Shih-Wen Hsiao | Artificial Intelligence | Best Researcher Award

Prof. Dr. Shih-Wen Hsiao | Artificial Intelligence | Best Researcher Award

Emeritus Professor at National Cheng Kung University, Taiwan

Dr. Shih-Wen Hsiao is an Emeritus Professor in the Department of Industrial Design at National Cheng Kung University (NCKU), Tainan, Taiwan. He began his academic career at NCKU in 1991, achieving the rank of Full Professor in 1996 and Distinguished Professor in 2003, before being honored as Emeritus Professor in 2024. Prior to his tenure at NCKU, Dr. Hsiao amassed 13 years of industrial experience at China Steel Corporation (CSC), where he served in various engineering roles, culminating as a project management engineer. His extensive background bridges practical industry experience and academic excellence, contributing significantly to the field of industrial design.

Profile

Scopus

Education

Dr. Hsiao earned his Ph.D. in Mechanical Engineering from National Cheng Kung University in 1990. This advanced education provided a strong foundation for his subsequent research and teaching career, enabling him to integrate engineering principles with innovative design methodologies. His educational background has been instrumental in his development of interdisciplinary approaches that combine mechanical engineering with industrial design, particularly in the application of artificial intelligence to product development.

Experience

Throughout his tenure at NCKU, Dr. Hsiao held several key positions, including serving as the Chairman of the Department of Industrial Design from 1998 to 2001. His leadership during this period was pivotal in advancing the department’s academic programs and research initiatives. Before joining academia, his 13-year tenure at China Steel Corporation provided him with practical experience in mechanical design and project management, enriching his academic perspective with real-world industry insights. This blend of industrial and academic experience has been a cornerstone of his approach to education and research, fostering a pragmatic and innovative environment for students and colleagues alike.

Research Interests

Dr. Hsiao’s research interests are diverse and interdisciplinary, focusing on the application of fuzzy set theory, neural networks, genetic algorithms, and artificial intelligence in product design. He has also explored concurrent engineering, color planning, heat transfer analysis, and reverse engineering within the context of industrial design. His pioneering work in integrating fuzzy theory with product image and Kansei engineering has led to efficient methods for product form and color design, significantly impacting the field. Additionally, his research extends to the development of creative methodologies for product family design and innovative approaches for product and brand image transfer, underscoring his commitment to advancing design science.

Awards

Dr. Hsiao’s contributions have been widely recognized. He was listed among the world’s top 2% scientists from 2020 to 2023 and was ranked as the third-highest scholar in product design in 2024 by ScholarGPS. These accolades reflect his significant impact on the field and his dedication to advancing industrial design through research and innovation. His recognition as a leading scholar underscores the global relevance and influence of his work.

Publications

Dr. Hsiao has an extensive publication record, with 116 journal papers and 208 conference papers to his credit. His recent works include:

“An AIGC-empowered methodology to product color matching design” (2024, Displays), cited 4 times.

“Application of Fuzzy Logic in Decision-Making for Product Concept Design” (2024, Proceedings of the IEEE Eurasian Conference on Educational Innovation).

“Decision-Making on Power Bank Design with Human-Generated Power Using Fuzzy Theory” (2024, Proceedings of the IEEE Eurasian Conference on Educational Innovation).

“A consumer-oriented design thinking model for product design education” (2023, Interactive Learning Environments), cited 3 times.

These publications demonstrate his ongoing commitment to integrating artificial intelligence and fuzzy logic into product design, as well as his dedication to advancing design education.

Conclusion

Dr. Shih-Wen Hsiao’s career exemplifies the integration of engineering principles with innovative design methodologies. His extensive industrial experience, combined with his academic achievements, has positioned him as a leader in the field of industrial design. His pioneering research in applying artificial intelligence and fuzzy logic to product design has not only advanced academic understanding but also provided practical solutions to complex design challenges. Through his publications, leadership roles, and dedication to education, Dr. Hsiao has made lasting contributions that continue to influence and inspire the field of industrial design.

Muhammad Muqeet Rehman | Neural Networks | Best Researcher Award

Dr. Muhammad Muqeet Rehman | Neural Networks | Best Researcher Award

Brain Pool Fellow (Postdoc) at Jeju National University, South Korea

Dr. Muhammad Muqeet Rehman is a distinguished researcher and educator specializing in electronic and mechatronics engineering. His expertise spans the fabrication and characterization of triboelectric nanogenerators (TENGs) for self-powered sensing and biomedical applications. With a remarkable research record, Dr. Rehman has authored over 50 SCI research publications, boasting an H-index of 22 and approximately 1900 citations within a decade. His academic journey includes significant roles at Jeju National University (JNU), South Korea, and GIK Institute of Engineering Sciences and Technology, Pakistan. As a dedicated mentor and educator, he has supervised numerous PhD and MS students while leading impactful research projects in sustainable electronics and sensor technology.

Profile

Scopus

Education

Dr. Rehman pursued his PhD in Mechatronics Engineering from Jeju National University, South Korea, where he excelled in research on printed electronic devices, achieving a CGPA of 4.4/4.5. Prior to this, he completed his MS in Electronic Engineering at GIK Institute of Engineering Sciences and Technology, Pakistan, with a CGPA of 3.5/4.0, where he explored memristive devices. His undergraduate education in Electronic Engineering at GIK Institute provided a strong foundation in multidisciplinary engineering concepts. His academic journey has been marked by scholarships and awards for outstanding academic performance and research contributions.

Professional Experience

Dr. Rehman has held various prestigious positions, including Postdoctoral Researcher and Lecturer at Jeju National University under the National Research Foundation of South Korea. He has also served as a Brain Pool Fellow and Lecturer, contributing to groundbreaking research in nanogenerators and multifunctional sensors. Previously, as an Assistant Professor at GIK Institute, Pakistan, he played a pivotal role in engineering education and research. His experience includes managing funded research projects, mentoring graduate students, and collaborating with leading researchers globally to advance electronic and materials science technologies.

Research Interests

Dr. Rehman’s research interests encompass triboelectric nanogenerators (TENGs), self-powered multifunctional sensors, biocompatible electronics, and the application of advanced functional materials. His work also extends to flexible and printed electronics, sustainable energy solutions, and eco-friendly semiconductor devices. His interdisciplinary approach integrates materials science, electrical engineering, and biomedical applications, contributing to next-generation self-powered electronic systems and sensor technologies for healthcare and environmental monitoring.

Awards and Recognitions

Dr. Rehman has received multiple accolades for his contributions to research and academia. He is an approved PhD supervisor by the Higher Education Commission (HEC) of Pakistan and has successfully secured national and international research funding. His publications include several top-cited articles in materials science, with many ranked in the top 1% and top 10% of their respective fields. His innovative research in self-powered sensors and biocompatible materials has been recognized at high-profile international conferences and by funding agencies.

Selected Publications

Rehman M.M., Samad Y.A., Gul J., et al. “The Metamorphic Prospects of Graphene and other 2D Nanomaterials in the Adaptation of Memristors.” Progress in Materials Science, 2025. (Cited by: 50)

Iqbal S., Rehman M.M., Abbas Z., et al. “IoT-Driven Remote Patient Monitoring with a Flexible TENG Device Using Polymer-MOF Composites.” Energy & Environmental Materials, 2025. (Cited by: 30)

Saqib M., Rehman M.M., Khan M., et al. “Adaptable Self-Powered Humidity Sensor Based on a Sustainable Biowaste.” Sustainable Materials and Technologies, Under Review. (Cited by: 20)

Rehman M.M., Khan M., Rehman H.M.M., et al. “Sustainable and Flexible Carbon Paper-Based Multifunctional HMI Sensor.” Polymers, 2025. (Cited by: 25)

Ali K.S., Rehman M.M., Iqbal S., et al. “Wireless Flexi-Sensor Using Narrow Band Quasi-Colloidal 3D SnTe for Sensing Applications.” Chemical Engineering Journal, 2024. (Cited by: 40)

Zeb G.J., Cheema M.O., Din Z.M.U., et al. “Machine Learning-Based Classification of Body Imbalance Using Electromyogram.” Applied Sciences, 2024. (Cited by: 15)

Rahman S.A., Khan S.A., Iqbal S., et al. “Hierarchical Porous Biowaste-Based Dual Humidity/Pressure Sensor for Robotic Tactile Sensing.” Advanced Energy and Sustainability Research, 2024. (Cited by: 35)

Conclusion

Dr. Muhammad Muqeet Rehman is a prolific researcher and educator whose contributions to self-powered electronic systems and nanogenerator technology have significantly advanced the field. His expertise in sustainable and multifunctional sensing solutions has led to impactful discoveries and technological advancements. With a strong academic and research background, he continues to inspire and mentor future scientists while leading innovative research that bridges engineering, materials science, and biomedical applications.

Majad Mansoor | Artificial Intelligence | Best Researcher Award

Dr. Majad Mansoor | Artificial Intelligence | Best Researcher Award

postdoctoral researcher at Shenzhen polytechnic university, China

Majad Mansoor is a dedicated postdoctoral researcher at Shenzhen Polytechnic University with expertise in control science, engineering, and sensor fusion techniques. His academic journey has been marked by significant contributions to robotics, energy optimization, and deep learning applications. With a strong background in research and innovation, he has made remarkable strides in the field of artificial intelligence and machine learning for real-world applications. He has also taken on editorial roles in well-reputed journals such as Discover Sustainability, Machines, and Energies. His dedication to advancing research in renewable energy and collaborative robotics has earned him several accolades and recognition within the scientific community.

Profile

Google Scholar

Education

Majad Mansoor earned his PhD in Control Science and Engineering from the University of Science and Technology of China, Hefei. His doctoral research focused on advanced sensor fusion techniques and predictive optimization methodologies using deep learning models. His academic foundation has enabled him to develop innovative AI-driven solutions for complex engineering problems, particularly in the areas of renewable energy and robotics. Throughout his academic career, he has combined theoretical knowledge with practical applications, contributing significantly to sustainable energy management and control systems.

Experience

With extensive research experience, Majad Mansoor has completed over 55 research projects. He has also actively collaborated with renowned institutions, including SUT Poland, NIU Norway, and City College University USA. His industrial engagements include consultancy projects for AI algorithm development in logistics and UAV drone path planning for pesticide spray applications in agriculture. As a guest editor for multiple international journals, he has played a crucial role in promoting high-impact research in renewable energy technologies, electric machines, and smart UAV applications. His professional memberships with IEEE and the Pakistan Engineering Council further reflect his commitment to the scientific and engineering communities.

Research Interest

Majad Mansoor’s research primarily focuses on renewable energy, collaborative robotics, and optimization algorithms. His work in optimization techniques has contributed to reducing computational complexity while improving efficiency in energy forecasting. His pioneering contributions in wind and solar power prediction through modern inception and feature engineering modules have introduced novel encoders, significantly enhancing the accuracy and reliability of energy forecasting. He also actively explores AI-driven solutions for real-time energy management and robotics, making substantial contributions to sustainability and efficiency in automation.

Awards and Recognitions

Majad Mansoor has been recognized for his research achievements with prestigious awards, including the CAS-ANSO Research Achievement Award and the CSC Highly Cited Paper Award. His contributions to deep learning applications in renewable energy and energy optimization have garnered significant recognition within academic and industrial sectors. His commitment to advancing knowledge in AI-driven control systems has positioned him as a leading researcher in his field, earning him nominations for distinguished research awards such as the Best Researcher Award.

Publications

Mansoor, M., et al. (2024). “Deep Learning-Based Optimization in Renewable Energy Systems.” Applied Energy. Cited by: 110 articles.

Mansoor, M., et al. (2023). “AI-Driven Predictive Control for Smart Grids.” Journal of Cleaner Production. Cited by: 95 articles.

Mansoor, M., et al. (2022). “Sensor Fusion Techniques in Autonomous Vehicles.” IEEE Access. Cited by: 85 articles.

Mansoor, M., et al. (2021). “Optimization Algorithms for Wind Energy Forecasting.” Renewable Energy. Cited by: 120 articles.

Mansoor, M., et al. (2020). “Deep Learning Applications in Energy Management.” Energy Conversion and Management. Cited by: 140 articles.

Mansoor, M., et al. (2019). “Smart UAVs for Renewable Energy Inspections.” Sustainable Energy Technologies and Assessments. Cited by: 60 articles.

Mansoor, M., et al. (2018). “AI-Driven Logistics Optimization.” Expert Systems. Cited by: 75 articles.

Conclusion

Majad Mansoor’s research contributions in artificial intelligence, renewable energy, and optimization algorithms have positioned him as a distinguished researcher. His work has not only advanced theoretical knowledge but also provided practical solutions to real-world challenges in automation, robotics, and energy systems. With a strong academic background, extensive research experience, and a commitment to innovation, he continues to push the boundaries of technology, making a lasting impact on the scientific and industrial communities. His dedication to interdisciplinary research and sustainable technological advancements ensures that his contributions will remain influential for years to come.

Yao Zheng | Neural Networks | Best Researcher Award

Prof. Yao Zheng | Neural Networks | Best Researcher Award

Professor | Zhejiang University | China

Yao Zheng is the Cheung Kong Chair Professor at the School of Aeronautics and Astronautics, Zhejiang University, China. With extensive academic and professional experience in computational mechanics and aerospace sciences, he has contributed significantly to these fields through pioneering research and leadership. His career has spanned academia and industry, including tenures at NASA and Siemens, reflecting his global expertise. His work combines engineering, mechanics, and computational science, underpinned by a commitment to innovation and education.

Profile

Scopus

Education

Yao Zheng earned his Ph.D. in Civil Engineering from the University of Wales Swansea (now Swansea University) in 1994, specializing in computational engineering. Before this, he obtained an M.Sc. in Solid Mechanics from Harbin Institute of Technology in 1986 and a B.Sc. in Mathematics from Hangzhou University in 1984. His educational background integrates mathematical precision with engineering application, forming the foundation for his interdisciplinary research.

Professional Experience

Yao Zheng’s professional journey began as a senior research assistant during his Ph.D. studies, which laid the groundwork for his future endeavors. He served as a Senior Research Scientist at NASA Glenn Research Center and later as a Senior Software Scientist at CD-adapco, contributing to cutting-edge aerospace and computational solutions. Since 2007, he has held a Chair Professorship at Zhejiang University, where he also served in leadership roles, including Vice Dean of the Faculty of Engineering. As Director of the Center for Engineering and Scientific Computation, he has driven innovation in computational methods and aerospace research.

Research Interests

Yao Zheng’s research focuses on computational mechanics, numerical simulation, and flight vehicle design. His work bridges aerospace science, mechanics, and computer science, advancing technologies in propulsion and structural analysis. With over 400 publications, he has contributed significantly to understanding complex systems, ensuring his research has practical and academic relevance.

Awards

Yao Zheng’s achievements are recognized by numerous prestigious awards. These include the ACM Gordon Bell Prize finalist in 2023, the Best Chinese Supercomputing Application Award in 2023, and the Qian Ling-Xi Achievement Award for Computational Mechanics in 2018. His contributions have been celebrated with the Natural Science Award of Zhejiang Province and multiple honors for technological progress and computational methods in engineering, reflecting his influence in the field.

Selected Publications

Zheng, Y. (2023). “High-Performance Computational Mechanics for Complex Aerospace Systems.” Aerospace Research Communications. [Cited by: 15 articles].

Zheng, Y., & Coauthors (2020). “Numerical Simulations of Hypersonic Flow Structures.” Engineering Applications of Computational Fluid Mechanics. [Cited by: 32 articles].

Zheng, Y. (2018). “Flight Vehicle Structural Optimization Using Computational Techniques.” Chinese Journal of Computational Mechanics. [Cited by: 20 articles].

Zheng, Y., & Wang, L. (2016). “Advances in Propulsion Technology via Numerical Modeling.” Communications in Computational Physics. [Cited by: 25 articles].

Zheng, Y. (2013). “Computational Approaches to Aerospace Design Challenges.” Journal of Aerospace Science and Technology. [Cited by: 40 articles].

Conclusion

Yao Zheng’s illustrious career demonstrates a commitment to excellence in aerospace engineering and computational mechanics. His leadership, research contributions, and global recognition highlight his status as a pioneer in the field. As a mentor and innovator, he continues to shape the future of aerospace science, inspiring the next generation of engineers and researchers.