Olga Ovtšarenko | Machine Learning | Best Researcher Award

Ms. Olga Ovtšarenko | Machine Learning | Best Researcher Award

Lead Lecturer at TTK University of Applied Sciences, Lithuania

Olga Ovtšarenko is a distinguished academic and researcher in the field of computer sciences and engineering graphics. She has contributed significantly to engineering education, particularly in CAD design and computer graphics. With a career spanning over two decades, she has played a crucial role in advancing pedagogical approaches in digital learning environments. Her expertise extends to informatics and systems theory, where she integrates modern computational techniques into engineering education. Currently serving as a lead lecturer at TTK University of Applied Sciences, she continues to foster innovation in higher education through her research and academic contributions.

Profile

Orcid

Education

Olga Ovtšarenko holds a Master’s degree in Pedagogics with a specialization in vocational training didactics from Tallinn Pedagogical University, completed between 2002 and 2004. She previously earned an engineering diploma from Moscow State University of Design and Technologies in 1984, laying a strong foundation in technical sciences. Furthering her academic pursuits, she is currently a doctoral student in Informatics Engineering at VILNIUS TECH, Lithuania. Her educational journey underscores her dedication to interdisciplinary research and the integration of engineering and informatics in education.

Experience

Olga Ovtšarenko has amassed extensive experience in academia, beginning her tenure at TTK University of Applied Sciences in 2008. Over the years, she has taught subjects such as descriptive geometry, engineering graphics, and computer graphics, shaping the next generation of engineers. Since 2020, she has served as the lead lecturer at the university’s Centre for Sciences, where she specializes in engineering graphics and CAD design. Her contributions to curriculum development and instructional methodologies have had a profound impact on technical education, emphasizing the importance of modern computational tools in engineering disciplines.

Research Interests

Her research interests are centered on informatics, systems theory, and engineering education. She explores the applications of machine learning and artificial intelligence in educational settings, aiming to optimize e-learning environments. Additionally, she investigates the role of Building Information Modeling (BIM) in engineering education, focusing on enhancing visualization skills and interactive learning experiences. Through international collaborations, she contributes to the advancement of sustainable and innovative learning methodologies, emphasizing the integration of digital technologies in technical education.

Awards

Olga Ovtšarenko has been recognized for her contributions to engineering education and research. She has received multiple accolades for her work in developing innovative educational methodologies and integrating computational technologies into teaching. Her participation in international academic conferences and research projects has further solidified her reputation as a leading figure in engineering education.

Selected Publications

Ovtšarenko, Olga; Safiulina, Elena (2025). “Computer-Driven Assessment of Weighted Attributes for E-Learning Optimization.” Computers, 14(116), 1−19. DOI: 10.3390/computers14040116.

Ovtšarenko, Olga (2024). “Opportunities of Machine Learning Algorithms for Education.” Discover Education, 3, 209. DOI: 10.1007/s44217-024-00313-5.

Ovtšarenko, O.; Makuteniene, D.; Ceponis, A. (2024). “Broad Horizons of International Cooperation to Ensure Sustainable and Innovative Learning.” 10th International Conference on Higher Education Advances: HEAd’24. Universidad Politecnica de Valencia, 904−911. DOI: 10.4995/HEAd24.2024.17051.

Ovtšarenko, Olga; Mill, Tarvo (2024). “Engineering Educational Program Design Using Modern BIM Technologies.” ICERI2024 Proceedings, 746−752. DOI: 10.21125/iceri.2024.0283.

Ovtšarenko, Olga (2023). “Opportunities for Automated E-Learning Path Generation in Adaptive E-Learning Systems.” IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), 1−4. DOI: 10.1109/eStream59056.2023.10134844.

Ovtšarenko, Olga; Makuteniene, Daiva; Suwal, Sunil (2023). “Use of BIM for Advanced Training Through Visualization and Implementation.” ICERI2023 Proceedings, 940−947. DOI: 10.21125/iceri.2023.0317.

Ovtšarenko, Olga; Eensaar, Agu (2022). “Methods to Improve the Quality of Design CAD Teaching for Technical Specialists.” Education and New Developments 2022, 231−233. DOI: 10.21125/ened.2022.0524.

Conclusion

Olga Ovtšarenko’s dedication to engineering education and digital learning innovation has positioned her as a prominent academic in her field. Her work in integrating informatics, AI, and BIM technologies into engineering curricula has greatly enhanced educational methodologies. Through her research, teaching, and international collaborations, she continues to contribute to the evolution of modern engineering education, ensuring students and professionals are equipped with cutting-edge skills for the future.

Youlong Lv | Artificial Intelligence | Best Researcher Award

Assoc. Prof. Dr. Youlong Lv | Artificial Intelligence | Best Researcher Award

Associate professor at Institute of Artificial Intelligence, Donghua University, China

Dr. Youlong Lyu is an associate professor at the Institute of Artificial Intelligence, Donghua University. With a strong background in intelligent production, scheduling, and quality control, he has contributed significantly to the field of artificial intelligence applications in industrial settings. He has led multiple national and municipal research projects focused on optimizing manufacturing processes, integrating AI into production systems, and improving efficiency through data-driven methodologies. His expertise spans across various aspects of industrial AI, from smart healthcare to intelligent scheduling systems, making a notable impact in both academic and practical applications.

Profile

Scopus

Education

Dr. Lyu earned his doctoral degree from Shanghai Jiao Tong University, where he specialized in intelligent manufacturing and AI-driven optimization. His academic journey has been marked by a deep exploration of machine learning, genetic algorithms, and big data analytics, which have fueled his research into enhancing production processes. His educational background has equipped him with the technical and analytical skills necessary to advance AI applications in industrial and manufacturing domains.

Experience

Dr. Lyu has a wealth of experience in AI-driven industrial applications, having undertaken pivotal roles in numerous research projects. As a principal investigator, he has spearheaded national and municipal initiatives aimed at enhancing workshop scheduling, production line efficiency, and aerospace product assembly. His work in intelligent control systems and data-driven decision-making has led to the development of innovative methodologies for optimizing manufacturing processes. Additionally, he has played a crucial role in consulting for industry projects, particularly in the aerospace sector, where his expertise in simulation and optimization has been instrumental in improving production line operations.

Research Interests

Dr. Lyu’s research interests lie at the intersection of artificial intelligence, smart manufacturing, and industrial optimization. He focuses on intelligent production scheduling, AI-driven quality control, and big data applications in manufacturing. His work seeks to bridge the gap between theoretical AI models and practical industrial applications, leveraging machine learning algorithms, genetic regulatory networks, and deep reinforcement learning to optimize complex manufacturing processes. Additionally, he has contributed to research in smart healthcare, applying AI techniques to enhance medical imaging and diagnostic accuracy.

Awards

Dr. Lyu’s contributions to AI in industrial applications have been widely recognized. He has received multiple grants from prestigious institutions, including the Natural Science Foundation of China and the Shanghai Municipal Commission of Science and Technology. His work has also been acknowledged through awards in AI research and industrial big data analytics. As a dedicated scholar, he continues to push the boundaries of AI applications in manufacturing, earning accolades for his innovative research and impactful contributions to the field.

Publications

Zuo L, Zhang J, Lyu Y, et al. Multi-graph attention temporal convolutional network-based radius prediction in three-roller bending of thin-walled parts. Advanced Engineering Informatics, 2025. (Cited by X articles)

Yang B, Zhang J, Lyu Y, et al. Automatic computed tomography image segmentation method for liver tumor. Quantitative Imaging in Medicine and Surgery, 2025. (Cited by X articles)

Zhang J, Yang B, Lyu Y. Multi-objective optimization based robotic path planning for CT data reconstruction. Journal of Radiation Research and Applied Sciences, 2024. (Cited by X articles)

Lyu Y, Zhang J, Zuo L. Genetic regulatory network-based optimization of master production scheduling. International Journal of Bio-Inspired Computation, 2022. (Cited by X articles)

Lyu Y, Ji Q, Liu Y, Zhang J. Data-driven sensitivity analysis of contact resistance for fuel cells. Measurement and Control, 2020. (Cited by X articles)

Lyu Y, Zhang J. Genetic regulatory network-based method for sequencing in mixed-model assembly lines. Mathematical Biosciences and Engineering, 2019. (Cited by X articles)

Lyu Y, Qin W, Yang J, Zhang J. Adjustment mode decision using support vector data description. Industrial Management & Data Systems, 2018. (Cited by X articles)

Conclusion

Dr. Youlong Lyu’s research and contributions in AI-driven industrial optimization have made significant strides in intelligent manufacturing and quality control. His extensive experience in leading research projects, publishing in high-impact journals, and developing innovative AI applications has solidified his position as a leading expert in industrial artificial intelligence. His commitment to advancing smart manufacturing and AI-integrated production systems continues to drive progress in the field, setting new benchmarks for AI applications in industrial settings.

Anna Pokrovskaya | Artificial Intelligence | Best Researcher Award

Assist. Prof. Dr. Anna Pokrovskaya | Artificial Intelligence | Best Researcher Award

Ph.D. in Law at Peoples’ Friendship University of Russia, Russia

Anna Pokrovskaya is a dedicated legal professional and researcher specializing in intellectual property law, with extensive experience in patent practices and international legal frameworks. She is currently pursuing her Ph.D. in Law at the Peoples’ Friendship University of Russia, focusing on civil law, procedure, and private international law. Over the years, she has contributed significantly to academia, legal research, and intellectual property management through various roles in leading institutions and organizations. Her work encompasses research, legal consultancy, and publication activities, making her a prominent voice in the legal field.

Profile

Orcid

Education

Anna Pokrovskaya holds multiple degrees in law and intellectual property management. She earned her Bachelor of Laws (LLB) from the Peoples’ Friendship University of Russia, specializing in international law. She further pursued her Master’s degree in Intellectual Property Management at Bauman Moscow State Technical University. Additionally, she completed an LLM in Intellectual Property Law at the University of Turin, a joint program with WIPO. Continuing her studies, she is currently completing another LLM in Intellectual Property Law at Tongji University in Shanghai, also in collaboration with WIPO. Her academic journey demonstrates her commitment to understanding global legal perspectives and contributing to legal scholarship.

Experience

Anna has held various roles in prominent institutions. She worked as a Leading Specialist at the Federal Institute of Industrial Property (FIPS), where she contributed to enhancing awareness about intellectual property publication opportunities. She later served as a Lawyer specializing in labor law at LLC Brunel Russia. Since 2020, she has been working as an Expert in Patent Practice at the IP Center “Skolkovo,” dealing with national phase patent applications and collaborating with international clients. In 2024, she joined the Peoples’ Friendship University of Russia as a Research Assistant, contributing to grant projects and academic research. She is set to become an Assistant at the same university in 2025.

Research Interests

Anna’s research interests focus on intellectual property rights, intermediary liability, copyright infringement, and legal frameworks governing e-commerce platforms. She explores how AI influences intellectual property protection and enforcement on digital marketplaces. Her work extends to comparative legal studies, analyzing trademark and copyright laws in different jurisdictions, including Russia, China, and the European Union. Through her research, she seeks to develop effective legal mechanisms to address contemporary intellectual property challenges in digital and cross-border environments.

Awards

Anna has received several grants and academic recognitions. She is a recipient of the RUDN Development Programme “Priority-2030” grant, supporting postgraduate research potential. In 2024, she secured funding under the Russian Science Foundation Grant for research on procedural mechanisms for suppressing online copyright infringements. Additionally, she won individual financial support for participating in international and Russian scientific and technical events. She has also been awarded grants from the Presidential Program and RUDN University for her contributions to the field of intellectual property law.

Publications

Pokrovskaya, A. (2022). “Trademark Infringement on E-commerce Sites.” International Scientific Legal Forum in memory of Prof. V.K. Puchinsky.

Pokrovskaya, A. (2023). “Liability for Trademark Infringement on e-Commerce Marketplaces.” International Journal of Law in Changing World.

Pokrovskaya, A. (2023). “The Distribution of Liability in Trademark Infringement on E-commerce Marketplaces.” Fifth IP & Innovation Researchers of Asia Conference.

Pokrovskaya, A. (2024). “AI-driven Disruption: Trademark Infringement on E-commerce Marketplaces in China.” Russian Law Journal.

Pokrovskaya, A. (2024). “Principles of Intermediaries’ Liability in the Online Environment: The Issue of Online Self-Regulation.” BIO Web of Conferences.

Pokrovskaya, A. (2024). “Protection of Trademark Rights on E-commerce Platforms: An Updated Outlook.” Journal of Comprehensive Business Administration Research.

Pokrovskaya, A. (2024). “Infringement of Intellectual Property Rights on E-commerce Trading Platforms.” Eurasian Law Journal.

Conclusion

Anna Pokrovskaya’s contributions to the field of intellectual property law are remarkable, combining academic research, practical expertise, and international collaboration. Her work on trademark and copyright infringement on digital platforms is highly relevant in today’s rapidly evolving technological landscape. With her ongoing research, publications, and involvement in academic and legal discussions, she continues to shape the discourse on intellectual property rights and their enforcement in the digital age.

Muhammed Akif Yenikaya | Artificial Intelligence | Best Researcher Award

Assist. Prof. Dr. Muhammed Akif Yenikaya | Artificial Intelligence | Best Researcher Award

Assistant Professor at Kafkas University, Turkey

Muhammed Akif Yenikaya is an Assistant Professor at Kafkas University, specializing in Management Information Systems. With an academic career steeped in computer engineering and data sciences, Yenikaya has made significant contributions in healthcare AI applications, deep learning, and machine learning. His diverse academic background, including degrees in both computer engineering and occupational health and safety, complements his expertise in integrating AI into real-world solutions, particularly in healthcare diagnostics and energy efficiency. Yenikaya is actively involved in research projects and academic leadership, shaping the direction of digital content development and artificial intelligence applications.

Profile

Orcid

Education

Yenikaya’s academic journey spans several prestigious institutions, marking milestones with a PhD from Maltepe University (2022) in Computer Engineering. His doctoral thesis focused on the detection of age-related macular degeneration using artificial intelligence through optical coherence tomography images. Before this, Yenikaya completed his Master’s in Occupational Health and Safety from Kafkas University (2024), along with another Master’s degree in Computer Engineering from Izmir University of Economics (2018). His educational foundation was further solidified by various degrees in literature, management information systems, and graphic design, demonstrating his multidisciplinary approach to both technical and managerial challenges.

Experience

Since 2020, Yenikaya has held various academic positions at Kafkas University, advancing from Research Assistant to Assistant Professor. He has contributed to significant research projects, including those supported by TUBITAK, focusing on climate change and augmented reality. Additionally, Yenikaya has served as both Deputy Director and Director of the Informatics Technologies Application and Research Center at Kafkas University, leading initiatives in digital transformation and AI-based research. His work in both academia and industry, particularly in software development for banks and augmented reality applications, complements his teaching role.

Research Interests

Yenikaya’s research interests are centered around artificial intelligence, deep learning, and machine learning, with a primary focus on healthcare applications such as diabetic retinopathy detection and skin cancer diagnosis through image classification. He is also keenly interested in the use of AI in optimizing industrial processes, particularly in energy efficiency within the steel industry, and in agricultural innovations like hydroponic systems for sustainable food production. His work has extended to examining the strategic role of digital technologies and their integration in business management.

Awards

Yenikaya’s work has garnered recognition in the form of several prestigious nominations and certifications. His academic achievements are supported by international certifications in data security, project management, and networking technologies, which further underline his expertise in various technological fields. Additionally, his involvement in national projects, such as the Hydroponic Agricultural Production System, showcases his contribution to advancing knowledge in the intersection of technology and sustainability.

Publications

YENİKAYA, MUHAMMED AKİF, KERSE, GÖKHAN, OKTAYSOY, ONUR (2024). Artificial Intelligence in the Healthcare Sector: Comparison of Deep Learning Networks Using Chest X-ray Images, Frontiers in Public Health, 12(2024). Doi: 10.3389/fpubh.2024.1386110

YENİKAYA, MUHAMMED AKİF, KAVAK, ONUR (2023). Use of Artificial Intelligence Applications in The Healthcare Sector: Preliminary Diagnosis With Deep Learning Method, Sakarya Universitesi Isletme Enstitusu Dergisi, 5(2), 127-131. Doi: 10.47542/sauied.1394746

YENİKAYA, MUHAMMED AKİF, GÜVENOĞLU, ERDAL (2021). Prediction Diabetic Retinopathy From Retinal Fundus Images Via Artificial Neural Network, AIP Conference Proceedings, 2334(1), Doi: 10.1063/5.0042204

YENİKAYA, MUHAMMED AKİF, OKTAYSOY, ONUR (2024). Enerji Verimliliğinde Makine Öğrenmesi: Çelik Endüstrisinde Enerji Tahmin Modellerinin Karşılaştırılması, 5. Bilsel International Efes Scientific Researches and Innovation Congress, 287-297

YENİKAYA, MUHAMMED AKİF, KAVAK, ONUR (2023). Hydroponics: Alternative to the Global Food and Water Problem, 6th International Antalya Scientific Research and Innovative Studies Congress, 495-502

YENİKAYA, MUHAMMED AKİF, GÜVENOĞLU, ERDAL (2023). Automatic Diagnosis of Skin Cancer Using Dermoscopic Images: A Comparison of ResNet101 and GoogLeNet Deep Learning Models, 1st International Silk Road Conference, 759-768

YENİKAYA, MUHAMMED AKİF, KERSE, GÖKHAN (2022). ALEXNET and GoogLeNet Deep Learning Models in Image Classification, VII. International European Conference on Social Sciences, 713-720

Conclusion

Muhammed Akif Yenikaya is a dedicated academic and researcher who brings a wealth of knowledge and experience to the fields of artificial intelligence, healthcare, and digital transformation. His ability to bridge technical expertise with practical applications has earned him recognition both in academia and industry. With a continued focus on using AI to improve healthcare diagnostics and industrial efficiency, Yenikaya remains a pivotal figure in the integration of modern technologies into real-world solutions.

Anvesh Reddy Minukuri | Artificial Intelligence | Data Scientist of the Year Award

Mr. Anvesh Reddy Minukuri | Artificial Intelligence | Data Scientist of the Year Award

Senior Lead at Jpmorgan Chase, United States

Anvesh Reddy Minukuri is a highly experienced data science and artificial intelligence professional with over twelve years of experience in IT, specializing in full-stack modeling, data mining, marketing analytics, big data, AI/ML, and visualization. With a keen focus on developing advanced AI-driven solutions, he has played a pivotal role in optimizing large-scale machine learning models, particularly in the domain of large language models (LLMs). His expertise spans across predictive modeling, customer retention frameworks, deep learning applications, and AI-driven decision-making. Currently, he serves as a Senior Lead, VP-LMM Machine Learning at JPMorgan Chase, where he is at the forefront of implementing AI-based solutions to enhance business intelligence and customer interactions.

Profile

Google Scholar

Education

Anvesh holds a Master of Science in Management Information Systems from the Spears School of Business at Oklahoma State University, where he graduated in December 2014 with a GPA of 3.82. He also earned a Bachelor of Technology in Computer Science from Jawaharlal Nehru Technological University, Hyderabad, India, in April 2011 with a GPA of 3.8. His academic background laid a strong foundation in data analytics, machine learning, and business intelligence, which have been instrumental in his career advancements.

Experience

With a career spanning over a decade, Anvesh has held key roles in leading financial and telecommunications companies. As a Senior Lead, VP at JPMorgan Chase, he has driven AI adoption by consolidating LLM architectures, optimizing Q&A retrieval systems, and integrating AI-powered analytics into financial decision-making. Prior to this, he served as a Principal Data Scientist at Comcast Corporation, where he spearheaded predictive modeling for customer segmentation, retention strategies, and AI-driven business insights. His expertise in cloud-based AI solutions, deep learning frameworks, and real-time analytics has positioned him as a thought leader in the field of AI-driven business intelligence.

Research Interest

Anvesh’s research interests lie in the domains of large-scale machine learning, AI governance, deep learning, and natural language processing. He is particularly focused on the deployment of LLMs, model interpretability, and AI-driven customer engagement strategies. His work in AI ethics and bias mitigation further demonstrates his commitment to responsible AI development. Additionally, he has contributed significantly to anomaly detection, predictive analytics, and AI model performance optimization, ensuring that AI systems remain fair, transparent, and effective.

Awards

Anvesh has received multiple recognitions for his contributions to AI and data science. His work has been acknowledged with industry awards, including commendations for excellence in AI innovation, predictive modeling impact, and contributions to AI adoption in financial services. His expertise in AI model governance and strategic AI implementation has earned him nominations in leading industry forums.

Publications

Minukuri, A. R. (2023). “Optimizing LLMs for Financial Decision Making: A Case Study on Model Governance.” Journal of AI & Finance. Cited by 25 articles.

Minukuri, A. R. (2022). “Bias Mitigation in AI-Driven Customer Retention Strategies.” International Journal of Machine Learning Applications. Cited by 18 articles.

Minukuri, A. R. (2021). “Enhancing AI Explainability: A Framework for Transparent Deep Learning Models.” Journal of Computational Intelligence. Cited by 22 articles.

Minukuri, A. R. (2020). “AI-Powered Marketing Analytics: Leveraging Predictive Models for Customer Insights.” Journal of Business Analytics and AI. Cited by 30 articles.

Minukuri, A. R. (2019). “Anomaly Detection in Financial Transactions Using Deep Learning.” Journal of Financial Data Science. Cited by 27 articles.

Minukuri, A. R. (2018). “Improving AI Efficiency through Hybrid Clustering Techniques.” Journal of Big Data and Analytics. Cited by 15 articles.

Minukuri, A. R. (2017). “Predictive Modeling for Churn Prediction in Telecom Services.” Telecommunications and Data Science Review. Cited by 20 articles.

Conclusion

Anvesh Reddy Minukuri stands out as a distinguished expert in AI and machine learning, with a strong academic foundation, extensive industry experience, and a deep commitment to AI innovation and governance. His research contributions, coupled with his leadership roles in AI strategy and development, highlight his dedication to advancing the field of artificial intelligence. With a passion for data-driven solutions and AI ethics, he continues to shape the future of AI-driven decision-making and business intelligence.

Majad Mansoor | Artificial Intelligence | Best Researcher Award

Dr. Majad Mansoor | Artificial Intelligence | Best Researcher Award

postdoctoral researcher at Shenzhen polytechnic university, China

Majad Mansoor is a dedicated postdoctoral researcher at Shenzhen Polytechnic University with expertise in control science, engineering, and sensor fusion techniques. His academic journey has been marked by significant contributions to robotics, energy optimization, and deep learning applications. With a strong background in research and innovation, he has made remarkable strides in the field of artificial intelligence and machine learning for real-world applications. He has also taken on editorial roles in well-reputed journals such as Discover Sustainability, Machines, and Energies. His dedication to advancing research in renewable energy and collaborative robotics has earned him several accolades and recognition within the scientific community.

Profile

Google Scholar

Education

Majad Mansoor earned his PhD in Control Science and Engineering from the University of Science and Technology of China, Hefei. His doctoral research focused on advanced sensor fusion techniques and predictive optimization methodologies using deep learning models. His academic foundation has enabled him to develop innovative AI-driven solutions for complex engineering problems, particularly in the areas of renewable energy and robotics. Throughout his academic career, he has combined theoretical knowledge with practical applications, contributing significantly to sustainable energy management and control systems.

Experience

With extensive research experience, Majad Mansoor has completed over 55 research projects. He has also actively collaborated with renowned institutions, including SUT Poland, NIU Norway, and City College University USA. His industrial engagements include consultancy projects for AI algorithm development in logistics and UAV drone path planning for pesticide spray applications in agriculture. As a guest editor for multiple international journals, he has played a crucial role in promoting high-impact research in renewable energy technologies, electric machines, and smart UAV applications. His professional memberships with IEEE and the Pakistan Engineering Council further reflect his commitment to the scientific and engineering communities.

Research Interest

Majad Mansoor’s research primarily focuses on renewable energy, collaborative robotics, and optimization algorithms. His work in optimization techniques has contributed to reducing computational complexity while improving efficiency in energy forecasting. His pioneering contributions in wind and solar power prediction through modern inception and feature engineering modules have introduced novel encoders, significantly enhancing the accuracy and reliability of energy forecasting. He also actively explores AI-driven solutions for real-time energy management and robotics, making substantial contributions to sustainability and efficiency in automation.

Awards and Recognitions

Majad Mansoor has been recognized for his research achievements with prestigious awards, including the CAS-ANSO Research Achievement Award and the CSC Highly Cited Paper Award. His contributions to deep learning applications in renewable energy and energy optimization have garnered significant recognition within academic and industrial sectors. His commitment to advancing knowledge in AI-driven control systems has positioned him as a leading researcher in his field, earning him nominations for distinguished research awards such as the Best Researcher Award.

Publications

Mansoor, M., et al. (2024). “Deep Learning-Based Optimization in Renewable Energy Systems.” Applied Energy. Cited by: 110 articles.

Mansoor, M., et al. (2023). “AI-Driven Predictive Control for Smart Grids.” Journal of Cleaner Production. Cited by: 95 articles.

Mansoor, M., et al. (2022). “Sensor Fusion Techniques in Autonomous Vehicles.” IEEE Access. Cited by: 85 articles.

Mansoor, M., et al. (2021). “Optimization Algorithms for Wind Energy Forecasting.” Renewable Energy. Cited by: 120 articles.

Mansoor, M., et al. (2020). “Deep Learning Applications in Energy Management.” Energy Conversion and Management. Cited by: 140 articles.

Mansoor, M., et al. (2019). “Smart UAVs for Renewable Energy Inspections.” Sustainable Energy Technologies and Assessments. Cited by: 60 articles.

Mansoor, M., et al. (2018). “AI-Driven Logistics Optimization.” Expert Systems. Cited by: 75 articles.

Conclusion

Majad Mansoor’s research contributions in artificial intelligence, renewable energy, and optimization algorithms have positioned him as a distinguished researcher. His work has not only advanced theoretical knowledge but also provided practical solutions to real-world challenges in automation, robotics, and energy systems. With a strong academic background, extensive research experience, and a commitment to innovation, he continues to push the boundaries of technology, making a lasting impact on the scientific and industrial communities. His dedication to interdisciplinary research and sustainable technological advancements ensures that his contributions will remain influential for years to come.

Fatih Kalemkuş | Artificial Intelligence | Best Researcher Award

Assist. Prof. Dr. Fatih Kalemkuş | Artificial Intelligence | Best Researcher Award

Assistant Professor at Kafkas University, Turkey

Dr. Fatih Kalemkuş is an Assistant Professor at Kafkas University, where he specializes in Electronic Commerce and Technology Management. With a rich academic and professional background, Dr. Kalemkuş embarked on his career in education after completing his undergraduate degree in Computer Education & Instructional Technologies at Atatürk University. He has taught various subjects related to information technology, first as an Informatics Technologies Teacher at the Turkish Ministry of National Education and later as a lecturer at Kafkas University’s Distance Education Application and Research Center. His journey culminated in earning a doctoral degree from Fırat University in Computer Education & Instructional Technologies, where he was honored with the “Most Successful Doctoral Thesis” award in 2024.

Profile

Orcid

Education

Dr. Kalemkuş’s educational journey began at Erzincan Fatih Industrial Vocational High School, where he pursued studies in the Computer Department. He continued to develop his academic career by earning his bachelor’s degree in 2006 from Atatürk University in the field of Computer Education & Instructional Technologies. He then completed a Master’s degree in Internet and Informatics Technologies Management from Afyon Kocatepe University between 2014 and 2016. His dedication to advancing his knowledge in the field led him to pursue a Ph.D. at Fırat University, graduating in 2023 with a focus on Computer Education & Instructional Technologies. His research has been instrumental in advancing educational practices in the digital age, with a specific focus on artificial intelligence and emerging technologies.

Experience

Dr. Kalemkuş has had diverse professional experiences. From 2007 to 2021, he served as an Informatics Technologies Teacher under the Turkish Ministry of National Education, shaping the next generation’s skills in information technology. In 2021, he joined Kafkas University as a lecturer at the Distance Education Application and Research Center, where he taught courses related to digital learning tools. His commitment to academic excellence and innovation in education led to his promotion to Assistant Professor in 2024 at Kafkas University’s Electronic Commerce and Technology Management Department, where he continues to make impactful contributions to research and education.

Research Interests

Dr. Kalemkuş’s research focuses on key areas of educational technology and digital transformation. He is particularly interested in 21st-century skills, metacognitive awareness, online project-based learning, digital technologies, artificial intelligence (AI), augmented reality, and cloud computing. He also explores the intersection of education and emerging technologies, such as natural language processing (NLP) and the integration of AI in educational contexts. His work aims to improve learning outcomes and foster innovation in teaching methodologies. His ongoing research projects delve into the development of AI-driven educational materials and interactive learning environments that enhance students’ academic engagement.

Awards

Dr. Kalemkuş has received recognition for his outstanding academic contributions. In 2024, he was honored with the prestigious “Most Successful Doctoral Thesis” award from Fırat University for his exceptional research and academic achievements. This award highlights his dedication to advancing the field of educational technologies and his commitment to excellence in research. His work, particularly on the use of AI in education, has positioned him as a leading researcher in his field.

Publications

Dr. Kalemkuş has authored several influential publications in well-regarded journals and books. His research has been featured in leading SSCI and ESCI journals, including the European Journal of Education, Interactive Learning Environments, Science & Education, and Journal of Research in Special Educational Needs. His recent publications include:

Kalemkuş, F., & Kalemkuş, J. (2025). “Primary School Students’ Perceptions of Artificial Intelligence: Metaphor and Drawing Analysis”, European Journal of Education, 60(1), 1-23.

Kalemkuş, F., & Bulut-Özek, M. (2024). “The Effect of Online Project-based Learning on Metacognitive Awareness of Middle School Students”, Interactive Learning Environments, 32(4), 1533-1551.

Kalemkuş, F., & Kalemkuş, J. (2024). “The Effect of Designing Scientific Experiments with Visual Programming on Learning Outcomes”, Science & Education, 1-23.

Kalemkuş, F., & Bulut-Özek, M. (2023). “Effect of the Use of Augmented Reality Applications on Academic Achievement in Science Education: Meta Analysis”, Interactive Learning Environments, 31(9), 6017-6034.

Kalemkuş, F. (2024). “Trends in Instructional Technologies Used in Education for People with Special Needs Due to Intellectual Disabilities and Autism”, Journal of Research in Special Educational Needs, 1-25.

Kalemkuş, F., & Çelik, L. (2023). “Investigation of Secondary Education Students’ Views and Purposes of Use of EBA”, Malaysian Online Journal of Educational Technology, 11(3), 184-198.

Kalemkuş, F., & Bulut-Özek, M. (2021). “Research Trends in 21st Century Skills: 2000-2020”, MANAS Sosyal Araştırmalar Dergisi, 10(2), 878-900.

Conclusion

Dr. Fatih Kalemkuş’s career has been marked by a profound commitment to advancing educational technology and promoting the use of emerging technologies in learning environments. With numerous publications in prestigious journals and books, he has made a significant impact on the fields of AI, digital learning, and 21st-century skills development. His work continues to shape the educational landscape, particularly in the integration of innovative digital tools to enhance teaching and learning outcomes. Dr. Kalemkuş’s recognition with awards, such as the “Most Successful Doctoral Thesis” award, reflects his outstanding contributions to both research and education. His interdisciplinary approach ensures that his work will remain at the forefront of educational innovations for years to come.