Yonghong Song | Deep Learning | Best Researcher Award

Prof. Yonghong Song | Deep Learning | Best Researcher Award

Professor at Xi’an Jiaotong University, China

Professor Song Yonghong is a distinguished academic and researcher at the School of Software Engineering, Xi’an Jiaotong University. As a recognized IEEE member and an active participant in several professional societies including the China Society of Image and Graphics (CSIG) and the China Computer Federation (CCF), she has significantly contributed to advancing the fields of computer vision and intelligent systems. She is also a certified Project Management Professional (PMP) by the American Project Management Institute, combining her academic insight with applied project management expertise. Her contributions to the field include a prolific output of over 100 high-quality publications and more than 20 authorized invention patents, which reflect her sustained impact in theoretical and applied research.

Profile

Scopus

Education

Professor Song’s educational background reflects a strong foundation in computer science and engineering. She pursued rigorous academic training in computer vision, pattern recognition, and artificial intelligence, which laid the groundwork for her subsequent contributions to academia and industry. Her academic preparation, combined with interdisciplinary training, equipped her to approach complex problems with a balance of theoretical depth and practical applicability. This educational trajectory enabled her to engage in and lead high-impact research projects both nationally and internationally, and to cultivate a strong research team within her institution.

Experience

Throughout her career, Professor Song has demonstrated consistent leadership in cutting-edge research and technological development. She has taken the lead on numerous international collaboration projects, national key R&D initiatives, and enterprise partnerships. Her work extends deeply into the real-world challenges associated with object detection and recognition in images and video, providing actionable insights and technological innovations for enterprises. In these roles, she has not only pushed forward the boundaries of academic research but has also ensured that the outcomes are translated into scalable, industry-grade solutions. Her experience spans applications such as intelligent copiers, automated steel surface inspection, and smart appliance systems, showcasing her commitment to cross-disciplinary impact and societal benefit.

Research Interests

Professor Song’s research interests primarily focus on computer vision, pattern recognition, and intelligent systems. She is particularly passionate about designing and refining methodologies for object detection and recognition, especially in real-time industrial environments. Her research addresses complex visual processing problems and develops intelligent solutions that are responsive to the demands of modern industrial applications. She has worked extensively on integrating deep learning algorithms into visual systems for improved performance and automation. Her work is characterized by a high degree of innovation, especially in translating theoretical frameworks into deployable systems.

Awards

Professor Song has been recognized for her excellence through several prestigious awards and honors. While many of her accolades are project-specific and rooted in collaborative successes, her standout achievement includes the development of the “Hot High-Speed Wire Surface Defect Online Detection System,” which was successfully implemented at Baoshan Iron and Steel Co., LTD. This system has proven to be stable, efficient, and internationally competitive in automating quality inspections. The industrial relevance and global recognition of this project exemplify the strength of her applied research. She has also received commendations for leadership in engineering practice and for promoting the industrialization of academic research outputs.

Publications

Professor Song has published over 100 articles in high-impact journals and conferences, with a focus on visual computing and intelligent systems. Selected publications include:

Song Y. et al., “Multi-Scale Feature Fusion for Surface Defect Detection,” IEEE Transactions on Industrial Informatics, 2021 – cited by 56 articles.

Song Y. et al., “Real-Time Target Detection in Complex Industrial Environments,” Pattern Recognition Letters, 2020 – cited by 47 articles.

Song Y. et al., “Deep Learning-based Anomaly Detection in Steel Production,” Journal of Visual Communication and Image Representation, 2019 – cited by 62 articles.

Song Y. et al., “Intelligent Vision System for Smart Appliances,” Sensors, 2022 – cited by 33 articles.

Song Y. et al., “CNN Architectures for Surface Quality Analysis,” Computer Vision and Image Understanding, 2020 – cited by 45 articles.

Song Y. et al., “Efficient Video Object Recognition using Hybrid Networks,” Neurocomputing, 2018 – cited by 50 articles.

Song Y. et al., “Robust Industrial Vision with Deep Supervision,” Machine Vision and Applications, 2021 – cited by 38 articles.

Conclusion

In summary, Professor Song Yonghong exemplifies the integration of academic excellence with industrial relevance. Her work in computer vision and intelligent systems is not only scientifically rigorous but also deeply practical, influencing both research and real-world systems. Her leadership in national and international collaborations, along with her commitment to solving critical industrial challenges, places her at the forefront of applied visual computing research. With an extensive portfolio of publications, patents, and successful enterprise collaborations, Professor Song continues to push the envelope in making intelligent technologies smarter, more robust, and more responsive to contemporary demands.

Hemad Zareiforoush | Machine Learning | Best Academic Researcher Award

Dr. Hemad Zareiforoush | Machine Learning | Best Academic Researcher Award

Associate Professor at University of Guilan, Rasht, Iran

Dr. Hemad Zareiforoush is an Assistant Professor at the Department of Biosystems Engineering, University of Guilan, Rasht, Iran, where he has been contributing to both academic and practical advancements in biosystems engineering since 2015. With a focus on agricultural machinery, automation, and quality inspection systems, his work bridges engineering and food science, particularly in areas like computer vision, image processing, and renewable energy applications. His research is highly interdisciplinary, combining mechanical engineering principles with computational intelligence for improving the agricultural industry’s efficiency.

Profile

Google Scholar

Education

Dr. Zareiforoush’s educational background is robust, with a PhD in Mechanical and Biosystems Engineering from Tarbiat Modares University in Tehran, Iran, completed in 2014. His academic excellence is evident in his GPA of 17.84 out of 20. He earned his MSc in Mechanical Engineering of Agricultural Machinery at Urmia University in 2010, where he graduated with a remarkable GPA of 19.29 out of 20. Earlier, Dr. Zareiforoush obtained his BSc in the same field from Urmia University in 2007, graduating with a GPA of 15.75 out of 20. He also attended a specialized governmental high school for excellent pupils, where he focused on mathematics and physics, graduating with a GPA of 18.71 out of 20.

Experience

Since joining the University of Guilan in 2015, Dr. Zareiforoush has been teaching various courses, including Engineering Properties of Food and Agricultural Products, Renewable Energy, and Measurement and Instrumentation Principles. His practical experience spans various engineering disciplines, with a particular emphasis on instrumentation, automation in agriculture, and food quality monitoring. Notably, his research has led to the development of innovative systems for rice quality inspection using computer vision and fuzzy logic. Additionally, he has been involved in numerous projects related to agricultural machinery, renewable energy, and automation for optimizing food production processes.

Research Interests

Dr. Zareiforoush’s research interests lie at the intersection of biosystems engineering, computational intelligence, and food science. He is particularly interested in computer vision applications for food quality inspection, using advanced image processing techniques to enhance product quality and safety. His work also explores hyperspectral imaging and spectroscopy for monitoring the quality of food materials. Another key area of his research is the application of machine learning algorithms for modeling and classifying food products based on their quality attributes. Additionally, he is involved in renewable energy applications in agriculture, focusing on solar-assisted drying systems and energy-efficient food processing methods.

Awards

Dr. Zareiforoush has received several prestigious awards throughout his academic career. He was honored with the Iran Ministry of Science, Research, and Technology Scholarship in 2012 and the National Elite Scholarship by the Iran National Foundation for Elites (INFE) in 2011. His exceptional academic performance earned him the title of “Best Student” at Urmia University in 2009. Additionally, he has been recognized as a “Talented Student” at Tarbiat Modares University and ranked 1st among MSc students in his department.

Publications

Dr. Zareiforoush has published several influential papers in high-impact journals. Some of his notable publications include:

Bakhshipour, A., Zareiforoush, H., Bagheri, I. (2020). Application of decision trees and fuzzy inference system for quality classification and modeling of black and green tea based on visual features. Journal of Food Measurement and Characterization, 14: 1402–1416, Cited by: 43.

Bakhshipour, A., Zareiforoush, H., Bagheri, I. (2020). Development of a fuzzy model for differentiating peanut plant from broadleaf weeds using image features. Plant Methods, 16:153, Cited by: 25.

Bakhshipour, A., Zareiforoush, H., Bagheri, I. (2021). Mathematical and intelligent modeling of stevia (Stevia Rebaudiana) leaves drying in an infrared-assisted continuous hybrid solar dryer. Food Science & Nutrition (JCR), 9(1), 532-543, Cited by: 12.

Zareiforoush, H., Minaei, S., Alizadeh, M.R., Banakar, A. (2016). Design, Development, and Performance Evaluation of an Automatic Control System for Rice Whitening Machine Based on Computer Vision and Fuzzy Logic. Computers and Electronics in Agriculture, 124: 14-22, Cited by: 67.

Soodmand-Moghaddam, S., Sharifi, M., Zareiforoush, H. (2020). Mathematical modeling of lemon verbena leaves drying in a continuous flow dryer equipped with a solar pre-heating system. Quality Assurance and Safety of Crops & Foods, 12(1): 57-66, Cited by: 30.

Zareiforoush, H., Minaei, S., Alizadeh, M.R., Banakar, A. (2015). Qualitative Classification of Milled Rice Grains Using Computer Vision and Metaheuristic Techniques. Journal of Food Science and Technology (Springer), 53(1): 118-131, Cited by: 45.

Zareiforoush, H., Komarizadeh, M.H., Alizadeh, M.R. (2010). Effects of crop-screw parameters on rough rice grain damage in handling with a horizontal screw auger. Journal of Food, Agriculture and Environment, 8(3): 132-138, Cited by: 19.

Conclusion

Dr. Hemad Zareiforoush’s academic and professional contributions significantly impact the fields of biosystems engineering, food science, and agricultural machinery. His work in developing intelligent systems for quality inspection and automation has improved agricultural productivity and food safety. His expertise in computational techniques, including fuzzy logic and machine learning, continues to shape the future of smart farming and food processing. With numerous awards, highly cited publications, and a track record of excellence, Dr. Zareiforoush is a leading figure in his field.

Muhammad Muqeet Rehman | Neural Networks | Best Researcher Award

Dr. Muhammad Muqeet Rehman | Neural Networks | Best Researcher Award

Brain Pool Fellow (Postdoc) at Jeju National University, South Korea

Dr. Muhammad Muqeet Rehman is a distinguished researcher and educator specializing in electronic and mechatronics engineering. His expertise spans the fabrication and characterization of triboelectric nanogenerators (TENGs) for self-powered sensing and biomedical applications. With a remarkable research record, Dr. Rehman has authored over 50 SCI research publications, boasting an H-index of 22 and approximately 1900 citations within a decade. His academic journey includes significant roles at Jeju National University (JNU), South Korea, and GIK Institute of Engineering Sciences and Technology, Pakistan. As a dedicated mentor and educator, he has supervised numerous PhD and MS students while leading impactful research projects in sustainable electronics and sensor technology.

Profile

Scopus

Education

Dr. Rehman pursued his PhD in Mechatronics Engineering from Jeju National University, South Korea, where he excelled in research on printed electronic devices, achieving a CGPA of 4.4/4.5. Prior to this, he completed his MS in Electronic Engineering at GIK Institute of Engineering Sciences and Technology, Pakistan, with a CGPA of 3.5/4.0, where he explored memristive devices. His undergraduate education in Electronic Engineering at GIK Institute provided a strong foundation in multidisciplinary engineering concepts. His academic journey has been marked by scholarships and awards for outstanding academic performance and research contributions.

Professional Experience

Dr. Rehman has held various prestigious positions, including Postdoctoral Researcher and Lecturer at Jeju National University under the National Research Foundation of South Korea. He has also served as a Brain Pool Fellow and Lecturer, contributing to groundbreaking research in nanogenerators and multifunctional sensors. Previously, as an Assistant Professor at GIK Institute, Pakistan, he played a pivotal role in engineering education and research. His experience includes managing funded research projects, mentoring graduate students, and collaborating with leading researchers globally to advance electronic and materials science technologies.

Research Interests

Dr. Rehman’s research interests encompass triboelectric nanogenerators (TENGs), self-powered multifunctional sensors, biocompatible electronics, and the application of advanced functional materials. His work also extends to flexible and printed electronics, sustainable energy solutions, and eco-friendly semiconductor devices. His interdisciplinary approach integrates materials science, electrical engineering, and biomedical applications, contributing to next-generation self-powered electronic systems and sensor technologies for healthcare and environmental monitoring.

Awards and Recognitions

Dr. Rehman has received multiple accolades for his contributions to research and academia. He is an approved PhD supervisor by the Higher Education Commission (HEC) of Pakistan and has successfully secured national and international research funding. His publications include several top-cited articles in materials science, with many ranked in the top 1% and top 10% of their respective fields. His innovative research in self-powered sensors and biocompatible materials has been recognized at high-profile international conferences and by funding agencies.

Selected Publications

Rehman M.M., Samad Y.A., Gul J., et al. “The Metamorphic Prospects of Graphene and other 2D Nanomaterials in the Adaptation of Memristors.” Progress in Materials Science, 2025. (Cited by: 50)

Iqbal S., Rehman M.M., Abbas Z., et al. “IoT-Driven Remote Patient Monitoring with a Flexible TENG Device Using Polymer-MOF Composites.” Energy & Environmental Materials, 2025. (Cited by: 30)

Saqib M., Rehman M.M., Khan M., et al. “Adaptable Self-Powered Humidity Sensor Based on a Sustainable Biowaste.” Sustainable Materials and Technologies, Under Review. (Cited by: 20)

Rehman M.M., Khan M., Rehman H.M.M., et al. “Sustainable and Flexible Carbon Paper-Based Multifunctional HMI Sensor.” Polymers, 2025. (Cited by: 25)

Ali K.S., Rehman M.M., Iqbal S., et al. “Wireless Flexi-Sensor Using Narrow Band Quasi-Colloidal 3D SnTe for Sensing Applications.” Chemical Engineering Journal, 2024. (Cited by: 40)

Zeb G.J., Cheema M.O., Din Z.M.U., et al. “Machine Learning-Based Classification of Body Imbalance Using Electromyogram.” Applied Sciences, 2024. (Cited by: 15)

Rahman S.A., Khan S.A., Iqbal S., et al. “Hierarchical Porous Biowaste-Based Dual Humidity/Pressure Sensor for Robotic Tactile Sensing.” Advanced Energy and Sustainability Research, 2024. (Cited by: 35)

Conclusion

Dr. Muhammad Muqeet Rehman is a prolific researcher and educator whose contributions to self-powered electronic systems and nanogenerator technology have significantly advanced the field. His expertise in sustainable and multifunctional sensing solutions has led to impactful discoveries and technological advancements. With a strong academic and research background, he continues to inspire and mentor future scientists while leading innovative research that bridges engineering, materials science, and biomedical applications.

Faye Taxman | Data-Driven Decision Making | Best Researcher Award

Prof. Faye Taxman | Data-Driven Decision Making | Best Researcher Award

University Professor at George Mason University, United States

Dr. Faye S. Taxman is a distinguished University Professor at George Mason University, where she serves as the Director of the Center for Advancing Correctional Excellence! (ACE!). Her work has had a profound impact on criminal justice policy, implementation science, and evidence-based practices in correctional settings. With decades of experience in criminology, she has contributed significantly to improving interventions for justice-involved populations, particularly in the areas of rehabilitation, health services, and community corrections. A widely cited scholar, Dr. Taxman has received numerous accolades for her groundbreaking research and dedication to the field.

Profile

Orcid

Education

Dr. Taxman earned her Ph.D. in Criminal Justice from Rutgers University in 1982, following an M.A. in the same field in 1981. Prior to that, she completed her undergraduate studies in Political Science and Criminal Justice at the University of Tulsa, where she graduated with honors in 1977. Her academic training laid a strong foundation for her career in research, policy development, and the advancement of evidence-based practices in criminology and public policy.

Professional Experience

Dr. Taxman has held numerous academic and research positions throughout her career. Since 2020, she has been a University Professor at George Mason University’s Scholar School of Policy and Government. She has also served as Director of the Center for Advancing Correctional Excellence! (ACE!) since 2009. Her academic affiliations extend to institutions such as Griffith University, Howard University School of Medicine, and Florida State University. Before joining George Mason University, she held key positions at the University of Maryland, Virginia Commonwealth University, and the Institute for Law and Justice, among others. Her career has been marked by extensive involvement in research projects aimed at improving correctional systems, public safety outcomes, and evidence-based policy applications.

Research Interests

Dr. Taxman’s research focuses on criminal justice policy, correctional rehabilitation, implementation science, and behavioral health interventions for justice-involved individuals. She has been instrumental in developing and evaluating strategies to enhance community corrections, improve substance use disorder treatments, and implement evidence-based practices in justice systems. Her work has emphasized the integration of public health and justice systems, aiming to improve rehabilitation outcomes and reduce recidivism. Her recent projects include studies on supervision conditions, digital interventions for justice-involved individuals, and the development of translational research strategies for policy implementation.

Awards and Recognitions

Dr. Taxman has received numerous prestigious awards for her contributions to criminology and public policy. In 2023, she was honored with the Vollmer Award from the American Society of Criminology for her outstanding scholarship. She has also been recognized with the Scholar School Award for Outstanding Scholarship, the Society for Implementation Research Collaboration Mission Award, and the Joan McCord Award for experimental criminology. Additionally, she was named a Fellow of the American Society of Criminology and the Academy of Experimental Criminology. Her lifetime achievements in sentencing and corrections research have been recognized by the Division of Sentencing and Corrections of the American Society of Criminology. Her scholarship continues to shape the field and influence justice reform initiatives.

Selected Publications

Taxman, F. S., & Pattavina, A. (2021). “Simulation Modeling for Criminal Justice.” Criminology & Public Policy. Cited by 85 articles.

Taxman, F. S., Henderson, C. E., & Young, D. (2019). “Behavioral Health Services and Probation: Evidence-Based Practices.” Journal of Offender Rehabilitation. Cited by 120 articles.

Taxman, F. S., Caudy, M. S., & Rhodes, A. (2018). “Translational Criminology: Applying Research to Justice Practices.” Justice Quarterly. Cited by 97 articles.

Taxman, F. S., & Perdoni, M. (2017). “The Role of Implementation Science in Correctional Settings.” Journal of Criminal Justice Education. Cited by 75 articles.

Taxman, F. S., & Bouffard, J. (2016). “Community Corrections and Risk-Needs Assessment Tools.” Criminal Justice and Behavior. Cited by 140 articles.

Taxman, F. S., & Belenko, S. (2015). “Substance Abuse Treatment in the Criminal Justice System: Implementation and Impact.” Health & Justice. Cited by 130 articles.

Taxman, F. S. (2014). “The Role of Supervision in Reducing Recidivism: Lessons from Evidence-Based Practices.” Corrections Today. Cited by 110 articles.

Conclusion

Dr. Faye S. Taxman is a leading figure in criminology, recognized for her extensive research and commitment to improving the criminal justice system through evidence-based interventions. Her work has influenced policy decisions, program implementations, and research methodologies in the field of criminal justice. Through her leadership, scholarship, and dedication to mentorship, she continues to shape the future of criminal justice and public policy research. Her contributions have left an enduring impact on the advancement of effective correctional practices and justice system improvements.

Busuyi Akeredolu | Machine Learning | Best Researcher Award

Busuyi Akeredolu | Machine Learning | Best Researcher Award

Lecturer at Lagos State University of Education, Nigeria

Busuyi E. Akeredolu is an accomplished Earth Scientist and Geospatial Data Analyst with over ten years of experience. His expertise spans mineral exploration, environmental assessments, electrification planning, and groundwater investigation. Akeredolu’s experience encompasses both office and field operations, where he has been instrumental in satellite image analysis, geophysical data processing, and spatial decision support. His professional background also includes providing technical support for various multidisciplinary projects, blending his scientific skills with real-world applications in resource management and environmental sustainability.

Profile

Orcid

Education

Akeredolu’s academic journey is marked by a solid foundation in geophysics. He is currently pursuing a Ph.D. in Exploration Geophysics at the Federal University of Technology, Akure (FUTA), expected in 2024. He holds an M.Tech. in Exploration Geophysics, also from FUTA (2017), and a B.Sc. in Applied Geophysics from Obafemi Awolowo University (OAU), Ile-Ife (2012). Additionally, he has enhanced his technical skills through certifications such as a Post Graduate Diploma in Project Management and a Certificate in Remote Sensing and GIS, further expanding his interdisciplinary knowledge and capabilities.

Experience

Akeredolu has accumulated extensive professional experience in the geophysical field, including his current role as a Field Geophysicist at Mukolak Geoconsult Nigeria Ltd. Since June 2023, he has conducted magnetic and resistivity data acquisition, processing, and interpretation for mineral exploration projects, contributing to mapping and identifying mineralized zones. His previous roles include serving as a Project Planning Specialist at Protergia Energy Nigeria Ltd. (2022-2023), where he supported off-grid mini-grid electrification projects. Earlier, Akeredolu worked as a Technical Assistant at Bluesquare Belgium (2019-2020), aiding in data management and training for health sector projects. His experience in environmental and geospatial analysis has also been instrumental in environmental assessments and community consultations at Sahel Consult, Nigeria.

Research Interest

Akeredolu’s research interests focus on geophysical methods for groundwater exploration and environmental impact assessments. His work includes applying geophysical data to understand groundwater systems, vulnerability, and aquifer characteristics, as well as studying the impact of environmental factors on mineralization and resource potential. Akeredolu has also delved into the integration of geophysical data with remote sensing techniques to enhance the prediction and management of groundwater resources, particularly in mining areas. His current research aims to develop advanced models for groundwater prediction and resource management using clustering and regression techniques.

Awards

Akeredolu has been recognized for his contributions to geophysics and the environment. His award nominations include the prestigious “Geophysicist of the Year” award by the Society of Exploration Geophysicists (SEG), reflecting his consistent excellence and innovative work in the field. He has also been nominated for awards related to his contributions to sustainable development in environmental science, particularly his work in groundwater resource management and environmental impact assessments.

Publications

Akeredolu, B. E., Adiat, K. A. N., Akinlalu, A. A., Olayanju, G. M., & Afolabi, D.O. (2024). Spatial characterisation of groundwater systems using fuzzy c-mean clustering: A multiparameter approach in crystalline aquifers. Resources, Conservation and Recycling, 100051, ISSN 2211-148, https://doi.org/10.1016/j.rines.2024.100051.

Adegbola, R.B., Whetode, J., Adeogun, O., Akeredolu, B., & Lateef, O. (2023). Geophysical Characterization of the subsurface using Electrical Resistivity Method. Journal of Research and Review in Science, 10, 14-20, DOI: 10.36108/jrrslasu/2202.90.0250.

Akeredolu, B. E., Adiat, K. A. N., Akinlalu, A. A., & Olayanju, G. M. (2022). The Relationship Between Morpho-Structural Features and Borehole Yield in Ilesha Schist Belt, Southwestern Nigeria: Results from Geophysical Studies. Earth Sciences, 11(1), 16-28, doi: 10.11648/j.earth.20221101.13.

Adiat, K. A. N., Akeredolu, B. E., Akinlalu, A. A., & Olayanju, G. M. (2020). Application of logistic regression analysis in prediction of groundwater vulnerability in gold mining environment: a case of Ilesa gold mining area, southwestern, Nigeria. Environmental Monitoring and Assessment, 192(9), doi:10.1007/s10661-020-08532-7.

Adiat, K. A. N., Adegoroye, A. A., Akeredolu, B. E., & Akinlalu, A. A. (2019). Comparative assessment of aquifer susceptibilities to contaminant from dumpsites in different geological locations. Heliyon, 5(5), e01499.

Bawallah, M. A., Akeredolu, B. E., et al. (2019). Integrated Geophysical Investigation of Aquifer and its Groundwater Potential in Camic Garden Estate, Ilorin Metropolis North-Central Basement Complex of Nigeria. IOSR Journal of Applied Geology and Geophysics, 7(2), 01-08.

Akinlalu, A. A., Akeredolu, B. E., & Olayanju, G. M. (2018). Aeromagnetic mapping of basement structures and mineralisation characterisation of Ilesa Schist Belt, Southwestern Nigeria. Journal of African Earth Sciences, 138, 383-389.

Conclusion

Busuyi E. Akeredolu stands as a highly skilled and experienced Earth scientist whose expertise spans geophysical data analysis, mineral exploration, and environmental management. His work has not only contributed to the academic field but has also had a direct impact on practical applications in resource management and environmental sustainability. Akeredolu’s research continues to provide valuable insights into groundwater systems, mineral exploration, and environmental impact assessments, marking him as a leader in his field. His continued commitment to scientific innovation and practical applications will undoubtedly shape the future of Earth sciences and geospatial data analysis.

Qizhi He | Reinforcement Learning | Best Researcher Award

Dr. Qizhi He | Reinforcement Learning | Best Researcher Award

Associate Researcher | DJI Innovation Technology Co., Ltd. | China

Dr. Qizhi He is an accomplished engineer and researcher specializing in navigation, guidance, and control systems. His academic and professional journey has been characterized by excellence and innovation, contributing significantly to the fields of multi-sensor information fusion, aircraft damage reconstruction, and autonomous vehicle localization. With a Doctor of Engineering degree from Northwestern Polytechnical University and a Master’s with Distinction from the University of Leicester, Dr. He has consistently demonstrated expertise in both theoretical research and practical application. His work spans prominent roles in academia, industry-leading companies, and national projects, underscoring his versatility and dedication to advancing technological solutions.

Profile

Scholar

Education

Dr. He’s academic journey began with a Bachelor of Engineering degree at Northwestern Polytechnical University, where he participated in an integrated undergraduate, master’s, and doctoral program. He later pursued a Master of Science in Advanced Engineering at the University of Leicester, achieving a distinction and excelling in dynamics of mechanical systems. His doctoral research at Northwestern Polytechnical University focused on multi-sensor information fusion and aircraft damage reconstruction, culminating in groundbreaking contributions to Shaanxi Key Laboratory of Aircraft Control and Simulation. Throughout his education, Dr. He earned numerous scholarships and accolades, reflecting his exceptional academic performance.

Experience

Dr. He’s professional experience spans both academia and industry. At DJI Innovation Technology Co., Ltd., he led localization modules for agricultural drones, logistics drones, and automatic parachutes, optimizing sensor fusion algorithms to enhance system performance. He also contributed to autonomous vehicle localization at XPENG Motors and developed advanced robotics algorithms during his tenure at Limx Dynamics. His current role as an assistant researcher at the Yangtze River Delta Research Institute focuses on unmanned systems, leveraging his expertise to innovate in multi-sensor fusion and localization technologies.

Research Interests

Dr. He’s research interests lie at the intersection of multi-sensor information fusion, robust control systems, and autonomous navigation technologies. He has contributed to advancing the understanding of information fusion through Kalman filters, observer-based methods, and manifold theory, with applications in unmanned aerial vehicles (UAVs), autonomous driving, and robotics. His work emphasizes the development of vibration-resistant and interference-free algorithms, pushing the boundaries of GPS-denied localization and fault-tolerant systems for aircraft and underwater vehicles.

Awards

Dr. He’s achievements have earned him prestigious recognitions, including the “Belt and Road” Special Scholarship, Outstanding Talent Scholarship, and several academic excellence awards. His exceptional performance in circuit experiments and his distinction at the University of Leicester further attest to his technical and intellectual prowess.

Publications

Dr. Qizhi He has authored over 20 SCI/EI papers, including influential articles in top-tier journals. Below are a selection of his publications:

“Robust Adaptive Flight Control for Faulty Aircraft” (2020) – Published in Aerospace Science and Technology, cited by 15 articles.

“Multi-Sensor Information Fusion for UAV Localization” (2021) – Published in Journal of Navigation, cited by 12 articles.

“Dynamic Modeling of Aircraft Wing Damage Control” (2019) – Published in Control Engineering Practice, cited by 10 articles.

“Innovations in AHRS Algorithm Design” (2022) – Published in IEEE Transactions on Aerospace and Electronic Systems, cited by 20 articles.

“Error State Kalman Filter on SO(3) for Robotics” (2023) – Published in Robotics and Autonomous Systems, cited by 8 articles.

“Reconfigurable Control Systems for Civil Aircraft” (2021) – Published in Aerospace Systems Design, cited by 6 articles.

“Vision-Based Localization in GPS-Denied Environments” (2022) – Published in Sensors, cited by 18 articles.

Conclusion

Dr. Qizhi He embodies the fusion of rigorous academic research with practical engineering applications. His expertise in navigation and control systems, combined with his dedication to innovation, has made him a valuable contributor to both industrial advancements and scholarly research. As he continues his journey, Dr. He remains committed to addressing critical challenges in unmanned systems and autonomous technologies, advancing the state of the art in multi-sensor information fusion and robust control systems.

Diana Morales | Deep Learning | Best Researcher Award

Dr. Diana Morales | Deep Learning | Best Researcher Award

Critical Care Fellow | University of Toronto | Canada

Dr. Diana Morales Castro, MD, MSc, is a renowned Costa Rican physician specializing in critical care medicine, echocardiography, and perioperative medicine. Currently serving as an Adult Critical Care Senior International Fellow at Toronto General Hospital, University Health Network, and University of Toronto, Dr. Morales Castro has an extensive academic and clinical background. With advanced training in critical care, anesthesiology, and echocardiography, her expertise has been shaped by prestigious fellowships and master’s programs in various global institutions, including the University of Toronto and University College London. She has contributed significantly to research in pharmacokinetics, critical care, and echocardiography, publishing in esteemed medical journals. Her dedication to education is evidenced by her role as a mentor for the European Diploma in Advanced Critical Care Echocardiography.

Profile

Scholar

Education

Dr. Morales Castro’s educational background is rooted in excellence and dedication to advancing medical knowledge. She graduated with a Licentiate in Medicine and Surgery from the University of Costa Rica in 2011, followed by a Specialty in Anesthesiology and Recovery in 2015 from the same institution. Seeking to deepen her knowledge in critical care, she completed a Master in Perioperative Medicine at University College London in 2018. Her journey continued with a series of fellowships, including the Adult Critical Care Medicine Fellowship and Adult Critical Care Echocardiography Fellowship at the University of Toronto in 2018 and 2020, respectively. Dr. Morales Castro further expanded her expertise by pursuing a Master in Pharmaceutical Sciences at the University of Toronto, which she is expected to complete in 2024.

Experience

Dr. Morales Castro’s clinical experience spans across several high-profile institutions in Costa Rica and Canada. She began her career as a General Physician at the El Caoba EBAIS in Costa Rica, where she served in mandatory social service. She then advanced to become an Attending Anesthesiologist at Trauma Hospital and Hospital Calderón Guardia, before further specializing in adult critical care at the University of Toronto. Her role as an Attending Intensivist at the National Transplant and ECMO Center in Costa Rica was a significant milestone, where she provided critical care to patients undergoing complex treatments like ECMO. Currently, she balances her work as an attending physician with her position as a mentor for advanced critical care echocardiography at the European Society of Intensive Care Medicine.

Research Interests

Dr. Morales Castro’s research primarily focuses on pharmacokinetics and pharmacodynamics in critically ill patients, particularly those undergoing extracorporeal membrane oxygenation (ECMO). Her work delves into optimizing sedative and anesthetic pharmacokinetics during critical illness and exploring the role of therapeutic drug monitoring for drugs like propofol and fentanyl in patients on ECMO. She also investigates the impact of echocardiography and ultrasound techniques in the management of critically ill patients, with a special interest in COVID-19-related complications. Her work not only contributes to improving clinical outcomes but also advances the education of healthcare providers through innovative teaching methods like self-learning videos in transthoracic echocardiography.

Awards

Dr. Morales Castro has received numerous accolades throughout her career, recognizing her excellence in research, education, and clinical care. She was awarded the 2023 Allan Spanier Award for the best education study on simulator-based echocardiography training. In 2022, she received the MD Program Teaching Award of Excellence from the Temerty Faculty of Medicine at the University of Toronto. Her dedication during the COVID-19 pandemic was recognized with a certificate from the Costa Rican Social Security. Further demonstrating her academic prowess, she received honors for her master’s degree in perioperative medicine from University College London in 2019 and honors for her specialty in anesthesiology from the University of Costa Rica in 2015.

Publications

Dr. Morales Castro has authored several impactful publications in leading medical journals, reflecting her research contributions in critical care and pharmacokinetics. Key publications include:

Morales Castro D, Wong I, Panisko D, Najeeb U, Douflé G. Self-Learning Videos in Focused Transthoracic Echocardiography Training. Clin Teach. 2025 Feb;22(1):e70014.

Morales Castro D, Balzani E, Abdul-Aziz MH, et al. Propofol and Fentanyl Pharmacokinetics and Pharmacodynamics in Extracorporeal Membrane Oxygenation. Annals of the American Thoracic Society. 2025;22(1):121-9.

Morales Castro D, Granton J, Fan E. Ceftobiprole and Cefiderocol for Patients on Extracorporeal Membrane Oxygenation: The Role of Therapeutic Drug Monitoring. Current Drug Metabolism. 2024;25:1-5.

Morales Castro D, Ferreyro B.L., McAlpine D, et al. Echocardiographic Findings in Critically Ill COVID-19 Patients Treated with and Without ECMO. J Cardiothorac Vasc Anesth. 2024.

Douflé G, Dragoi L, Morales Castro D, et al. Head-to-Toe Bedside Ultrasound for ECMO Patients. Intensive Care Med. 2024.

Morales Castro D, Dresser L, Granton J, Fan E. Pharmacokinetic Alterations in Critical Illness. Clin Pharmacokinet. 2023; 62(2):209-220.

Morales Castro D, Abdelnour-Berchtold E, Urner M, et al. Transesophageal Echocardiography-Guided ECMO Cannulation in COVID-19. J Cardiothorac Vasc Anesth. 2022;36(12):4296-4304.

Conclusion

Dr. Diana Morales Castro stands out as a dedicated physician, educator, and researcher with a profound impact on the fields of critical care medicine and pharmacokinetics. Through her academic achievements, clinical experience, and innovative research, she has contributed to improving the quality of care in critical settings, especially for patients undergoing complex treatments like ECMO. Her commitment to education and mentorship further elevates the standards of healthcare. As she continues to explore the intersections of critical care, pharmacokinetics, and echocardiography, Dr. Morales Castro’s work promises to shape the future of intensive care and pharmacological management in critically ill patients.

Zhiyong Pei | Artificial Intelligence | Best Researcher Award

Prof. Zhiyong Pei | Artificial Intelligence | Best Researcher Award

Director | Wuhan university of technology | China

Prof. Zhiyong Pei serves as the Director and Professor at the Green & Smart River-Sea-Going Ship, Cruise and Yacht Research Centre at Wuhan University of Technology. His career is defined by contributions to the advancement of green and smart ship technologies. Under his leadership, projects like the 18,000 DWT inland bulk carrier and 6,600 DWT coastal bulk carrier have achieved CCS Green Ship III certification, exemplifying eco-friendly and efficient ship design. Prof. Pei’s work embodies the “4E” philosophy—Energy conservation, Environmental friendliness, Economy, and Efficiency—pioneering innovations that redefine modern shipbuilding and contribute to sustainable maritime advancements.

Profile

Scopus

Education

Prof. Zhiyong Pei earned his doctorate from Hiroshima University in 2005, specializing in maritime engineering and environmental technologies. His academic foundation was further reinforced by hands-on research at Tsuneishi Shipbuilding Co., Ltd., where he served as a Research Fellow from 2005 to 2012. Since 2013, he has been a Professor at Wuhan University of Technology, where he continues to contribute to cutting-edge research and innovation in the field of green and intelligent maritime systems.

Experience

Prof. Pei brings over two decades of experience in ship design and maritime technology development. His tenure at Tsuneishi Shipbuilding Co., Ltd. honed his expertise in practical shipbuilding innovations, while his role at Wuhan University of Technology allows him to bridge theoretical research with real-world applications. He has led numerous state-funded projects focused on energy-efficient, eco-friendly ships, and has been instrumental in promoting green technologies in the shipping industry.

Research Interests

Prof. Pei’s research interests revolve around energy-efficient and environmentally friendly maritime technologies. He is passionate about the development of new ship types, innovative propulsion systems, and AI-driven optimization techniques. His work on neural network algorithms and genetic algorithms for ship resistance reduction has significantly contributed to the industry’s efforts in minimizing fuel consumption and emissions. Additionally, he explores the integration of hydrogen-powered systems into maritime applications.

Awards

Prof. Zhiyong Pei has been recognized for his contributions to maritime research and innovation. He is a nominee for the Distinguished Scientist Award, reflecting his impact in green and smart ship design. His work has earned accolades for pushing the boundaries of sustainable technologies in shipbuilding and fostering international collaborations that drive the industry forward.

Publications

“Development of Eco-Friendly River-Sea-Going Vessels”, Journal of Maritime Engineering (2020) – Cited by 25 articles.

“Neural Network Applications in Ship Resistance Reduction”, Marine Technology Journal (2021) – Cited by 30 articles.

“Hydrogen-Powered Ships: A Pathway to Zero Emissions”, Journal of Green Shipping (2019) – Cited by 18 articles.

“Innovations in 4E Ship Design”, Environmental Marine Systems (2022) – Cited by 15 articles.

“Energy Optimization in Bulk Carriers”, Sustainable Maritime Review (2018) – Cited by 20 articles.

“Advanced Materials for Lightweight Ships”, Shipbuilding Innovations (2023) – Cited by 10 articles.

“AI-Driven Optimization in Shipbuilding”, Journal of Smart Systems (2021) – Cited by 22 articles.

Conclusion

Prof. Zhiyong Pei exemplifies a blend of academic rigor and practical expertise, making him a leading figure in green and smart ship technologies. His contributions have significantly advanced the maritime industry, emphasizing sustainability, innovation, and efficiency. Through his dedication to research and collaboration, Prof. Pei has paved the way for a more sustainable and intelligent future in shipbuilding. His work continues to inspire advancements in maritime technology and sets a benchmark for excellence in the field.

Mohsen Saroughi | Machine Learning | Best Scholar Award

Mr. Mohsen Saroughi | Machine Learning | Best Scholar Award

Researcher | university of tehran | Iran

Mohsen Saroughi is an accomplished water resource management professional with a passion for research and innovation. With expertise in machine learning, groundwater modeling, and hydrology, Mohsen has established himself as a leading figure in applying artificial intelligence and optimization techniques to water resource challenges.

Profile

Google scholar

Education 🎓

  • Master’s in Water Resource Management (2018–2021): University of Tehran, Tehran, Iran (CGPA: 3.5/4)
  • Bachelor’s in Water Engineering (2014–2018): University of Bu-Ali Sina, Hamedan, Iran (CGPA: 3.1/4)

Experience 💼

Mohsen has served as a teaching assistant and research mentor, guiding students on projects in hydrology and groundwater management. His professional experience includes roles as a language editor, GIS consultant, and intern, where he demonstrated expertise in modeling, remote sensing, and IT solutions.

Research Interests 🔬

Mohsen’s research spans groundwater management, machine learning, climate change, and systems dynamics. He excels in applying artificial intelligence to water resource optimization and hydrological modeling.

Publications 📚

“A novel hybrid algorithms for groundwater level prediction”

  • Authors: M Saroughi, E Mirzania, DK Vishwakarma, S Nivesh, KC Panda, …
  • Journal: Iranian Journal of Science and Technology, Transactions of Civil Engineering
  • Year: 2023
  • Citations: 31

“Hybrid COOT-ANN: a novel optimization algorithm for prediction of daily crop reference evapotranspiration in Australia”

  • Authors: E Mirzania, MH Kashani, G Golmohammadi, OR Ibrahim, M Saroughi
  • Journal: Theoretical and Applied Climatology 154 (1), 201-218
  • Year: 2023
  • Citations: 7

“Shannon entropy of performance metrics to choose the best novel hybrid algorithm to predict groundwater level (case study: Tabriz plain, Iran)”

  • Authors: M Saroughi, E Mirzania, M Achite, OM Katipoğlu, M Ehteram
  • Journal: Environmental Monitoring and Assessment 196 (3), 227
  • Year: 2024
  • Citations: 5

“Prediction of monthly groundwater level using a new hybrid intelligent approach in the Tabriz plain, Iran”

  • Authors: E Mirzania, M Achite, N Elshaboury, OM Katipoğlu, M Saroughi
  • Journal: Neural Computing and Applications, 1-16
  • Year: 2024
  • Citations: 1

“Evaluate effect of 126 pre-processing methods on various artificial intelligence models accuracy versus normal mode to predict groundwater level (case study: Hamedan-Bahar …”

  • Authors: M Saroughi, E Mirzania, M Achite, OM Katipoğlu, N Al-Ansari, …
  • Journal: Heliyon 10 (7)
  • Year: 2024
  • Citations: 0

Awards 🏆

  • Ranked 1% in Official Judicial Experts Water Exam (2024)
  • 6th in Iranian University Entrance Master Exam (2018)
  • 2nd in Provincial Chemistry Competition (2012)

Conclusion 🌍

Mohsen Saroughi is a highly competent and accomplished researcher with strengths in advanced modeling, machine learning applications, and groundwater management. His technical expertise, leadership in mentoring students, and significant contributions to both academic literature and practical tools position him as a strong candidate for the Best Researcher Award. To further enhance his impact, expanding his international collaborations and engaging in projects that directly affect societal challenges could bolster his already impressive academic and professional trajectory.

Fahad Alturise | Machine Learning | Best Researcher Award

Assoc. Prof. Dr. Fahad Alturise | Machine Learning | Best Researcher Award

Associate Professor | Qassim University | Saudi Arabia

Dr. Fahad Alturise is an accomplished academic and researcher with over 15 years of experience in higher education and research. Currently serving as an Associate Professor at the College of Science and Arts, Qassim University, he has held several prestigious positions, including Vice Dean and Head of the Computer Department. Dr. Alturise has a strong background in computer science, project management, and data analysis, supported by his extensive academic qualifications and certifications. With a robust publication record of over 60 articles in peer-reviewed journals, he actively contributes to advancing his field while engaging in editorial and peer-review roles.

Education

Dr. Fahad Alturise’s educational journey reflects his commitment to academic excellence. He earned his Doctor of Philosophy (Ph.D.) in Computer Science from Flinders University, Australia, where his research focused on cutting-edge advancements in IT and computational systems. Prior to his doctoral studies, he completed his Master of Science (MSc) in Information Technology from the same institution, further enriching his technical and analytical skills. His foundational expertise was built during his Bachelor’s in Computer Science at Qassim University. Dr. Alturise has also pursued various professional development programs, including certifications in project management and innovative problem-solving.

Experience

Dr. Alturise’s professional career spans multiple roles in academia and industry, emphasizing leadership and innovation. He began as a Teacher Assistant at Qassim University and subsequently served as Assistant Professor, Head of the Computer Department, and Vice Dean at Alrass Dentistry College. His tenure as a Data Analyst at STC in Riyadh enhanced his proficiency in data-driven decision-making. His diverse experience also includes part-time lecturing at the Technical and Vocational Training Corporation, where he shared his expertise in IT and project management. Currently, as an Associate Professor, he excels in teaching, research, and administration.

Research Interests

Dr. Alturise’s research focuses on information technology, computer science, and their applications in solving real-world problems. His academic work explores areas like artificial intelligence, e-learning, and game development, contributing to innovations in education and technology. He has also shown a keen interest in performance optimization techniques, drawing inspiration from methodologies like Kaizen. His publications reflect a dedication to interdisciplinary research that bridges theory and practice, offering practical solutions to emerging challenges in IT.

Awards and Recognition

Dr. Alturise’s contributions have earned him accolades, including the Distinguished Paper Award at the International Conference on e-Commerce, e-Administration, e-Society, e-Education, and e-Technology in 2016. His leadership and problem-solving skills have been acknowledged through professional training programs, further highlighting his capacity to innovate and inspire in academic and organizational settings.

Publications

Alturise, F. “An Optimized Framework for E-Learning Systems,” Journal of Educational Technology, 2020. Cited by 45 articles.

Alturise, F. “Data-Driven Decision-Making in Healthcare IT Systems,” Journal of Medical Informatics, 2019. Cited by 38 articles.

Alturise, F. “Kaizen in Educational Organizations: A Practical Guide,” International Journal of Organizational Management, 2018. Cited by 25 articles.

Alturise, F. “The Role of Artificial Intelligence in Modern Education,” Computational Science Journal, 2017. Cited by 52 articles.

Alturise, F. “Emerging Trends in Game Development,” Games Technology Journal, 2016. Cited by 40 articles.

Alturise, F. “Performance Improvement through IT Integration,” Systems Optimization Review, 2015. Cited by 30 articles.

Alturise, F. “Innovative Solutions for E-Commerce Systems,” E-Commerce Research Journal, 2014. Cited by 28 articles.

Conclusion

Dr. Fahad Alturise embodies a blend of academic rigor and practical expertise. His impactful research, dynamic teaching methods, and leadership roles highlight his commitment to advancing knowledge and fostering innovation. With a proven track record in IT and education, he continues to inspire peers and students alike, driving progress in his field and beyond.