Gabriel Osei Forkuo | Machine Learning | Best Researcher Award

Mr. Gabriel Osei Forkuo | Machine Learning | Best Researcher Award

Doctoral Researcher/ Research Assistant at Transilvania University of Brasov, Romania

Gabriel Osei Forkuo is a dedicated forestry specialist and researcher with an extensive background in forest operations engineering, postural ergonomics, and machine learning applications. He has built a career that merges practical field experience with academic research, contributing significantly to the development of innovative and cost-effective technologies in forest monitoring and conservation. Currently pursuing a Ph.D. in Forest Operations Engineering at Transilvania University of Brasov, Romania, Gabriel has emerged as a leading figure in the exploration of low-cost LiDAR technologies and smart solutions for ergonomic assessments in forestry. His multifaceted expertise is grounded in over two decades of professional service in teaching, field operations, and advanced scientific investigations.

Profile

Orcid

Education

Gabriel’s educational journey is marked by academic excellence and a continuous drive for specialized knowledge. He is currently enrolled in a Ph.D. program in Forest Operations Engineering at Transilvania University of Brasov, where his research focuses on integrating machine learning and computer vision for ergonomic assessments in forest operations. He previously earned a Master’s degree in Multiple Purpose Forestry from the same university, achieving excellent grades and a cumulative ECTS average of 9.76. His foundational studies include a Bachelor of Science degree in Natural Resources Management from Kwame Nkrumah University of Science and Technology, Kumasi, Ghana, where he graduated with First Class Honours. Earlier academic milestones include completing his GCE A-Level in science subjects and his GCE O-Level in science, supported by performance scholarships recognizing his consistent academic distinction.

Experience

Gabriel’s professional experience spans across teaching, research, and forest management. Between 2002 and 2011, he worked as a Forest Range Manager and Supervisor at the Forestry Commission Ghana, where he was instrumental in nursery planning, restoration of degraded forests, and report writing. From 1999 to 2001, he served as a Science and Maths Teacher at Maria Montessori School in Kumasi, followed by a role as a Teaching Assistant at his alma mater, Kwame Nkrumah University of Science and Technology. In this capacity, he conducted laboratory classes, supervised research data collection, and participated in academic presentations, establishing a strong foundation in both pedagogical and research methodologies. His leadership in afforestation programs and practical forest management further reflects his field-based competency and organizational capability.

Research Interest

Gabriel’s research interests are centered on forest operations engineering, with a special focus on postural ergonomics, machine learning applications, and smart technologies for environmental monitoring. He is passionate about developing affordable and efficient technological solutions, particularly the use of mobile LiDAR and AI-driven tools for soil disturbance estimation and posture evaluation in forest labor. His interdisciplinary approach merges forestry, computer science, and ergonomics, contributing to sustainable and safe forestry practices. Through these interests, he aims to bridge the gap between traditional forestry operations and modern intelligent systems.

Award

Gabriel’s academic and professional contributions have been recognized through several prestigious scholarships and awards. He has twice secured first place in the “My Bachelor/Dissertation Project” competitions held in 2022 and 2023, scoring nearly perfect marks. In 2022, he received the “Premiul special pentru studenti straini” award at the Premiul AFCO. He has also been a recipient of multiple scholarships, including the Transilvania Academica Scholarship, UNITBV Ph.D. Scholarship for International Graduates, and funding from “Proiectul Meu de Diploma” programs. Earlier in his career, he was awarded performance scholarships by the Government of Ghana and Poku Transport Ghana for his outstanding performance in forest sciences.

Publication

Gabriel has authored several notable publications that demonstrate his expertise in forest operations and technological innovation. His key works include:

Forkuo, G.O., & Borz, S.A. (2023). Accuracy and inter-cloud precision of low-cost mobile LiDAR technology in estimating soil disturbance in forest operations. Frontiers in Forests and Global Change, 6. Cited in multiple studies on forest soil impact monitoring.

Forkuo, G.O. (2023). A systematic survey of conventional and new postural assessment methods. Revista Padurilor, 138(3), 1-34.

Borz, S.A., Morocho Toaza, J.M., Forkuo, G.O., Marcu, M.V. (2022). Potential of measure app in estimating log biometrics: a comparison with conventional log measurement. Forests, 13(7), 1028.

Borz, S.A., Forkuo, G.O., Oprea-Sorescu, O., & Proto, A.R. (2022). Development of a robust machine learning model to monitor the operational performance of sawing machines. Forests, 13(7), 1115.

Forkuo, G.O., Proto, A.R., & Borz, S.A. (2024). Feasibility of low-cost mobile LiDAR technology in estimating soil disturbance in forest operations. SSRN.

Forkuo, G.O. (1999). Post-fire tree regeneration studies in the Kumawu Water Supply Forest Reserve. B.Sc. Thesis, KNUST-Kumasi.

Presented paper at FORMEC 2023 in Florence, Italy, highlighting applications of mobile LiDAR in operational environments.

Conclusion

Gabriel Osei Forkuo exemplifies the intersection of academic rigor, practical expertise, and technological innovation in the field of forest operations. His work continues to advance the integration of smart technologies into sustainable forestry, driven by a deep commitment to both ecological preservation and worker safety. Through his research, publications, and leadership roles, Gabriel has built a profile of excellence, contributing significantly to forestry engineering and shaping the next generation of sustainable forest management solutions.

Seyed Abolfazl Aghili | Artificial Intelligence | Best Review Paper Award

Dr. Seyed Abolfazl Aghili | Artificial Intelligence | Best Review Paper Award

Lecturer at Iran university of science and technology, Iran

Seyed Abolfazl Aghili is a dedicated researcher in the field of Civil Engineering, specializing in Construction Engineering and Management. With a strong academic foundation and expertise in artificial intelligence applications for engineering systems, he has contributed significantly to the field through research on resiliency, risk management, and sustainability. His work integrates advanced computational methods with real-world construction challenges, aiming to enhance project decision-making and system efficiency.

Profile

Orcid

Education

Seyed Abolfazl Aghili pursued his Ph.D. in Civil Engineering with a focus on Construction Engineering and Management at the Iran University of Science and Technology (IUST) from 2019 to 2024. His doctoral research explored a framework for determining the long-term resilience of hospital air conditioning systems using artificial intelligence under the guidance of Dr. Mostafa Khanzadi. Prior to his Ph.D., he completed his M.Sc. in Civil Engineering at IUST (2013-2015), investigating employee selection methods in construction firms to optimize hiring processes. He obtained his B.Sc. in Civil Engineering from Isfahan University of Technology (2009-2013), focusing on structural analysis and design in his graduation project.

Experience

Throughout his academic career, Aghili has actively contributed to construction engineering through extensive research and project management. His expertise extends to applying machine learning and deep learning methodologies to engineering challenges, particularly in resilience assessment and risk management. He has also engaged in various industry-oriented projects involving Building Information Modeling (BIM) and decision-making systems for project managers. His academic background is complemented by hands-on experience in technical software such as MS Project, AutoCAD, and Primavera Risk Analysis, which enhances his ability to analyze and implement effective construction management strategies.

Research Interests

Aghili’s research spans multiple interdisciplinary domains, including machine learning and deep learning methods in construction engineering, resiliency, Building Information Modeling (BIM), human resource management in construction, decision-making systems for project managers, risk management, sustainability, and lean construction. His studies aim to optimize construction processes, enhance project resilience, and promote sustainable engineering practices.

Awards and Honors

  • Ranked 5th among 2200 participants in the Nationwide University Entrance Exam for Ph.D. in Iran (2019).
  • Ranked 2nd among all Construction Management students at Iran University of Science and Technology (2013-2015).
  • Ranked 220th among 32,663 participants (Top 1%) in the Nationwide University Entrance Exam for the M.Sc. program in Iran (2013).

Publications

“Artificial Intelligence Approaches to Energy Management in HVAC Systems: A Systematic Review.” Journal of Buildings, Vol. 15, No. 7 (2025): 1008.

“Data-driven approach to fault detection for hospital HVAC system.” Journal of Smart and Sustainable Built Environment, ahead-of-print (2024).

“Feasibility Study of Using BIM in Construction Site Decision Making in Iran.” International Conference on Civil Engineering, Architecture and Urban Infrastructure, July 2015, Tabriz, Iran.

“Review of Digital Imaging Technology in Safety Management in the Construction Industry.” 1st National Conference on Development of Civil Engineering, Architecture, Electricity and Mechanical in Iran, December 2014.

“The Role of Insurance Companies in Managing the Crisis After Earthquake.” 1st National Congress of Engineering, Construction and Evaluation of Development Projects, May 2013, Gorgan, Iran.

“The Need for a New Approach to Pre-crisis and Post-crisis Management of Earthquake.” 1st National Conference on Seismology and Earthquake, February 2013, Yazd, Iran.

Conclusion

Seyed Abolfazl Aghili is a distinguished academic and researcher whose contributions to the field of construction engineering focus on integrating artificial intelligence with resiliency assessment and decision-making in project management. His work has been recognized in high-impact journals and conferences, demonstrating his commitment to advancing the construction industry. Through his research and professional endeavors, he continues to shape the future of sustainable and resilient engineering systems.

Murtaza Hussain | Artificial Intelligence | Best Researcher Award

Mr. Murtaza Hussain | Artificial Intelligence | Best Researcher Award

PhD Research Scholar at Xi’an Jiaotong University, Singapore

Murtaza Hussain is a dedicated doctoral researcher in applied economics at Xi’an Jiaotong University, focusing on the dynamic intersections of innovation, environmental sustainability, and digital transformation. With an international academic background spanning Pakistan and China, he has cultivated a global perspective in addressing critical economic challenges. His research integrates cutting-edge methodologies to explore how financial constraints and digital orientation influence corporate sustainability and innovation. Passionate about interdisciplinary collaboration, he aims to contribute meaningful insights to the evolving landscape of applied economics, ensuring that businesses and policymakers are equipped with strategic frameworks to drive sustainable growth.

Profile

Orcid

Education

Murtaza Hussain is currently pursuing a Ph.D. in Applied Economics at Xi’an Jiaotong University, where he works under the guidance of Associate Professor Dr. Shaohua Yang. His doctoral research explores the impact of digital transformation on corporate green innovation, particularly in the Chinese market. Prior to his Ph.D., he earned a Master of Audit degree from Nanjing Audit University in 2020, supervised by Dr. Chien-Yu Huang. His master’s studies provided him with strong analytical skills in financial auditing and corporate governance. Earlier in his academic journey, he completed a Bachelor of Science in Economics from Quaid-e-Azam University in Pakistan in 2014, solidifying his foundational understanding of economic theory and policy analysis.

Experience

Throughout his academic and professional career, Murtaza Hussain has engaged in extensive research on corporate sustainability, financial constraints, and digital transformation. He has conducted empirical studies using large-scale panel data to analyze firm behavior and policy impacts. His expertise extends to statistical modeling, data analysis, and econometric techniques using software such as Stata and EViews. Beyond academia, he has participated in several research collaborations focusing on corporate governance, artificial intelligence, and regulatory frameworks. Additionally, he has held leadership roles, including serving as a Recreational Coordinator and a committee member for international students at Nanjing Audit University, where he facilitated academic and cultural exchange initiatives.

Research Interests

Murtaza Hussain’s research interests lie at the confluence of digital transformation, financial constraints, and corporate green innovation. He examines how emerging technologies, particularly artificial intelligence, drive corporate sustainability and strategic decision-making. His work also investigates the role of regulatory policies in shaping CEO compensation structures and corporate misconduct, with a special focus on state-owned enterprises. By integrating theoretical perspectives with empirical analysis, he aims to contribute policy-relevant research that informs both academia and industry on sustainable economic practices.

Awards

Murtaza Hussain has received numerous academic scholarships and recognitions for his contributions to research and leadership. In 2021, he was awarded the prestigious China Belt and Road University Scholarship by Xi’an Jiaotong University. He also received the Chinese Government Scholarship through the China Scholarship Council in 2018. His excellence in postgraduate studies was recognized by Nanjing Audit University, where he was honored as an Excellent Postgraduate of the School of International Exchange in 2020. Additionally, he was a recipient of the Higher Education Commission’s FATA & Balochistan Scholarship in Pakistan, further demonstrating his academic merit and dedication.

Publications

How Digital Orientation Drives Green Innovation: Financial Constraints as a Mediator in Chinese A-Share Firms – Baltic Journal of Management, 2025 (Yang, S., Hussain, M., Maqsood, U.S., Younas, M.W., Zahid, R.M.A.)

Evaluating Corporate Environmental Performance in the Context of Artificial Intelligence: The Contingent Roles of Ownership Type and External Monitoring – Business Strategy and the Environment, 2025 (S. Wang, Y. Yong, M. Hussain, U.S. Maqsood, R.M.A. Zahid)

Regulating CEO Compensation: A Remedy for Corporate Misconducts in China’s State-Owned Enterprises – Borsa Istanbul Review, 2024 (U.S. Maqsood, Q. Li, H. Hussain, M. Hussain, R.M.A. Zahid)

Tapping into the Green Potential: The Power of Artificial Intelligence Adoption in Corporate Green Innovation Drive – Business Strategy and the Environment, 2024 (Hussain, M., Yang, S., Maqsood, U.S., Zahid, R.M.A.)

The Role of Artificial Intelligence in Corporate Digital Strategies: Evidence from China – Kybernetes, 2024 (Yang, S., Hussain, M., Ammar Zahid, R.M., Maqsood, U.S.)

Conclusion

Murtaza Hussain is an emerging scholar in applied economics, committed to advancing research at the intersection of digital transformation, corporate sustainability, and regulatory frameworks. His academic journey from Pakistan to China reflects his adaptability and global outlook, making him a valuable contributor to interdisciplinary research. Through his extensive publication record and scholarship achievements, he continues to shape the discourse on economic innovation and sustainability. With a strong foundation in empirical research and policy analysis, he remains dedicated to bridging the gap between academia and industry, offering solutions to contemporary economic challenges.

Mamoona Humayun | Artificial intelligence | Best Researcher Award

Dr. Mamoona Humayun | Artificial intelligence | Best Researcher Award

Senior Lecturer at University of Roehampton, United Kingdom

Dr. Mamoona Humayun is a distinguished academician and researcher with over 15 years of experience in teaching and administrative roles across international institutions. She holds a Ph.D. in Computer Sciences from Harbin Institute of Technology, China. Her expertise encompasses artificial intelligence, cybersecurity, predictive analytics, and IoT integration in healthcare. She has authored over 200 publications and secured more than 20 funded research grants, reflecting her commitment to advancing innovation and technology-driven solutions in various domains.

Profile

Google Scholar

Education

Dr. Humayun has an impressive educational background. She earned her Ph.D. in Computer Science from Harbin Institute of Technology, China, in 2014. She holds two master’s degrees: one in Software Engineering from International Islamic University, Islamabad (2011), and another in Computer Science from the same institution (2005). Her academic journey began with a Bachelor of Science in Mathematics from F.G. College for Women, Islamabad, where she graduated with honors in 2002.

Experience

Dr. Humayun has held significant positions throughout her career. She currently serves as a Senior Lecturer at the University of Roehampton, London, UK. Previously, she was an Assistant Professor at Jouf University, Saudi Arabia, where she also coordinated research and accreditation programs. She has served in various roles at PMAS-Arid Agriculture University, Pakistan, and other institutions, contributing extensively to curriculum development, research supervision, and administrative operations.

Research Interests

Dr. Humayun’s research interests lie in artificial intelligence, cybersecurity, healthcare informatics, and IoT systems. She focuses on AI-driven chronic disease management, secure software development, and IoT integration for remote patient monitoring. Her innovative work extends to disability advocacy through AI and predictive analytics for improving healthcare outcomes.

Awards

Dr. Humayun’s accolades include being named a distinguished researcher at Jouf University for 2021-2022. She received the second-best researcher award at the College of Computer and Information Sciences. Additionally, her innovative projects and contributions have garnered recognition across academic and professional platforms.

Publications

“Cyber security threats and vulnerabilities: a systematic mapping study”

  • Year: 2020
  • Citations: 395

“Emerging smart logistics and transportation using IoT and blockchain”

  • Year: 2020
  • Citations: 278

“Internet of things and ransomware: Evolution, mitigation and prevention”

  • Year: 2021
  • Citations: 254

“Detection of skin cancer based on skin lesion images using deep learning”

  • Year: 2022
  • Citations: 208

“Secure healthcare data aggregation and transmission in IoT—A survey”

  • Year: 2021
  • Citations: 204

“Analysis of software development methodologies”

  • Year: 2019
  • Citations: 150

“Blockchain for Internet of Things (IoT) research issues challenges & future directions: A review”

  • Year: 2019
  • Citations: 132

“Energy optimization for smart cities using IoT”

  • Year: 2022
  • Citations: 121

“Cyber security issues and challenges for smart cities: A survey”

  • Year: 2019
  • Citations: 119

“Hybrid smart grid with sustainable energy efficient resources for smart cities”

  • Year: 2021
  • Citations: 117

“Privacy protection and energy optimization for 5G-aided industrial Internet of Things”

  • Year: 2020
  • Citations: 116

Conclusion

Dr. Mamoona Humayun’s exceptional achievements in research, innovation, and academic leadership make her an outstanding candidate for the “Research for Best Researcher Award.” Her contributions have not only advanced her field but also inspired students, peers, and the global research community.

Majad Mansoor | Artificial Intelligence | Best Researcher Award

Dr. Majad Mansoor | Artificial Intelligence | Best Researcher Award

postdoctoral researcher at Shenzhen polytechnic university, China

Majad Mansoor is a dedicated postdoctoral researcher at Shenzhen Polytechnic University with expertise in control science, engineering, and sensor fusion techniques. His academic journey has been marked by significant contributions to robotics, energy optimization, and deep learning applications. With a strong background in research and innovation, he has made remarkable strides in the field of artificial intelligence and machine learning for real-world applications. He has also taken on editorial roles in well-reputed journals such as Discover Sustainability, Machines, and Energies. His dedication to advancing research in renewable energy and collaborative robotics has earned him several accolades and recognition within the scientific community.

Profile

Google Scholar

Education

Majad Mansoor earned his PhD in Control Science and Engineering from the University of Science and Technology of China, Hefei. His doctoral research focused on advanced sensor fusion techniques and predictive optimization methodologies using deep learning models. His academic foundation has enabled him to develop innovative AI-driven solutions for complex engineering problems, particularly in the areas of renewable energy and robotics. Throughout his academic career, he has combined theoretical knowledge with practical applications, contributing significantly to sustainable energy management and control systems.

Experience

With extensive research experience, Majad Mansoor has completed over 55 research projects. He has also actively collaborated with renowned institutions, including SUT Poland, NIU Norway, and City College University USA. His industrial engagements include consultancy projects for AI algorithm development in logistics and UAV drone path planning for pesticide spray applications in agriculture. As a guest editor for multiple international journals, he has played a crucial role in promoting high-impact research in renewable energy technologies, electric machines, and smart UAV applications. His professional memberships with IEEE and the Pakistan Engineering Council further reflect his commitment to the scientific and engineering communities.

Research Interest

Majad Mansoor’s research primarily focuses on renewable energy, collaborative robotics, and optimization algorithms. His work in optimization techniques has contributed to reducing computational complexity while improving efficiency in energy forecasting. His pioneering contributions in wind and solar power prediction through modern inception and feature engineering modules have introduced novel encoders, significantly enhancing the accuracy and reliability of energy forecasting. He also actively explores AI-driven solutions for real-time energy management and robotics, making substantial contributions to sustainability and efficiency in automation.

Awards and Recognitions

Majad Mansoor has been recognized for his research achievements with prestigious awards, including the CAS-ANSO Research Achievement Award and the CSC Highly Cited Paper Award. His contributions to deep learning applications in renewable energy and energy optimization have garnered significant recognition within academic and industrial sectors. His commitment to advancing knowledge in AI-driven control systems has positioned him as a leading researcher in his field, earning him nominations for distinguished research awards such as the Best Researcher Award.

Publications

Mansoor, M., et al. (2024). “Deep Learning-Based Optimization in Renewable Energy Systems.” Applied Energy. Cited by: 110 articles.

Mansoor, M., et al. (2023). “AI-Driven Predictive Control for Smart Grids.” Journal of Cleaner Production. Cited by: 95 articles.

Mansoor, M., et al. (2022). “Sensor Fusion Techniques in Autonomous Vehicles.” IEEE Access. Cited by: 85 articles.

Mansoor, M., et al. (2021). “Optimization Algorithms for Wind Energy Forecasting.” Renewable Energy. Cited by: 120 articles.

Mansoor, M., et al. (2020). “Deep Learning Applications in Energy Management.” Energy Conversion and Management. Cited by: 140 articles.

Mansoor, M., et al. (2019). “Smart UAVs for Renewable Energy Inspections.” Sustainable Energy Technologies and Assessments. Cited by: 60 articles.

Mansoor, M., et al. (2018). “AI-Driven Logistics Optimization.” Expert Systems. Cited by: 75 articles.

Conclusion

Majad Mansoor’s research contributions in artificial intelligence, renewable energy, and optimization algorithms have positioned him as a distinguished researcher. His work has not only advanced theoretical knowledge but also provided practical solutions to real-world challenges in automation, robotics, and energy systems. With a strong academic background, extensive research experience, and a commitment to innovation, he continues to push the boundaries of technology, making a lasting impact on the scientific and industrial communities. His dedication to interdisciplinary research and sustainable technological advancements ensures that his contributions will remain influential for years to come.

Guangbo Yu | Artificial Intelligence | Best Researcher Award

Mr. Guangbo Yu | Artificial Intelligence | Best Researcher Award

Mr .Guangbo  Yu, PhD Student, University of California, United States.

Mr. Guangbo Yu’s Curriculum Vitae, he demonstrates significant contributions in the field of biomedical engineering and artificial intelligence, with a focus on medical imaging and cancer treatment strategies. His academic background and hands-on research experience in AI applications for cancer immunotherapy and radiomics are commendable. Additionally, his role in designing AI systems at Tencent highlights his expertise in machine learning and model optimization.

Profile

google scholar

🎓 Education:

PhD in Biomedical Engineering (Expected 2027)

University of California, Irvine

Specialization: Radiological Science

Advisor: Prof. Zhuoli Zhang

Master’s in Computer Science

University of Southern California (2015–2017)

Bachelor’s in Software Engineering

University of Electronic Science and Technology of China (2011–2015)

🔬 Research Experience:

Graduate Assistant Researcher at UC Irvine (2022–Present)

Focused on using AI for medical imaging to develop predictive models for cancer immunotherapy treatments using MRI biomarkers. This work aims to improve evaluation methods for immunotherapy responses, especially in treating complex cancers.

💼 Professional Experience:

AI Engineer at Tencent QTrade (2020–2022)

Developed an AI-powered system to structure unstructured financial data, using advanced techniques like Named Entity Recognition (NER) with BERT and GAT.

Boosted model accuracy by 11% and expanded the user base to over 500,000 daily active users through strategic implementations with Flask, Gunicorn, and Jenkins CI/CD.

🔍 Research Interests:

Applying AI to enhance cancer immunotherapy strategies, specifically in areas requiring advanced imaging techniques to assess treatment effectiveness.

Citations:

Citations: 12 (all since 2019)

h-index: 2 (a minimum of two papers with at least two citations each)

i10-index: 0 (no papers with 10 or more citations)

📖 Publications and Presentations:

Qtrade AI at SemEval-2022 Task 11: A Unified Framework for Multilingual NER Task

W. Gan, Y. Lin, G. Yu, G. Chen, & Q. Ye. (2022). Association for Computational Linguistics.

Sorafenib Plus Memory-Like Natural Killer Cell Combination Therapy in Hepatocellular Carcinoma

A. Eresen, Y. Pang, Z. Zhang, Q. Hou, Z. Chen, G. Yu, Y. Wang, V. Yaghmai, … (2024). American Journal of Cancer Research, 14(1), 344.*

Dendritic Cell Vaccination Combined with Irreversible Electroporation for Treating Pancreatic Cancer—A Narrative Review

Z. Zhang, G. Yu, A. Eresen, Z. Chen, Z. Yu, V. Yaghmai, Z. Zhang. (2024). Annals of Translational Medicine.

MRI Radiomics to Monitor Therapeutic Outcome of Sorafenib Plus IHA Transcatheter NK Cell Combination Therapy in Hepatocellular Carcinoma

G. Yu, Z. Zhang, A. Eresen, Q. Hou, E. E. Garcia, Z. Yu, N. Abi-Jaoudeh, … (2024). Journal of Translational Medicine, 22(1), 76.*

Predicting and Monitoring Immune Checkpoint Inhibitor Therapy Using Artificial Intelligence in Pancreatic Cancer

G. Yu, Z. Zhang, A. Eresen, Q. Hou, F. Amirrad, S. Webster, S. Nauli, … (2024). International Journal of Molecular Sciences, 25(22), 12038.*

Sorafenib Plus Memory-Like Natural Killer Cell Immunochemotherapy Boosts Treatment Response in Liver Cancer

A. Eresen, Z. Zhang, G. Yu, Q. Hou, Z. Chen, Z. Yu, V. Yaghmai, Z. Zhang. (2024). BMC Cancer, 24(1), 1215.*

Transcatheter Intraarterial Delivery of Combination Therapy for Hepatocellular Carcinoma

Z. Zhang, A. Eresen, G. Yu, K. Liu, Q. Hou, V. Yaghmai. (2024). Journal of Vascular and Interventional Radiology, 35(3), S199.*

Evaluating Hepatocellular Carcinoma Combination Therapy of Sorafenib and Transcatheter Primed Natural Killer Cell Delivery Using MRI Radiomics Methods

G. Yu, A. Eresen, Z. Zhang, K. Liu, Q. Hou, V. Yaghmai. (2024). Journal of Vascular and Interventional Radiology, 35(3), S143–S144.*

Improving Therapeutic Response Against Hepatocellular Carcinoma with Cytokine-Activated Natural Killer Cells via Transcatheter Intraarterial Administration

A. Eresen, Z. Zhang, G. Yu, Q. Hou, N. Abi-Jaoudeh, V. Yaghmai. (2024). Journal of Vascular and Interventional Radiology, 35(3), S152.*

Investigation of Natural Killer Cell Delivery in Hepatocellular Carcinoma Treatment with Magnetic Resonance Imaging Radiomics

K. Liu, G. Yu, Z. Zhang, Q. Hou, V. Yaghmai, A. Eresen. (2024). Journal of Vascular and Interventional Radiology, 35(3), S92.*

MRI Monitoring of Combined Therapy with Transcatheter Arterial Delivery of NK Cells and Systemic Administration of Sorafenib for the Treatment of HCC

Z. Zhang, G. Yu, A. Eresen, Q. Hou, V. Yaghmai, Z. Zhang. (2024). American Journal of Cancer Research, 14(5), 2216.*