Mr. Sonjoy Ranjon Das | Computer Vision | AI & Machine Learning Award
Lecturer, Global Banking School, United Kingdom
Mr. Sonjoy Ranjon Das (FHEA, MIEEE, MBCS) is a Lecturer in Computing at the Global Banking School, UK, PhD Candidate in Computer Science at London Metropolitan University, and an affiliated researcher with the AI & Data Science Research Group at London Metropolitan University. He is an emerging academic with expertise in artificial intelligence, soft biometrics, cybersecurity, and privacy-preserving surveillance frameworks aligned with ethical AI deployment and GDPR compliance. Mr. Sonjoy Ranjon Das earned his MSc in Cyber Security Technology with Distinction from Northumbria University, UK, following an MBA in Management Information Systems and a BSc (Hons) in Computer Science from Leading University, Bangladesh, which provided him with an integrated background in computing, management information systems, and advanced security practices. Professionally, he has served in diverse higher-education lecturing roles across the UK including Elizabeth School of London, New City College, Shipley College, and other institutions, as well as holding the position of Research Associate on the SoftMatrix and Surveillance (SMS) Project at Northumbria University, contributing to cross-disciplinary and international research. Mr. Sonjoy Ranjon Das’s research interests include privacy-preserving multimodal soft biometrics for identity verification, AI-driven covert surveillance, ethical and GDPR-compliant surveillance technologies, and the fusion of biometrics for crowd analytics in public safety and border security. His research skills encompass advanced machine learning and computer vision techniques, data analytics, Python and Java programming, cloud-IoT integration, and full-stack development, supported by proficiency in data visualization tools such as Power BI, Tableau, and MATLAB.
Profile : GOOGLE SCHOLAR
Featured Publications
-
Das, S. R., Kruti, A., Devkota, R., & Sulaiman, R. B. (2023). Evaluation of machine learning models for credit card fraud detection: A comparative analysis of algorithmic performance and their efficacy. FMDB Transactions on Sustainable Technoprise Letters. 12 citations.
-
Thinesh, M. A., Varmann, S. S., Sharmila, S. L., & Das, S. R. (2023). Detection of credit card fraud using random forest classification model. FMDB Transactions on Sustainable Technologies Letters. 9 citations.
-
Pranav, R. P., Prawin, R. P., Subhashni, R., & Das, S. R. (2023). Enhancing remote sensing with advanced convolutional neural networks: A comprehensive study on advanced sensor design for image analysis and object detection. FMDB Transactions on Sustainable Computer Letters. 8 citations.
-
Das, S. R., Hassan, B., Patel, P., & Yasin, A. (2024). Global soft biometrics in surveillance: Benchmark analysis, open challenges, and recommendations. Multimedia Tools and Applications. 6 citations.