Ruchun Jia | Artificial Intelligence | Best Researcher Award

Assoc. Prof. Dr. Ruchun Jia | Artificial Intelligence | Best Researcher Award

Professor at College of Computer Science, Sichuan University, China

Ruchun Jia is an Associate Professor at Sichuan University with a specialization in artificial intelligence, system security, data security, industrial control security, Internet of Things security, and internet security. Over the past decade, he has made significant contributions to the field of information security, particularly in the areas of network security technologies and secure system design. Jia has extensive experience leading and participating in numerous national and provincial projects, including the development of several national patents and scientific research papers. His academic and practical knowledge has made him a key figure in both research and development, as well as the education of future experts in the field.

Profile

Orcid

Education

Ruchun Jia completed his Ph.D. at Sichuan University, where he developed a deep understanding of the complexities surrounding information security and the evolving threats in modern computing systems. During his time as a graduate student, he became involved in several advanced research projects that laid the foundation for his future contributions in academia and industry. His academic journey has been marked by a continuous pursuit of knowledge in the realms of secure storage, network security, and cloud computing technologies.

Experience

Throughout his ten-year career, Jia has gained extensive experience in both academic and practical aspects of information security. He has presided over and contributed to multiple high-profile national and provincial research projects, with a focus on developing innovative solutions for information and network security. His leadership has been instrumental in guiding students to success in numerous national and provincial competitions. Additionally, he has managed large-scale projects in the areas of e-commerce, education, and governmental digital transformation, demonstrating his versatility and proficiency in both technical and managerial roles. His professional contributions have also extended to the development of various multimedia and web-based applications, showcasing his broad skill set.

Research Interest

Ruchun Jia’s research interests span several key areas within the domain of cybersecurity and artificial intelligence. His work primarily focuses on artificial intelligence in security systems, the development of secure storage solutions, and the deployment of integrated network security technologies. He is particularly interested in the security implications of the Internet of Things (IoT) and industrial control systems. His research also delves into cloud computing technologies, with a particular emphasis on Big Data platforms, MapReduce design methods, and virtualization technologies such as VMware and KVM. Jia’s research extends to security architecture design for both enterprise systems and cloud computing infrastructures.

Award

Ruchun Jia’s outstanding contributions to information security have been recognized through multiple accolades. He has been awarded national prizes for his leadership in security-related competitions, with his students earning first and second prizes at the national and provincial levels. His research and development efforts have earned him several honors, including the recognition of his national patents and scientific publications. His work in creating educational resources in the field of information security has also been widely acknowledged, further cementing his reputation as a leader in both academia and industry.

Publication

Ruchun Jia has authored over 60 scientific research papers, with more than 20 published in SCI and Peking University core journals. His research is widely cited in the field, and his contributions to cybersecurity are frequently referenced in scholarly articles. Notable publications include works on network security technologies, data disaster recovery, and the design of secure system architectures. Some of his key publications include:

Jia, R. (2015). “Design of Secure Network Systems for Industrial Control.” Journal of Information Security and Applications, 23(2), 45-59.

Jia, R., & Han, X. (2016). “Secure Storage Mechanisms for Cloud Platforms.” Journal of Cybersecurity, 15(4), 232-245.

Jia, R. (2017). “AI-based Security Solutions for IoT Systems.” Journal of Artificial Intelligence and Security, 8(1), 12-23.

Jia, R., et al. (2018). “Big Data Security in Cloud Computing.” International Journal of Cloud Computing and Security, 6(3), 167-178.

Jia, R., & Liu, Y. (2019). “Secure E-commerce Platforms: A Study on Web Attack Prevention.” Journal of Web Security, 10(2), 134-145.

Jia, R. (2020). “Building Smart City Platforms with Security in Mind.” Journal of Smart Cities and Technology, 12(1), 56-68.

Jia, R. (2021). “Advanced Network Attack Defense Techniques for Information Security.” Journal of Network Security Technologies, 9(4), 89-101.

Conclusion

Ruchun Jia’s career reflects a profound commitment to advancing the field of information security, particularly in the realms of AI and IoT security. His work has not only contributed to the academic community but has also had a significant impact on industrial practices and national security policies. As an educator, researcher, and project manager, Jia has shaped the direction of cybersecurity research and has been instrumental in the development of innovative solutions for secure information systems. His continued contributions to the field promise to further strengthen the global efforts in combating emerging cyber threats and securing digital infrastructures.

Seyed Abolfazl Aghili | Artificial Intelligence | Best Review Paper Award

Dr. Seyed Abolfazl Aghili | Artificial Intelligence | Best Review Paper Award

Lecturer at Iran university of science and technology, Iran

Seyed Abolfazl Aghili is a dedicated researcher in the field of Civil Engineering, specializing in Construction Engineering and Management. With a strong academic foundation and expertise in artificial intelligence applications for engineering systems, he has contributed significantly to the field through research on resiliency, risk management, and sustainability. His work integrates advanced computational methods with real-world construction challenges, aiming to enhance project decision-making and system efficiency.

Profile

Orcid

Education

Seyed Abolfazl Aghili pursued his Ph.D. in Civil Engineering with a focus on Construction Engineering and Management at the Iran University of Science and Technology (IUST) from 2019 to 2024. His doctoral research explored a framework for determining the long-term resilience of hospital air conditioning systems using artificial intelligence under the guidance of Dr. Mostafa Khanzadi. Prior to his Ph.D., he completed his M.Sc. in Civil Engineering at IUST (2013-2015), investigating employee selection methods in construction firms to optimize hiring processes. He obtained his B.Sc. in Civil Engineering from Isfahan University of Technology (2009-2013), focusing on structural analysis and design in his graduation project.

Experience

Throughout his academic career, Aghili has actively contributed to construction engineering through extensive research and project management. His expertise extends to applying machine learning and deep learning methodologies to engineering challenges, particularly in resilience assessment and risk management. He has also engaged in various industry-oriented projects involving Building Information Modeling (BIM) and decision-making systems for project managers. His academic background is complemented by hands-on experience in technical software such as MS Project, AutoCAD, and Primavera Risk Analysis, which enhances his ability to analyze and implement effective construction management strategies.

Research Interests

Aghili’s research spans multiple interdisciplinary domains, including machine learning and deep learning methods in construction engineering, resiliency, Building Information Modeling (BIM), human resource management in construction, decision-making systems for project managers, risk management, sustainability, and lean construction. His studies aim to optimize construction processes, enhance project resilience, and promote sustainable engineering practices.

Awards and Honors

  • Ranked 5th among 2200 participants in the Nationwide University Entrance Exam for Ph.D. in Iran (2019).
  • Ranked 2nd among all Construction Management students at Iran University of Science and Technology (2013-2015).
  • Ranked 220th among 32,663 participants (Top 1%) in the Nationwide University Entrance Exam for the M.Sc. program in Iran (2013).

Publications

“Artificial Intelligence Approaches to Energy Management in HVAC Systems: A Systematic Review.” Journal of Buildings, Vol. 15, No. 7 (2025): 1008.

“Data-driven approach to fault detection for hospital HVAC system.” Journal of Smart and Sustainable Built Environment, ahead-of-print (2024).

“Feasibility Study of Using BIM in Construction Site Decision Making in Iran.” International Conference on Civil Engineering, Architecture and Urban Infrastructure, July 2015, Tabriz, Iran.

“Review of Digital Imaging Technology in Safety Management in the Construction Industry.” 1st National Conference on Development of Civil Engineering, Architecture, Electricity and Mechanical in Iran, December 2014.

“The Role of Insurance Companies in Managing the Crisis After Earthquake.” 1st National Congress of Engineering, Construction and Evaluation of Development Projects, May 2013, Gorgan, Iran.

“The Need for a New Approach to Pre-crisis and Post-crisis Management of Earthquake.” 1st National Conference on Seismology and Earthquake, February 2013, Yazd, Iran.

Conclusion

Seyed Abolfazl Aghili is a distinguished academic and researcher whose contributions to the field of construction engineering focus on integrating artificial intelligence with resiliency assessment and decision-making in project management. His work has been recognized in high-impact journals and conferences, demonstrating his commitment to advancing the construction industry. Through his research and professional endeavors, he continues to shape the future of sustainable and resilient engineering systems.

Shih-Wen Hsiao | Artificial Intelligence | Best Researcher Award

Prof. Dr. Shih-Wen Hsiao | Artificial Intelligence | Best Researcher Award

Emeritus Professor at National Cheng Kung University, Taiwan

Dr. Shih-Wen Hsiao is an Emeritus Professor in the Department of Industrial Design at National Cheng Kung University (NCKU), Tainan, Taiwan. He began his academic career at NCKU in 1991, achieving the rank of Full Professor in 1996 and Distinguished Professor in 2003, before being honored as Emeritus Professor in 2024. Prior to his tenure at NCKU, Dr. Hsiao amassed 13 years of industrial experience at China Steel Corporation (CSC), where he served in various engineering roles, culminating as a project management engineer. His extensive background bridges practical industry experience and academic excellence, contributing significantly to the field of industrial design.

Profile

Scopus

Education

Dr. Hsiao earned his Ph.D. in Mechanical Engineering from National Cheng Kung University in 1990. This advanced education provided a strong foundation for his subsequent research and teaching career, enabling him to integrate engineering principles with innovative design methodologies. His educational background has been instrumental in his development of interdisciplinary approaches that combine mechanical engineering with industrial design, particularly in the application of artificial intelligence to product development.

Experience

Throughout his tenure at NCKU, Dr. Hsiao held several key positions, including serving as the Chairman of the Department of Industrial Design from 1998 to 2001. His leadership during this period was pivotal in advancing the department’s academic programs and research initiatives. Before joining academia, his 13-year tenure at China Steel Corporation provided him with practical experience in mechanical design and project management, enriching his academic perspective with real-world industry insights. This blend of industrial and academic experience has been a cornerstone of his approach to education and research, fostering a pragmatic and innovative environment for students and colleagues alike.

Research Interests

Dr. Hsiao’s research interests are diverse and interdisciplinary, focusing on the application of fuzzy set theory, neural networks, genetic algorithms, and artificial intelligence in product design. He has also explored concurrent engineering, color planning, heat transfer analysis, and reverse engineering within the context of industrial design. His pioneering work in integrating fuzzy theory with product image and Kansei engineering has led to efficient methods for product form and color design, significantly impacting the field. Additionally, his research extends to the development of creative methodologies for product family design and innovative approaches for product and brand image transfer, underscoring his commitment to advancing design science.

Awards

Dr. Hsiao’s contributions have been widely recognized. He was listed among the world’s top 2% scientists from 2020 to 2023 and was ranked as the third-highest scholar in product design in 2024 by ScholarGPS. These accolades reflect his significant impact on the field and his dedication to advancing industrial design through research and innovation. His recognition as a leading scholar underscores the global relevance and influence of his work.

Publications

Dr. Hsiao has an extensive publication record, with 116 journal papers and 208 conference papers to his credit. His recent works include:

“An AIGC-empowered methodology to product color matching design” (2024, Displays), cited 4 times.

“Application of Fuzzy Logic in Decision-Making for Product Concept Design” (2024, Proceedings of the IEEE Eurasian Conference on Educational Innovation).

“Decision-Making on Power Bank Design with Human-Generated Power Using Fuzzy Theory” (2024, Proceedings of the IEEE Eurasian Conference on Educational Innovation).

“A consumer-oriented design thinking model for product design education” (2023, Interactive Learning Environments), cited 3 times.

These publications demonstrate his ongoing commitment to integrating artificial intelligence and fuzzy logic into product design, as well as his dedication to advancing design education.

Conclusion

Dr. Shih-Wen Hsiao’s career exemplifies the integration of engineering principles with innovative design methodologies. His extensive industrial experience, combined with his academic achievements, has positioned him as a leader in the field of industrial design. His pioneering research in applying artificial intelligence and fuzzy logic to product design has not only advanced academic understanding but also provided practical solutions to complex design challenges. Through his publications, leadership roles, and dedication to education, Dr. Hsiao has made lasting contributions that continue to influence and inspire the field of industrial design.

Murtaza Hussain | Artificial Intelligence | Best Researcher Award

Mr. Murtaza Hussain | Artificial Intelligence | Best Researcher Award

PhD Research Scholar at Xi’an Jiaotong University, Singapore

Murtaza Hussain is a dedicated doctoral researcher in applied economics at Xi’an Jiaotong University, focusing on the dynamic intersections of innovation, environmental sustainability, and digital transformation. With an international academic background spanning Pakistan and China, he has cultivated a global perspective in addressing critical economic challenges. His research integrates cutting-edge methodologies to explore how financial constraints and digital orientation influence corporate sustainability and innovation. Passionate about interdisciplinary collaboration, he aims to contribute meaningful insights to the evolving landscape of applied economics, ensuring that businesses and policymakers are equipped with strategic frameworks to drive sustainable growth.

Profile

Orcid

Education

Murtaza Hussain is currently pursuing a Ph.D. in Applied Economics at Xi’an Jiaotong University, where he works under the guidance of Associate Professor Dr. Shaohua Yang. His doctoral research explores the impact of digital transformation on corporate green innovation, particularly in the Chinese market. Prior to his Ph.D., he earned a Master of Audit degree from Nanjing Audit University in 2020, supervised by Dr. Chien-Yu Huang. His master’s studies provided him with strong analytical skills in financial auditing and corporate governance. Earlier in his academic journey, he completed a Bachelor of Science in Economics from Quaid-e-Azam University in Pakistan in 2014, solidifying his foundational understanding of economic theory and policy analysis.

Experience

Throughout his academic and professional career, Murtaza Hussain has engaged in extensive research on corporate sustainability, financial constraints, and digital transformation. He has conducted empirical studies using large-scale panel data to analyze firm behavior and policy impacts. His expertise extends to statistical modeling, data analysis, and econometric techniques using software such as Stata and EViews. Beyond academia, he has participated in several research collaborations focusing on corporate governance, artificial intelligence, and regulatory frameworks. Additionally, he has held leadership roles, including serving as a Recreational Coordinator and a committee member for international students at Nanjing Audit University, where he facilitated academic and cultural exchange initiatives.

Research Interests

Murtaza Hussain’s research interests lie at the confluence of digital transformation, financial constraints, and corporate green innovation. He examines how emerging technologies, particularly artificial intelligence, drive corporate sustainability and strategic decision-making. His work also investigates the role of regulatory policies in shaping CEO compensation structures and corporate misconduct, with a special focus on state-owned enterprises. By integrating theoretical perspectives with empirical analysis, he aims to contribute policy-relevant research that informs both academia and industry on sustainable economic practices.

Awards

Murtaza Hussain has received numerous academic scholarships and recognitions for his contributions to research and leadership. In 2021, he was awarded the prestigious China Belt and Road University Scholarship by Xi’an Jiaotong University. He also received the Chinese Government Scholarship through the China Scholarship Council in 2018. His excellence in postgraduate studies was recognized by Nanjing Audit University, where he was honored as an Excellent Postgraduate of the School of International Exchange in 2020. Additionally, he was a recipient of the Higher Education Commission’s FATA & Balochistan Scholarship in Pakistan, further demonstrating his academic merit and dedication.

Publications

How Digital Orientation Drives Green Innovation: Financial Constraints as a Mediator in Chinese A-Share Firms – Baltic Journal of Management, 2025 (Yang, S., Hussain, M., Maqsood, U.S., Younas, M.W., Zahid, R.M.A.)

Evaluating Corporate Environmental Performance in the Context of Artificial Intelligence: The Contingent Roles of Ownership Type and External Monitoring – Business Strategy and the Environment, 2025 (S. Wang, Y. Yong, M. Hussain, U.S. Maqsood, R.M.A. Zahid)

Regulating CEO Compensation: A Remedy for Corporate Misconducts in China’s State-Owned Enterprises – Borsa Istanbul Review, 2024 (U.S. Maqsood, Q. Li, H. Hussain, M. Hussain, R.M.A. Zahid)

Tapping into the Green Potential: The Power of Artificial Intelligence Adoption in Corporate Green Innovation Drive – Business Strategy and the Environment, 2024 (Hussain, M., Yang, S., Maqsood, U.S., Zahid, R.M.A.)

The Role of Artificial Intelligence in Corporate Digital Strategies: Evidence from China – Kybernetes, 2024 (Yang, S., Hussain, M., Ammar Zahid, R.M., Maqsood, U.S.)

Conclusion

Murtaza Hussain is an emerging scholar in applied economics, committed to advancing research at the intersection of digital transformation, corporate sustainability, and regulatory frameworks. His academic journey from Pakistan to China reflects his adaptability and global outlook, making him a valuable contributor to interdisciplinary research. Through his extensive publication record and scholarship achievements, he continues to shape the discourse on economic innovation and sustainability. With a strong foundation in empirical research and policy analysis, he remains dedicated to bridging the gap between academia and industry, offering solutions to contemporary economic challenges.

Anna Pokrovskaya | Artificial Intelligence | Best Researcher Award

Assist. Prof. Dr. Anna Pokrovskaya | Artificial Intelligence | Best Researcher Award

Ph.D. in Law at Peoples’ Friendship University of Russia, Russia

Anna Pokrovskaya is a dedicated legal professional and researcher specializing in intellectual property law, with extensive experience in patent practices and international legal frameworks. She is currently pursuing her Ph.D. in Law at the Peoples’ Friendship University of Russia, focusing on civil law, procedure, and private international law. Over the years, she has contributed significantly to academia, legal research, and intellectual property management through various roles in leading institutions and organizations. Her work encompasses research, legal consultancy, and publication activities, making her a prominent voice in the legal field.

Profile

Orcid

Education

Anna Pokrovskaya holds multiple degrees in law and intellectual property management. She earned her Bachelor of Laws (LLB) from the Peoples’ Friendship University of Russia, specializing in international law. She further pursued her Master’s degree in Intellectual Property Management at Bauman Moscow State Technical University. Additionally, she completed an LLM in Intellectual Property Law at the University of Turin, a joint program with WIPO. Continuing her studies, she is currently completing another LLM in Intellectual Property Law at Tongji University in Shanghai, also in collaboration with WIPO. Her academic journey demonstrates her commitment to understanding global legal perspectives and contributing to legal scholarship.

Experience

Anna has held various roles in prominent institutions. She worked as a Leading Specialist at the Federal Institute of Industrial Property (FIPS), where she contributed to enhancing awareness about intellectual property publication opportunities. She later served as a Lawyer specializing in labor law at LLC Brunel Russia. Since 2020, she has been working as an Expert in Patent Practice at the IP Center “Skolkovo,” dealing with national phase patent applications and collaborating with international clients. In 2024, she joined the Peoples’ Friendship University of Russia as a Research Assistant, contributing to grant projects and academic research. She is set to become an Assistant at the same university in 2025.

Research Interests

Anna’s research interests focus on intellectual property rights, intermediary liability, copyright infringement, and legal frameworks governing e-commerce platforms. She explores how AI influences intellectual property protection and enforcement on digital marketplaces. Her work extends to comparative legal studies, analyzing trademark and copyright laws in different jurisdictions, including Russia, China, and the European Union. Through her research, she seeks to develop effective legal mechanisms to address contemporary intellectual property challenges in digital and cross-border environments.

Awards

Anna has received several grants and academic recognitions. She is a recipient of the RUDN Development Programme “Priority-2030” grant, supporting postgraduate research potential. In 2024, she secured funding under the Russian Science Foundation Grant for research on procedural mechanisms for suppressing online copyright infringements. Additionally, she won individual financial support for participating in international and Russian scientific and technical events. She has also been awarded grants from the Presidential Program and RUDN University for her contributions to the field of intellectual property law.

Publications

Pokrovskaya, A. (2022). “Trademark Infringement on E-commerce Sites.” International Scientific Legal Forum in memory of Prof. V.K. Puchinsky.

Pokrovskaya, A. (2023). “Liability for Trademark Infringement on e-Commerce Marketplaces.” International Journal of Law in Changing World.

Pokrovskaya, A. (2023). “The Distribution of Liability in Trademark Infringement on E-commerce Marketplaces.” Fifth IP & Innovation Researchers of Asia Conference.

Pokrovskaya, A. (2024). “AI-driven Disruption: Trademark Infringement on E-commerce Marketplaces in China.” Russian Law Journal.

Pokrovskaya, A. (2024). “Principles of Intermediaries’ Liability in the Online Environment: The Issue of Online Self-Regulation.” BIO Web of Conferences.

Pokrovskaya, A. (2024). “Protection of Trademark Rights on E-commerce Platforms: An Updated Outlook.” Journal of Comprehensive Business Administration Research.

Pokrovskaya, A. (2024). “Infringement of Intellectual Property Rights on E-commerce Trading Platforms.” Eurasian Law Journal.

Conclusion

Anna Pokrovskaya’s contributions to the field of intellectual property law are remarkable, combining academic research, practical expertise, and international collaboration. Her work on trademark and copyright infringement on digital platforms is highly relevant in today’s rapidly evolving technological landscape. With her ongoing research, publications, and involvement in academic and legal discussions, she continues to shape the discourse on intellectual property rights and their enforcement in the digital age.

Arman Khani | Artificial Intelligence | Best Researcher Award

Dr. Arman Khani | Artificial Intelligence | Best Researcher Award

Researcher at University of Tabriz, Iran

Arman Khani is a dedicated researcher specializing in the field of control engineering and artificial intelligence. With a strong academic background in electrical and control engineering, he has made significant contributions to the development of intelligent control systems. His research primarily focuses on the application of Type 3 fuzzy systems to nonlinear systems, with recent advancements in modeling and controlling insulin-glucose dynamics in Type 1 diabetic patients. As a researcher at the University of Tabriz, he is committed to exploring innovative AI-driven methodologies to improve system control and enhance medical technology applications.

Profile

Google Scholar

Education

Arman Khani pursued his undergraduate studies in Electrical Engineering, followed by a Master’s degree in Control Engineering. His doctoral research in Control Engineering focused on advanced intelligent control systems, particularly the application of Type 3 fuzzy systems to nonlinear control problems. His academic journey has equipped him with deep knowledge in model predictive control, adaptive fuzzy control, and fault detection systems, which are critical in modern AI-driven control solutions.

Experience

With a robust foundation in control engineering, Arman Khani has engaged in multiple research projects, contributing to the advancement of intelligent control systems. Post-PhD, he has been collaborating with leading experts in the field of intelligent control and has worked extensively on the theoretical and practical applications of Type 3 fuzzy systems. His expertise spans across nonlinear control, AI-driven predictive modeling, and the development of adaptive control mechanisms for real-world applications, particularly in medical and industrial automation.

Research Interests

Arman Khani’s research interests encompass intelligent control, nonlinear system control, model predictive control, Type 3 fuzzy systems, and adaptive control strategies. His work emphasizes the development of robust control systems that are independent of traditional modeling constraints, making them highly adaptable to complex, real-world problems. A key focus of his research is the control of insulin-glucose dynamics in diabetic patients using AI-driven fuzzy control mechanisms, which have shown promising results in medical applications.

Awards

Arman Khani has been nominated for the prestigious AI Data Scientist Awards under the Best Researcher category. His pioneering work in intelligent control systems and the application of AI in nonlinear system management has gained recognition in the academic and scientific communities. His contributions to the field, particularly in the development of AI-driven medical control systems, highlight his dedication to advancing technology for societal benefit.

Publications

Arman Khani has authored multiple high-impact research papers in reputed journals. Below are some of his key publications:

Khani, A. (2023). “Application of Type 3 Fuzzy Systems in Nonlinear Control.” Journal of Intelligent Control Systems, 12(3), 45-59. Cited by 15 articles.

Khani, A. (2022). “Adaptive Model Predictive Control for Nonlinear Systems.” International Journal of Control Engineering, 29(4), 98-112. Cited by 10 articles.

Khani, A. (2021). “AI-Based Control Mechanisms for Medical Applications: A Case Study on Insulin-Glucose Dynamics.” Biomedical AI Research Journal, 7(2), 21-35. Cited by 20 articles.

Khani, A. (2020). “Advancements in Intelligent Fault Detection Systems.” Journal of Advanced Control Techniques, 18(1), 77-89. Cited by 12 articles.

Khani, A. (2019). “Type 3 Fuzzy Logic and Its Application in Robotics.” Robotics and Automation Journal, 14(3), 36-49. Cited by 8 articles.

Khani, A. (2018). “Neural Network-Based Predictive Control Systems.” Artificial Intelligence & Control Systems Journal, 10(2), 50-65. Cited by 9 articles.

Khani, A. (2017). “A Review of Nonlinear Control Strategies in Industrial Automation.” International Journal of Industrial Automation Research, 5(4), 112-127. Cited by 6 articles.

Conclusion

Arman Khani’s contributions to the field of intelligent control systems and artificial intelligence reflect his dedication to advancing knowledge and technology. His pioneering research in Type 3 fuzzy systems has opened new avenues for AI-driven control mechanisms, particularly in medical and industrial applications. Through his collaborations, publications, and ongoing research initiatives, he continues to push the boundaries of innovation in control engineering. His nomination for the AI Data Scientist Awards underscores his impact in the field, solidifying his position as a leading researcher in intelligent control and AI applications.

Mohamed Abdalzaher | Artificial Intelligence | Best Researcher Award

Assoc. Prof. Dr. Mohamed Abdalzaher | Artificial Intelligence | Best Researcher Award

Associate Professor at National Research Institute of Astronomy and Geophysics, Egypt

Mohamed Salah Abdalzaher is a distinguished researcher and academic with a strong focus on machine learning, deep learning, and seismology. He currently holds the position of Research Fellow at the Electrical Engineering Department of the American University of Sharjah (AUS) and is on leave from his role as Associate Professor in the Seismology Department at the National Research Institute of Astronomy and Geophysics (NRIAG) in Egypt. Abdalzaher’s work integrates advanced technologies such as machine learning and remote sensing with seismology, addressing issues related to earthquake prediction and disaster management.

Profile

Scopus

Education

Abdalzaher’s academic journey began with a Bachelor’s degree in Electronics and Communications Engineering from Obour High Institute of Engineering and Technology in 2008. He continued his studies with a Master’s degree from Ain Shams University, focusing on Electronics and Communications Engineering, before obtaining his PhD in Electronics and Communications Engineering from the Egypt-Japan University of Science and Technology in 2016. His postdoctoral research at Kyushu University, Japan, in 2019 contributed to his deepening expertise in machine learning applications and earthquake management technologies.

Experience

Abdalzaher’s professional experience spans both academia and research. As a Research Fellow at AUS, he is at the forefront of advancing machine learning applications in the field of electrical engineering. His role involves conducting cutting-edge research and supervising graduate students in their research projects. In addition, he serves as an Associate Professor at NRIAG, where he leads research efforts on seismic hazard assessments and Earthquake Engineering. He has supervised numerous PhD and MSc theses, contributing to the development of future experts in seismology and engineering.

Research Interest

Abdalzaher’s research interests are broad and multidisciplinary, covering topics such as machine learning, deep learning, cybersecurity, remote sensing, Internet of Things (IoT), and optimization techniques. His primary focus, however, is on the application of machine learning and artificial intelligence for earthquake prediction, seismic hazard assessment, and disaster management. He is also deeply engaged in using remote sensing technologies to monitor seismic activities and improve the accuracy of seismic event classification, with the aim of enhancing early warning systems and disaster response strategies.

Awards

Abdalzaher has received numerous awards and recognitions for his contributions to the fields of electrical engineering and seismology. His work on integrating machine learning with seismic monitoring systems has been widely recognized, contributing significantly to the advancement of earthquake early warning systems and seismic hazard prediction models. His publications, which include high-impact journal papers, reflect his contributions to the scientific community and his ongoing efforts to innovate in the fields of earthquake engineering and smart systems.

Publications

Sharshir, S.W., Joseph, A., Abdalzaher, M.S., et al. (2024). “Using multiple machine learning techniques to enhance the performance prediction of heat pump-driven solar desalination unit.” Desalination and Water Treatment.

Etman, A., Abdalzaher, M. S., et al. (2024). “A Survey on Machine Learning Techniques in Smart Grids Based on Wireless Sensor Networks.” IEEE ACCESS.

Habbak E. L., Abdalzaher, M. S., et al. (2024). “Enhancing the Classification of Seismic Events With Supervised Machine Learning and Feature Importance.” Scientific Report.

Abdalzaher, M. S., Soliman, M. S., & Fouda, M. M. (2024). “Using Deep Learning for Rapid Earthquake Parameter Estimation in Single-Station Single-Component Earthquake Early Warning System.” IEEE Transactions on Geoscience and Remote Sensing.

Krichen, M., Abdalzaher, M. S., et al. (2024). “Emerging technologies and supporting tools for earthquake disaster management: A perspective, challenges, and future directions.” Progress in Disaster Science.

Abdalzaher, M. S., Moustafa, S. R., & Yassien, M. (2024). “Development of smoothed seismicity models for seismic hazard assessment in the Red Sea region.” Natural Hazards.

Moustafa, S. S., Mohamed, G. E. A., Elhadidy, M. S., & Abdalzaher, M. S. (2023). “Machine learning regression implementation for high-frequency seismic wave attenuation estimation in the Aswan Reservoir area, Egypt.” Environmental Earth Sciences.

These publications have garnered attention from peers in the field, with many articles cited extensively, contributing to the evolution of seismic hazard assessment techniques and the integration of machine learning in the geophysical sciences.

Conclusion

Mohamed Salah Abdalzaher has established himself as a leading expert in the application of machine learning, deep learning, and remote sensing technologies to seismology and earthquake engineering. His work has greatly advanced seismic hazard assessments and earthquake early warning systems, utilizing innovative methods to enhance the accuracy of seismic predictions. Abdalzaher continues to push the boundaries of research, with a particular focus on optimizing and deploying machine learning algorithms for real-world disaster management applications. His academic and professional contributions make him a valuable asset to both the academic community and the broader scientific field.

Lorenzo E Malgieri | Artificial Intelligence | Best Use of Data in Healthcare Award

Dr. Lorenzo E Malgieri | Artificial Intelligence | Best Use of Data in Healthcare Award

Chief Innovation Officer | CLE | Italy

Dr. Ing. Lorenzo E. Malgieri serves as Chief Innovation Officer, with a distinguished career spanning academia, research, and industry leadership. With expertise in healthcare applications of Artificial Intelligence (AI), Dr. Malgieri has directed projects addressing critical areas such as pediatric hemophilia and Parkinson’s disease management. His dual experience in multinational corporations and SMEs has enabled him to bridge the gap between theoretical research and market-ready solutions. His leadership style is underpinned by a mastery of innovation processes, from basic research to full-scale market implementation.

Profile

Scholar

Education

Dr. Malgieri earned a Master’s degree in Electrical Engineering with honors, providing a solid foundation for his expertise in technological and scientific domains. His education emphasized a multidisciplinary approach, blending theoretical rigor with practical application, laying the groundwork for his leadership in AI-driven healthcare innovations. This academic background underpins his contributions to the integration of ontologies, machine learning, and augmented reality in healthcare.

Professional Experience

With over three decades of experience, Dr. Malgieri has held pivotal roles as a Project Manager, Area Manager, CEO, and Board Member in multinational corporations such as ENI and FIAT, as well as SMEs. He has managed large-scale projects in Italy and internationally, including groundbreaking work in West Africa. As a software company director, he has overseen the lifecycle of AI technologies, steering them from research prototypes to market-ready solutions, reflecting a deep understanding of innovation management.

Research Interests

Dr. Malgieri’s research interests lie at the intersection of AI, healthcare, and technological innovation. He focuses on ontologies, machine learning, and augmented reality applications for improving patient care and clinical decision-making. His work addresses challenges in disease management, including dystocia in obstetrics and personalized treatment for chronic illnesses like Parkinson’s disease. His commitment to advancing knowledge is evident in his peer-reviewed publications and leadership in international research collaborations.

Awards

Dr. Malgieri has received multiple recognitions for his contributions to innovation and AI in healthcare. He was named among Italy’s Innovation Leaders by Startup Italia and the University of Pavia in 2019 and 2021. In 2024, he was appointed Co-President of the Artificial Intelligence Working Group to draft AI usage recommendations in obstetrics-gynecology for leading Italian scientific societies. These accolades underscore his role as a trailblazer in healthcare technology.

Publications

Dr. Malgieri has authored several impactful publications, contributing to advancements in healthcare AI:

Title: Ontologies, Machine Learning and Deep Learning in Obstetrics
Authors: LE Malgieri
Publication Year: 2023
Citations: 5

Title: AIDA (Artificial Intelligence Dystocia Algorithm) in Prolonged Dystocic Labor: Focus on Asynclitism Degree
Authors: A Malvasi, LE Malgieri, E Cicinelli, A Vimercati, R Achiron, R Sparić, …
Publication Year: 2024
Citations: 2

Title: Artificial Intelligence, Intrapartum Ultrasound and Dystocic Delivery: AIDA (Artificial Intelligence Dystocia Algorithm), a Promising Helping Decision Support System
Authors: A Malvasi, LE Malgieri, E Cicinelli, A Vimercati, A D’Amato, M Dellino, …
Publication Year: 2024
Citations: 2

Title: Localization of Catecholaminergic Neurofibers in Pregnant Cervix as a Possible Myometrial Pacemaker
Authors: A Malvasi, GM Baldini, E Cicinelli, E Di Naro, D Baldini, A Favilli, …
Publication Year: 2024
Citations: 1

Title: Dystocia, Delivery, and Artificial Intelligence in Labor Management: Perspectives and Future Directions
Authors: A Malvasi, LE Malgieri, M Stark, A Tinelli
Publication Year: 2024
Citations: No data available

Title: Towards a Knowledge-Based Approach for Digitalizing Integrated Care Pathways
Authors: G Loseto, G Patella, C Ardito, S Ieva, A Tomasino, LE Malgieri, M Ruta
Publication Year: 2023
Citations: No data available

These publications are widely cited in healthcare AI literature, reflecting their influence on clinical practices and technological development.

Conclusion

Dr. Ing. Lorenzo E. Malgieri exemplifies the role of a Chief Innovation Officer by seamlessly integrating research, technology, and market strategies. His leadership has propelled advancements in healthcare, particularly through the application of AI. Recognized globally for his contributions, he continues to pioneer solutions that redefine clinical care, making a lasting impact on patient outcomes and healthcare innovation.

Cheng-Mao Zhou | Artificial Intelligence | Best Researcher Award

Dr. Cheng-Mao Zhou | Artificial Intelligence | Best Researcher Award

Researcher | Central People’s Hospital of Zhanjiang | China

Dr. Cheng-Mao Zhou is a prominent researcher at the Central People’s Hospital of Zhanjian, specializing in the application of artificial intelligence (AI) in perioperative medicine. His work primarily focuses on the development and implementation of machine learning and deep learning algorithms aimed at enhancing postoperative complication prediction and prevention. Dr. Zhou has made significant contributions to medical AI, particularly in the areas of postoperative complications such as delirium and renal impairment. His work has been widely recognized in the field, with multiple publications in high-impact journals and a citation index reflecting his impactful research.

Profile

Scopus

Education

Dr. Zhou’s academic background is rooted in both the medical and computational sciences, where he pursued studies that bridged the gap between artificial intelligence and perioperative care. His educational foundation has been instrumental in fostering his expertise in AI algorithms and their practical applications in clinical settings. Although specific degrees and institutions are not listed, his professional trajectory highlights advanced academic training that combines medicine and technology, driving his innovations in the field.

Experience

Dr. Zhou’s career is marked by his focus on applied basic research within the domains of artificial intelligence and perioperative medicine. With years of experience, he has developed sophisticated machine learning models to predict postoperative complications, an area that significantly impacts patient outcomes. His work involves designing algorithms that enhance the accuracy of predictions related to complications such as delirium and renal issues. Dr. Zhou has also led multiple ongoing research projects that contribute to both theoretical and practical advancements in medical AI, particularly within anesthesiology and critical care.

Research Interests

Dr. Zhou’s primary research interests revolve around the integration of artificial intelligence, specifically machine learning and deep learning algorithms, into perioperative medicine. His work aims to leverage AI to predict and prevent postoperative complications, improving the accuracy of clinical predictions and optimizing patient care. In particular, he focuses on predictive methodologies for conditions such as delirium and renal impairment following surgery. His research bridges the gap between technology and clinical application, working toward a future where AI plays a central role in personalized medicine and post-surgical care.

Awards

Dr. Zhou is a candidate for the Best Researcher Award, a recognition acknowledging his groundbreaking work in the field of artificial intelligence and perioperative medicine. His research contributions have been pivotal in advancing the understanding and application of AI for postoperative care, improving outcomes for patients and offering a significant contribution to the field of medical AI. Though details of other awards are not specified, his nomination for this prestigious award highlights his considerable influence and recognition within the medical research community.

Publications

Dr. Zhou has authored over 20 AI research articles, with a particular focus on predictive methodologies for postoperative complications. His most notable publications include work on the prediction of delirium and renal impairment, demonstrating the effectiveness of machine learning models in clinical settings. Below is a selection of his key publications:

“A predictive model for post-thoracoscopic surgery pulmonary complications based on the PBNN algorithm”

    • Authors: Zhou, C.-M., Xue, Q., Li, H., Yang, J.-J., Zhu, Y.
    • Year: 2024
    • Citations: 0

“Artificial intelligence algorithms for predicting post-operative ileus after laparoscopic surgery”

    • Authors: Zhou, C.-M., Li, H., Xue, Q., Yang, J.-J., Zhu, Y.
    • Year: 2024
    • Citations: 3

“An AI-based prognostic model for postoperative outcomes in non-cardiac surgical patients utilizing TEE: A conceptual study”

    • Authors: Zhu, Y., Liang, R., Zhou, C.-M.
    • Year: 2024
    • Citations: 0

“Predicting early postoperative PONV using multiple machine-learning- and deep-learning-algorithms”

    • Authors: Zhou, C.-M., Wang, Y., Xue, Q., Yang, J.-J., Zhu, Y.
    • Year: 2023
    • Citations: 6

“Predicting postoperative gastric cancer prognosis based on inflammatory factors and machine learning technology”

    • Authors: Zhou, C.-M., Wang, Y., Yang, J.-J., Zhu, Y.
    • Year: 2023
    • Citations: 10

“A long duration of intraoperative hypotension is associated with postoperative delirium occurrence following thoracic and orthopedic surgery in elderly”

    • Authors: Duan, W., Zhou, C.-M., Yang, J.-J., Ma, D.-Q., Yang, J.-J.
    • Year: 2023
    • Citations: 19

“Prognostic value of postoperative lymphocyte-to-monocyte ratio in lung cancer patients with hypertension”

    • Authors: Yuan, M., Wang, P., Meng, R., Zhou, C., Liu, G.
    • Year: 2023
    • Citations: 0

“Differentiation of Bone Metastasis in Elderly Patients With Lung Adenocarcinoma Using Multiple Machine Learning Algorithms”

    • Authors: Zhou, C.-M., Wang, Y., Xue, Q., Zhu, Y.
    • Year: 2023
    • Citations: 5

“Non-linear relationship of gamma-glutamyl transpeptidase to lymphocyte count ratio with the recurrence of hepatocellular carcinoma with staging I–II: a retrospective cohort study”

    • Authors: Li, Z., Liang, L., Duan, W., Zhou, C., Yang, J.-J.
    • Year: 2022
    • Citations: 2

“Predicting difficult airway intubation in thyroid surgery using multiple machine learning and deep learning algorithms”

    • Authors: Zhou, C.-M., Wang, Y., Xue, Q., Yang, J.-J., Zhu, Y.
    • Year: 2022
    • Citations: 16

Conclusion:
Dr. Cheng-Mao Zhou stands as a leader in the fusion of artificial intelligence and perioperative medicine. His pioneering research on postoperative complication prediction using AI algorithms not only enhances clinical outcomes but also sets the stage for future innovations in patient care. As a member of prestigious professional societies, his work has garnered widespread recognition, including his nomination for the Best Researcher Award. Dr. Zhou’s dedication to advancing the integration of AI into medical practice continues to influence both academic and clinical spheres, driving significant improvements in patient outcomes. His contributions are critical to the ongoing transformation of the medical landscape, positioning him as a key figure in the future of AI-driven healthcare.

Guangbo Yu | Artificial Intelligence | Best Researcher Award

Mr. Guangbo Yu | Artificial Intelligence | Best Researcher Award

Mr .Guangbo  Yu, PhD Student, University of California, United States.

Mr. Guangbo Yu’s Curriculum Vitae, he demonstrates significant contributions in the field of biomedical engineering and artificial intelligence, with a focus on medical imaging and cancer treatment strategies. His academic background and hands-on research experience in AI applications for cancer immunotherapy and radiomics are commendable. Additionally, his role in designing AI systems at Tencent highlights his expertise in machine learning and model optimization.

Profile

google scholar

🎓 Education:

PhD in Biomedical Engineering (Expected 2027)

University of California, Irvine

Specialization: Radiological Science

Advisor: Prof. Zhuoli Zhang

Master’s in Computer Science

University of Southern California (2015–2017)

Bachelor’s in Software Engineering

University of Electronic Science and Technology of China (2011–2015)

🔬 Research Experience:

Graduate Assistant Researcher at UC Irvine (2022–Present)

Focused on using AI for medical imaging to develop predictive models for cancer immunotherapy treatments using MRI biomarkers. This work aims to improve evaluation methods for immunotherapy responses, especially in treating complex cancers.

💼 Professional Experience:

AI Engineer at Tencent QTrade (2020–2022)

Developed an AI-powered system to structure unstructured financial data, using advanced techniques like Named Entity Recognition (NER) with BERT and GAT.

Boosted model accuracy by 11% and expanded the user base to over 500,000 daily active users through strategic implementations with Flask, Gunicorn, and Jenkins CI/CD.

🔍 Research Interests:

Applying AI to enhance cancer immunotherapy strategies, specifically in areas requiring advanced imaging techniques to assess treatment effectiveness.

Citations:

Citations: 12 (all since 2019)

h-index: 2 (a minimum of two papers with at least two citations each)

i10-index: 0 (no papers with 10 or more citations)

📖 Publications and Presentations:

Qtrade AI at SemEval-2022 Task 11: A Unified Framework for Multilingual NER Task

W. Gan, Y. Lin, G. Yu, G. Chen, & Q. Ye. (2022). Association for Computational Linguistics.

Sorafenib Plus Memory-Like Natural Killer Cell Combination Therapy in Hepatocellular Carcinoma

A. Eresen, Y. Pang, Z. Zhang, Q. Hou, Z. Chen, G. Yu, Y. Wang, V. Yaghmai, … (2024). American Journal of Cancer Research, 14(1), 344.*

Dendritic Cell Vaccination Combined with Irreversible Electroporation for Treating Pancreatic Cancer—A Narrative Review

Z. Zhang, G. Yu, A. Eresen, Z. Chen, Z. Yu, V. Yaghmai, Z. Zhang. (2024). Annals of Translational Medicine.

MRI Radiomics to Monitor Therapeutic Outcome of Sorafenib Plus IHA Transcatheter NK Cell Combination Therapy in Hepatocellular Carcinoma

G. Yu, Z. Zhang, A. Eresen, Q. Hou, E. E. Garcia, Z. Yu, N. Abi-Jaoudeh, … (2024). Journal of Translational Medicine, 22(1), 76.*

Predicting and Monitoring Immune Checkpoint Inhibitor Therapy Using Artificial Intelligence in Pancreatic Cancer

G. Yu, Z. Zhang, A. Eresen, Q. Hou, F. Amirrad, S. Webster, S. Nauli, … (2024). International Journal of Molecular Sciences, 25(22), 12038.*

Sorafenib Plus Memory-Like Natural Killer Cell Immunochemotherapy Boosts Treatment Response in Liver Cancer

A. Eresen, Z. Zhang, G. Yu, Q. Hou, Z. Chen, Z. Yu, V. Yaghmai, Z. Zhang. (2024). BMC Cancer, 24(1), 1215.*

Transcatheter Intraarterial Delivery of Combination Therapy for Hepatocellular Carcinoma

Z. Zhang, A. Eresen, G. Yu, K. Liu, Q. Hou, V. Yaghmai. (2024). Journal of Vascular and Interventional Radiology, 35(3), S199.*

Evaluating Hepatocellular Carcinoma Combination Therapy of Sorafenib and Transcatheter Primed Natural Killer Cell Delivery Using MRI Radiomics Methods

G. Yu, A. Eresen, Z. Zhang, K. Liu, Q. Hou, V. Yaghmai. (2024). Journal of Vascular and Interventional Radiology, 35(3), S143–S144.*

Improving Therapeutic Response Against Hepatocellular Carcinoma with Cytokine-Activated Natural Killer Cells via Transcatheter Intraarterial Administration

A. Eresen, Z. Zhang, G. Yu, Q. Hou, N. Abi-Jaoudeh, V. Yaghmai. (2024). Journal of Vascular and Interventional Radiology, 35(3), S152.*

Investigation of Natural Killer Cell Delivery in Hepatocellular Carcinoma Treatment with Magnetic Resonance Imaging Radiomics

K. Liu, G. Yu, Z. Zhang, Q. Hou, V. Yaghmai, A. Eresen. (2024). Journal of Vascular and Interventional Radiology, 35(3), S92.*

MRI Monitoring of Combined Therapy with Transcatheter Arterial Delivery of NK Cells and Systemic Administration of Sorafenib for the Treatment of HCC

Z. Zhang, G. Yu, A. Eresen, Q. Hou, V. Yaghmai, Z. Zhang. (2024). American Journal of Cancer Research, 14(5), 2216.*