and Physical Problems of Engineering (2023). Scopus Q3, SJR=0.23.

Conclusion

Dr. Ouafae El Melhaoui’s career exemplifies a strong dedication to research and education in the fields of electronics and artificial intelligence. Her contributions to AI-based classification and signal processing have led to significant advancements in the domain. With a solid academic background, extensive teaching experience, and a robust publication record, she continues to drive innovation in machine learning, deep learning, and AI applications. Her work not only enhances theoretical models but also provides practical solutions to complex engineering problems, making a lasting impact in the field.

Muhammed Akif Yenikaya | Artificial Intelligence | Best Researcher Award

Assist. Prof. Dr. Muhammed Akif Yenikaya | Artificial Intelligence | Best Researcher Award

Assistant Professor at Kafkas University, Turkey

Muhammed Akif Yenikaya is an Assistant Professor at Kafkas University, specializing in Management Information Systems. With an academic career steeped in computer engineering and data sciences, Yenikaya has made significant contributions in healthcare AI applications, deep learning, and machine learning. His diverse academic background, including degrees in both computer engineering and occupational health and safety, complements his expertise in integrating AI into real-world solutions, particularly in healthcare diagnostics and energy efficiency. Yenikaya is actively involved in research projects and academic leadership, shaping the direction of digital content development and artificial intelligence applications.

Profile

Orcid

Education

Yenikaya’s academic journey spans several prestigious institutions, marking milestones with a PhD from Maltepe University (2022) in Computer Engineering. His doctoral thesis focused on the detection of age-related macular degeneration using artificial intelligence through optical coherence tomography images. Before this, Yenikaya completed his Master’s in Occupational Health and Safety from Kafkas University (2024), along with another Master’s degree in Computer Engineering from Izmir University of Economics (2018). His educational foundation was further solidified by various degrees in literature, management information systems, and graphic design, demonstrating his multidisciplinary approach to both technical and managerial challenges.

Experience

Since 2020, Yenikaya has held various academic positions at Kafkas University, advancing from Research Assistant to Assistant Professor. He has contributed to significant research projects, including those supported by TUBITAK, focusing on climate change and augmented reality. Additionally, Yenikaya has served as both Deputy Director and Director of the Informatics Technologies Application and Research Center at Kafkas University, leading initiatives in digital transformation and AI-based research. His work in both academia and industry, particularly in software development for banks and augmented reality applications, complements his teaching role.

Research Interests

Yenikaya’s research interests are centered around artificial intelligence, deep learning, and machine learning, with a primary focus on healthcare applications such as diabetic retinopathy detection and skin cancer diagnosis through image classification. He is also keenly interested in the use of AI in optimizing industrial processes, particularly in energy efficiency within the steel industry, and in agricultural innovations like hydroponic systems for sustainable food production. His work has extended to examining the strategic role of digital technologies and their integration in business management.

Awards

Yenikaya’s work has garnered recognition in the form of several prestigious nominations and certifications. His academic achievements are supported by international certifications in data security, project management, and networking technologies, which further underline his expertise in various technological fields. Additionally, his involvement in national projects, such as the Hydroponic Agricultural Production System, showcases his contribution to advancing knowledge in the intersection of technology and sustainability.

Publications

YENİKAYA, MUHAMMED AKİF, KERSE, GÖKHAN, OKTAYSOY, ONUR (2024). Artificial Intelligence in the Healthcare Sector: Comparison of Deep Learning Networks Using Chest X-ray Images, Frontiers in Public Health, 12(2024). Doi: 10.3389/fpubh.2024.1386110

YENİKAYA, MUHAMMED AKİF, KAVAK, ONUR (2023). Use of Artificial Intelligence Applications in The Healthcare Sector: Preliminary Diagnosis With Deep Learning Method, Sakarya Universitesi Isletme Enstitusu Dergisi, 5(2), 127-131. Doi: 10.47542/sauied.1394746

YENİKAYA, MUHAMMED AKİF, GÜVENOĞLU, ERDAL (2021). Prediction Diabetic Retinopathy From Retinal Fundus Images Via Artificial Neural Network, AIP Conference Proceedings, 2334(1), Doi: 10.1063/5.0042204

YENİKAYA, MUHAMMED AKİF, OKTAYSOY, ONUR (2024). Enerji Verimliliğinde Makine Öğrenmesi: Çelik Endüstrisinde Enerji Tahmin Modellerinin Karşılaştırılması, 5. Bilsel International Efes Scientific Researches and Innovation Congress, 287-297

YENİKAYA, MUHAMMED AKİF, KAVAK, ONUR (2023). Hydroponics: Alternative to the Global Food and Water Problem, 6th International Antalya Scientific Research and Innovative Studies Congress, 495-502

YENİKAYA, MUHAMMED AKİF, GÜVENOĞLU, ERDAL (2023). Automatic Diagnosis of Skin Cancer Using Dermoscopic Images: A Comparison of ResNet101 and GoogLeNet Deep Learning Models, 1st International Silk Road Conference, 759-768

YENİKAYA, MUHAMMED AKİF, KERSE, GÖKHAN (2022). ALEXNET and GoogLeNet Deep Learning Models in Image Classification, VII. International European Conference on Social Sciences, 713-720

Conclusion

Muhammed Akif Yenikaya is a dedicated academic and researcher who brings a wealth of knowledge and experience to the fields of artificial intelligence, healthcare, and digital transformation. His ability to bridge technical expertise with practical applications has earned him recognition both in academia and industry. With a continued focus on using AI to improve healthcare diagnostics and industrial efficiency, Yenikaya remains a pivotal figure in the integration of modern technologies into real-world solutions.

Mohamed Abdalzaher | Artificial Intelligence | Best Researcher Award

Assoc. Prof. Dr. Mohamed Abdalzaher | Artificial Intelligence | Best Researcher Award

Associate Professor at National Research Institute of Astronomy and Geophysics, Egypt

Mohamed Salah Abdalzaher is a distinguished researcher and academic with a strong focus on machine learning, deep learning, and seismology. He currently holds the position of Research Fellow at the Electrical Engineering Department of the American University of Sharjah (AUS) and is on leave from his role as Associate Professor in the Seismology Department at the National Research Institute of Astronomy and Geophysics (NRIAG) in Egypt. Abdalzaher’s work integrates advanced technologies such as machine learning and remote sensing with seismology, addressing issues related to earthquake prediction and disaster management.

Profile

Scopus

Education

Abdalzaher’s academic journey began with a Bachelor’s degree in Electronics and Communications Engineering from Obour High Institute of Engineering and Technology in 2008. He continued his studies with a Master’s degree from Ain Shams University, focusing on Electronics and Communications Engineering, before obtaining his PhD in Electronics and Communications Engineering from the Egypt-Japan University of Science and Technology in 2016. His postdoctoral research at Kyushu University, Japan, in 2019 contributed to his deepening expertise in machine learning applications and earthquake management technologies.

Experience

Abdalzaher’s professional experience spans both academia and research. As a Research Fellow at AUS, he is at the forefront of advancing machine learning applications in the field of electrical engineering. His role involves conducting cutting-edge research and supervising graduate students in their research projects. In addition, he serves as an Associate Professor at NRIAG, where he leads research efforts on seismic hazard assessments and Earthquake Engineering. He has supervised numerous PhD and MSc theses, contributing to the development of future experts in seismology and engineering.

Research Interest

Abdalzaher’s research interests are broad and multidisciplinary, covering topics such as machine learning, deep learning, cybersecurity, remote sensing, Internet of Things (IoT), and optimization techniques. His primary focus, however, is on the application of machine learning and artificial intelligence for earthquake prediction, seismic hazard assessment, and disaster management. He is also deeply engaged in using remote sensing technologies to monitor seismic activities and improve the accuracy of seismic event classification, with the aim of enhancing early warning systems and disaster response strategies.

Awards

Abdalzaher has received numerous awards and recognitions for his contributions to the fields of electrical engineering and seismology. His work on integrating machine learning with seismic monitoring systems has been widely recognized, contributing significantly to the advancement of earthquake early warning systems and seismic hazard prediction models. His publications, which include high-impact journal papers, reflect his contributions to the scientific community and his ongoing efforts to innovate in the fields of earthquake engineering and smart systems.

Publications

Sharshir, S.W., Joseph, A., Abdalzaher, M.S., et al. (2024). “Using multiple machine learning techniques to enhance the performance prediction of heat pump-driven solar desalination unit.” Desalination and Water Treatment.

Etman, A., Abdalzaher, M. S., et al. (2024). “A Survey on Machine Learning Techniques in Smart Grids Based on Wireless Sensor Networks.” IEEE ACCESS.

Habbak E. L., Abdalzaher, M. S., et al. (2024). “Enhancing the Classification of Seismic Events With Supervised Machine Learning and Feature Importance.” Scientific Report.

Abdalzaher, M. S., Soliman, M. S., & Fouda, M. M. (2024). “Using Deep Learning for Rapid Earthquake Parameter Estimation in Single-Station Single-Component Earthquake Early Warning System.” IEEE Transactions on Geoscience and Remote Sensing.

Krichen, M., Abdalzaher, M. S., et al. (2024). “Emerging technologies and supporting tools for earthquake disaster management: A perspective, challenges, and future directions.” Progress in Disaster Science.

Abdalzaher, M. S., Moustafa, S. R., & Yassien, M. (2024). “Development of smoothed seismicity models for seismic hazard assessment in the Red Sea region.” Natural Hazards.

Moustafa, S. S., Mohamed, G. E. A., Elhadidy, M. S., & Abdalzaher, M. S. (2023). “Machine learning regression implementation for high-frequency seismic wave attenuation estimation in the Aswan Reservoir area, Egypt.” Environmental Earth Sciences.

These publications have garnered attention from peers in the field, with many articles cited extensively, contributing to the evolution of seismic hazard assessment techniques and the integration of machine learning in the geophysical sciences.

Conclusion

Mohamed Salah Abdalzaher has established himself as a leading expert in the application of machine learning, deep learning, and remote sensing technologies to seismology and earthquake engineering. His work has greatly advanced seismic hazard assessments and earthquake early warning systems, utilizing innovative methods to enhance the accuracy of seismic predictions. Abdalzaher continues to push the boundaries of research, with a particular focus on optimizing and deploying machine learning algorithms for real-world disaster management applications. His academic and professional contributions make him a valuable asset to both the academic community and the broader scientific field.

Cheng-Mao Zhou | Artificial Intelligence | Best Researcher Award

Dr. Cheng-Mao Zhou | Artificial Intelligence | Best Researcher Award

Researcher | Central People’s Hospital of Zhanjiang | China

Dr. Cheng-Mao Zhou is a prominent researcher at the Central People’s Hospital of Zhanjian, specializing in the application of artificial intelligence (AI) in perioperative medicine. His work primarily focuses on the development and implementation of machine learning and deep learning algorithms aimed at enhancing postoperative complication prediction and prevention. Dr. Zhou has made significant contributions to medical AI, particularly in the areas of postoperative complications such as delirium and renal impairment. His work has been widely recognized in the field, with multiple publications in high-impact journals and a citation index reflecting his impactful research.

Profile

Scopus

Education

Dr. Zhou’s academic background is rooted in both the medical and computational sciences, where he pursued studies that bridged the gap between artificial intelligence and perioperative care. His educational foundation has been instrumental in fostering his expertise in AI algorithms and their practical applications in clinical settings. Although specific degrees and institutions are not listed, his professional trajectory highlights advanced academic training that combines medicine and technology, driving his innovations in the field.

Experience

Dr. Zhou’s career is marked by his focus on applied basic research within the domains of artificial intelligence and perioperative medicine. With years of experience, he has developed sophisticated machine learning models to predict postoperative complications, an area that significantly impacts patient outcomes. His work involves designing algorithms that enhance the accuracy of predictions related to complications such as delirium and renal issues. Dr. Zhou has also led multiple ongoing research projects that contribute to both theoretical and practical advancements in medical AI, particularly within anesthesiology and critical care.

Research Interests

Dr. Zhou’s primary research interests revolve around the integration of artificial intelligence, specifically machine learning and deep learning algorithms, into perioperative medicine. His work aims to leverage AI to predict and prevent postoperative complications, improving the accuracy of clinical predictions and optimizing patient care. In particular, he focuses on predictive methodologies for conditions such as delirium and renal impairment following surgery. His research bridges the gap between technology and clinical application, working toward a future where AI plays a central role in personalized medicine and post-surgical care.

Awards

Dr. Zhou is a candidate for the Best Researcher Award, a recognition acknowledging his groundbreaking work in the field of artificial intelligence and perioperative medicine. His research contributions have been pivotal in advancing the understanding and application of AI for postoperative care, improving outcomes for patients and offering a significant contribution to the field of medical AI. Though details of other awards are not specified, his nomination for this prestigious award highlights his considerable influence and recognition within the medical research community.

Publications

Dr. Zhou has authored over 20 AI research articles, with a particular focus on predictive methodologies for postoperative complications. His most notable publications include work on the prediction of delirium and renal impairment, demonstrating the effectiveness of machine learning models in clinical settings. Below is a selection of his key publications:

“A predictive model for post-thoracoscopic surgery pulmonary complications based on the PBNN algorithm”

    • Authors: Zhou, C.-M., Xue, Q., Li, H., Yang, J.-J., Zhu, Y.
    • Year: 2024
    • Citations: 0

“Artificial intelligence algorithms for predicting post-operative ileus after laparoscopic surgery”

    • Authors: Zhou, C.-M., Li, H., Xue, Q., Yang, J.-J., Zhu, Y.
    • Year: 2024
    • Citations: 3

“An AI-based prognostic model for postoperative outcomes in non-cardiac surgical patients utilizing TEE: A conceptual study”

    • Authors: Zhu, Y., Liang, R., Zhou, C.-M.
    • Year: 2024
    • Citations: 0

“Predicting early postoperative PONV using multiple machine-learning- and deep-learning-algorithms”

    • Authors: Zhou, C.-M., Wang, Y., Xue, Q., Yang, J.-J., Zhu, Y.
    • Year: 2023
    • Citations: 6

“Predicting postoperative gastric cancer prognosis based on inflammatory factors and machine learning technology”

    • Authors: Zhou, C.-M., Wang, Y., Yang, J.-J., Zhu, Y.
    • Year: 2023
    • Citations: 10

“A long duration of intraoperative hypotension is associated with postoperative delirium occurrence following thoracic and orthopedic surgery in elderly”

    • Authors: Duan, W., Zhou, C.-M., Yang, J.-J., Ma, D.-Q., Yang, J.-J.
    • Year: 2023
    • Citations: 19

“Prognostic value of postoperative lymphocyte-to-monocyte ratio in lung cancer patients with hypertension”

    • Authors: Yuan, M., Wang, P., Meng, R., Zhou, C., Liu, G.
    • Year: 2023
    • Citations: 0

“Differentiation of Bone Metastasis in Elderly Patients With Lung Adenocarcinoma Using Multiple Machine Learning Algorithms”

    • Authors: Zhou, C.-M., Wang, Y., Xue, Q., Zhu, Y.
    • Year: 2023
    • Citations: 5

“Non-linear relationship of gamma-glutamyl transpeptidase to lymphocyte count ratio with the recurrence of hepatocellular carcinoma with staging I–II: a retrospective cohort study”

    • Authors: Li, Z., Liang, L., Duan, W., Zhou, C., Yang, J.-J.
    • Year: 2022
    • Citations: 2

“Predicting difficult airway intubation in thyroid surgery using multiple machine learning and deep learning algorithms”

    • Authors: Zhou, C.-M., Wang, Y., Xue, Q., Yang, J.-J., Zhu, Y.
    • Year: 2022
    • Citations: 16

Conclusion:
Dr. Cheng-Mao Zhou stands as a leader in the fusion of artificial intelligence and perioperative medicine. His pioneering research on postoperative complication prediction using AI algorithms not only enhances clinical outcomes but also sets the stage for future innovations in patient care. As a member of prestigious professional societies, his work has garnered widespread recognition, including his nomination for the Best Researcher Award. Dr. Zhou’s dedication to advancing the integration of AI into medical practice continues to influence both academic and clinical spheres, driving significant improvements in patient outcomes. His contributions are critical to the ongoing transformation of the medical landscape, positioning him as a key figure in the future of AI-driven healthcare.