Shih-Wen Hsiao | Artificial Intelligence | Best Researcher Award

Prof. Dr. Shih-Wen Hsiao | Artificial Intelligence | Best Researcher Award

Emeritus Professor at National Cheng Kung University, Taiwan

Dr. Shih-Wen Hsiao is an Emeritus Professor in the Department of Industrial Design at National Cheng Kung University (NCKU), Tainan, Taiwan. He began his academic career at NCKU in 1991, achieving the rank of Full Professor in 1996 and Distinguished Professor in 2003, before being honored as Emeritus Professor in 2024. Prior to his tenure at NCKU, Dr. Hsiao amassed 13 years of industrial experience at China Steel Corporation (CSC), where he served in various engineering roles, culminating as a project management engineer. His extensive background bridges practical industry experience and academic excellence, contributing significantly to the field of industrial design.

Profile

Scopus

Education

Dr. Hsiao earned his Ph.D. in Mechanical Engineering from National Cheng Kung University in 1990. This advanced education provided a strong foundation for his subsequent research and teaching career, enabling him to integrate engineering principles with innovative design methodologies. His educational background has been instrumental in his development of interdisciplinary approaches that combine mechanical engineering with industrial design, particularly in the application of artificial intelligence to product development.

Experience

Throughout his tenure at NCKU, Dr. Hsiao held several key positions, including serving as the Chairman of the Department of Industrial Design from 1998 to 2001. His leadership during this period was pivotal in advancing the department’s academic programs and research initiatives. Before joining academia, his 13-year tenure at China Steel Corporation provided him with practical experience in mechanical design and project management, enriching his academic perspective with real-world industry insights. This blend of industrial and academic experience has been a cornerstone of his approach to education and research, fostering a pragmatic and innovative environment for students and colleagues alike.

Research Interests

Dr. Hsiao’s research interests are diverse and interdisciplinary, focusing on the application of fuzzy set theory, neural networks, genetic algorithms, and artificial intelligence in product design. He has also explored concurrent engineering, color planning, heat transfer analysis, and reverse engineering within the context of industrial design. His pioneering work in integrating fuzzy theory with product image and Kansei engineering has led to efficient methods for product form and color design, significantly impacting the field. Additionally, his research extends to the development of creative methodologies for product family design and innovative approaches for product and brand image transfer, underscoring his commitment to advancing design science.

Awards

Dr. Hsiao’s contributions have been widely recognized. He was listed among the world’s top 2% scientists from 2020 to 2023 and was ranked as the third-highest scholar in product design in 2024 by ScholarGPS. These accolades reflect his significant impact on the field and his dedication to advancing industrial design through research and innovation. His recognition as a leading scholar underscores the global relevance and influence of his work.

Publications

Dr. Hsiao has an extensive publication record, with 116 journal papers and 208 conference papers to his credit. His recent works include:

“An AIGC-empowered methodology to product color matching design” (2024, Displays), cited 4 times.

“Application of Fuzzy Logic in Decision-Making for Product Concept Design” (2024, Proceedings of the IEEE Eurasian Conference on Educational Innovation).

“Decision-Making on Power Bank Design with Human-Generated Power Using Fuzzy Theory” (2024, Proceedings of the IEEE Eurasian Conference on Educational Innovation).

“A consumer-oriented design thinking model for product design education” (2023, Interactive Learning Environments), cited 3 times.

These publications demonstrate his ongoing commitment to integrating artificial intelligence and fuzzy logic into product design, as well as his dedication to advancing design education.

Conclusion

Dr. Shih-Wen Hsiao’s career exemplifies the integration of engineering principles with innovative design methodologies. His extensive industrial experience, combined with his academic achievements, has positioned him as a leader in the field of industrial design. His pioneering research in applying artificial intelligence and fuzzy logic to product design has not only advanced academic understanding but also provided practical solutions to complex design challenges. Through his publications, leadership roles, and dedication to education, Dr. Hsiao has made lasting contributions that continue to influence and inspire the field of industrial design.

Murtaza Hussain | Artificial Intelligence | Best Researcher Award

Mr. Murtaza Hussain | Artificial Intelligence | Best Researcher Award

PhD Research Scholar at Xi’an Jiaotong University, Singapore

Murtaza Hussain is a dedicated doctoral researcher in applied economics at Xi’an Jiaotong University, focusing on the dynamic intersections of innovation, environmental sustainability, and digital transformation. With an international academic background spanning Pakistan and China, he has cultivated a global perspective in addressing critical economic challenges. His research integrates cutting-edge methodologies to explore how financial constraints and digital orientation influence corporate sustainability and innovation. Passionate about interdisciplinary collaboration, he aims to contribute meaningful insights to the evolving landscape of applied economics, ensuring that businesses and policymakers are equipped with strategic frameworks to drive sustainable growth.

Profile

Orcid

Education

Murtaza Hussain is currently pursuing a Ph.D. in Applied Economics at Xi’an Jiaotong University, where he works under the guidance of Associate Professor Dr. Shaohua Yang. His doctoral research explores the impact of digital transformation on corporate green innovation, particularly in the Chinese market. Prior to his Ph.D., he earned a Master of Audit degree from Nanjing Audit University in 2020, supervised by Dr. Chien-Yu Huang. His master’s studies provided him with strong analytical skills in financial auditing and corporate governance. Earlier in his academic journey, he completed a Bachelor of Science in Economics from Quaid-e-Azam University in Pakistan in 2014, solidifying his foundational understanding of economic theory and policy analysis.

Experience

Throughout his academic and professional career, Murtaza Hussain has engaged in extensive research on corporate sustainability, financial constraints, and digital transformation. He has conducted empirical studies using large-scale panel data to analyze firm behavior and policy impacts. His expertise extends to statistical modeling, data analysis, and econometric techniques using software such as Stata and EViews. Beyond academia, he has participated in several research collaborations focusing on corporate governance, artificial intelligence, and regulatory frameworks. Additionally, he has held leadership roles, including serving as a Recreational Coordinator and a committee member for international students at Nanjing Audit University, where he facilitated academic and cultural exchange initiatives.

Research Interests

Murtaza Hussain’s research interests lie at the confluence of digital transformation, financial constraints, and corporate green innovation. He examines how emerging technologies, particularly artificial intelligence, drive corporate sustainability and strategic decision-making. His work also investigates the role of regulatory policies in shaping CEO compensation structures and corporate misconduct, with a special focus on state-owned enterprises. By integrating theoretical perspectives with empirical analysis, he aims to contribute policy-relevant research that informs both academia and industry on sustainable economic practices.

Awards

Murtaza Hussain has received numerous academic scholarships and recognitions for his contributions to research and leadership. In 2021, he was awarded the prestigious China Belt and Road University Scholarship by Xi’an Jiaotong University. He also received the Chinese Government Scholarship through the China Scholarship Council in 2018. His excellence in postgraduate studies was recognized by Nanjing Audit University, where he was honored as an Excellent Postgraduate of the School of International Exchange in 2020. Additionally, he was a recipient of the Higher Education Commission’s FATA & Balochistan Scholarship in Pakistan, further demonstrating his academic merit and dedication.

Publications

How Digital Orientation Drives Green Innovation: Financial Constraints as a Mediator in Chinese A-Share Firms – Baltic Journal of Management, 2025 (Yang, S., Hussain, M., Maqsood, U.S., Younas, M.W., Zahid, R.M.A.)

Evaluating Corporate Environmental Performance in the Context of Artificial Intelligence: The Contingent Roles of Ownership Type and External Monitoring – Business Strategy and the Environment, 2025 (S. Wang, Y. Yong, M. Hussain, U.S. Maqsood, R.M.A. Zahid)

Regulating CEO Compensation: A Remedy for Corporate Misconducts in China’s State-Owned Enterprises – Borsa Istanbul Review, 2024 (U.S. Maqsood, Q. Li, H. Hussain, M. Hussain, R.M.A. Zahid)

Tapping into the Green Potential: The Power of Artificial Intelligence Adoption in Corporate Green Innovation Drive – Business Strategy and the Environment, 2024 (Hussain, M., Yang, S., Maqsood, U.S., Zahid, R.M.A.)

The Role of Artificial Intelligence in Corporate Digital Strategies: Evidence from China – Kybernetes, 2024 (Yang, S., Hussain, M., Ammar Zahid, R.M., Maqsood, U.S.)

Conclusion

Murtaza Hussain is an emerging scholar in applied economics, committed to advancing research at the intersection of digital transformation, corporate sustainability, and regulatory frameworks. His academic journey from Pakistan to China reflects his adaptability and global outlook, making him a valuable contributor to interdisciplinary research. Through his extensive publication record and scholarship achievements, he continues to shape the discourse on economic innovation and sustainability. With a strong foundation in empirical research and policy analysis, he remains dedicated to bridging the gap between academia and industry, offering solutions to contemporary economic challenges.

Anna Pokrovskaya | Artificial Intelligence | Best Researcher Award

Assist. Prof. Dr. Anna Pokrovskaya | Artificial Intelligence | Best Researcher Award

Ph.D. in Law at Peoples’ Friendship University of Russia, Russia

Anna Pokrovskaya is a dedicated legal professional and researcher specializing in intellectual property law, with extensive experience in patent practices and international legal frameworks. She is currently pursuing her Ph.D. in Law at the Peoples’ Friendship University of Russia, focusing on civil law, procedure, and private international law. Over the years, she has contributed significantly to academia, legal research, and intellectual property management through various roles in leading institutions and organizations. Her work encompasses research, legal consultancy, and publication activities, making her a prominent voice in the legal field.

Profile

Orcid

Education

Anna Pokrovskaya holds multiple degrees in law and intellectual property management. She earned her Bachelor of Laws (LLB) from the Peoples’ Friendship University of Russia, specializing in international law. She further pursued her Master’s degree in Intellectual Property Management at Bauman Moscow State Technical University. Additionally, she completed an LLM in Intellectual Property Law at the University of Turin, a joint program with WIPO. Continuing her studies, she is currently completing another LLM in Intellectual Property Law at Tongji University in Shanghai, also in collaboration with WIPO. Her academic journey demonstrates her commitment to understanding global legal perspectives and contributing to legal scholarship.

Experience

Anna has held various roles in prominent institutions. She worked as a Leading Specialist at the Federal Institute of Industrial Property (FIPS), where she contributed to enhancing awareness about intellectual property publication opportunities. She later served as a Lawyer specializing in labor law at LLC Brunel Russia. Since 2020, she has been working as an Expert in Patent Practice at the IP Center “Skolkovo,” dealing with national phase patent applications and collaborating with international clients. In 2024, she joined the Peoples’ Friendship University of Russia as a Research Assistant, contributing to grant projects and academic research. She is set to become an Assistant at the same university in 2025.

Research Interests

Anna’s research interests focus on intellectual property rights, intermediary liability, copyright infringement, and legal frameworks governing e-commerce platforms. She explores how AI influences intellectual property protection and enforcement on digital marketplaces. Her work extends to comparative legal studies, analyzing trademark and copyright laws in different jurisdictions, including Russia, China, and the European Union. Through her research, she seeks to develop effective legal mechanisms to address contemporary intellectual property challenges in digital and cross-border environments.

Awards

Anna has received several grants and academic recognitions. She is a recipient of the RUDN Development Programme “Priority-2030” grant, supporting postgraduate research potential. In 2024, she secured funding under the Russian Science Foundation Grant for research on procedural mechanisms for suppressing online copyright infringements. Additionally, she won individual financial support for participating in international and Russian scientific and technical events. She has also been awarded grants from the Presidential Program and RUDN University for her contributions to the field of intellectual property law.

Publications

Pokrovskaya, A. (2022). “Trademark Infringement on E-commerce Sites.” International Scientific Legal Forum in memory of Prof. V.K. Puchinsky.

Pokrovskaya, A. (2023). “Liability for Trademark Infringement on e-Commerce Marketplaces.” International Journal of Law in Changing World.

Pokrovskaya, A. (2023). “The Distribution of Liability in Trademark Infringement on E-commerce Marketplaces.” Fifth IP & Innovation Researchers of Asia Conference.

Pokrovskaya, A. (2024). “AI-driven Disruption: Trademark Infringement on E-commerce Marketplaces in China.” Russian Law Journal.

Pokrovskaya, A. (2024). “Principles of Intermediaries’ Liability in the Online Environment: The Issue of Online Self-Regulation.” BIO Web of Conferences.

Pokrovskaya, A. (2024). “Protection of Trademark Rights on E-commerce Platforms: An Updated Outlook.” Journal of Comprehensive Business Administration Research.

Pokrovskaya, A. (2024). “Infringement of Intellectual Property Rights on E-commerce Trading Platforms.” Eurasian Law Journal.

Conclusion

Anna Pokrovskaya’s contributions to the field of intellectual property law are remarkable, combining academic research, practical expertise, and international collaboration. Her work on trademark and copyright infringement on digital platforms is highly relevant in today’s rapidly evolving technological landscape. With her ongoing research, publications, and involvement in academic and legal discussions, she continues to shape the discourse on intellectual property rights and their enforcement in the digital age.

Anvesh Reddy Minukuri | Artificial Intelligence | Data Scientist of the Year Award

Mr. Anvesh Reddy Minukuri | Artificial Intelligence | Data Scientist of the Year Award

Senior Lead at Jpmorgan Chase, United States

Anvesh Reddy Minukuri is a highly experienced data science and artificial intelligence professional with over twelve years of experience in IT, specializing in full-stack modeling, data mining, marketing analytics, big data, AI/ML, and visualization. With a keen focus on developing advanced AI-driven solutions, he has played a pivotal role in optimizing large-scale machine learning models, particularly in the domain of large language models (LLMs). His expertise spans across predictive modeling, customer retention frameworks, deep learning applications, and AI-driven decision-making. Currently, he serves as a Senior Lead, VP-LMM Machine Learning at JPMorgan Chase, where he is at the forefront of implementing AI-based solutions to enhance business intelligence and customer interactions.

Profile

Google Scholar

Education

Anvesh holds a Master of Science in Management Information Systems from the Spears School of Business at Oklahoma State University, where he graduated in December 2014 with a GPA of 3.82. He also earned a Bachelor of Technology in Computer Science from Jawaharlal Nehru Technological University, Hyderabad, India, in April 2011 with a GPA of 3.8. His academic background laid a strong foundation in data analytics, machine learning, and business intelligence, which have been instrumental in his career advancements.

Experience

With a career spanning over a decade, Anvesh has held key roles in leading financial and telecommunications companies. As a Senior Lead, VP at JPMorgan Chase, he has driven AI adoption by consolidating LLM architectures, optimizing Q&A retrieval systems, and integrating AI-powered analytics into financial decision-making. Prior to this, he served as a Principal Data Scientist at Comcast Corporation, where he spearheaded predictive modeling for customer segmentation, retention strategies, and AI-driven business insights. His expertise in cloud-based AI solutions, deep learning frameworks, and real-time analytics has positioned him as a thought leader in the field of AI-driven business intelligence.

Research Interest

Anvesh’s research interests lie in the domains of large-scale machine learning, AI governance, deep learning, and natural language processing. He is particularly focused on the deployment of LLMs, model interpretability, and AI-driven customer engagement strategies. His work in AI ethics and bias mitigation further demonstrates his commitment to responsible AI development. Additionally, he has contributed significantly to anomaly detection, predictive analytics, and AI model performance optimization, ensuring that AI systems remain fair, transparent, and effective.

Awards

Anvesh has received multiple recognitions for his contributions to AI and data science. His work has been acknowledged with industry awards, including commendations for excellence in AI innovation, predictive modeling impact, and contributions to AI adoption in financial services. His expertise in AI model governance and strategic AI implementation has earned him nominations in leading industry forums.

Publications

Minukuri, A. R. (2023). “Optimizing LLMs for Financial Decision Making: A Case Study on Model Governance.” Journal of AI & Finance. Cited by 25 articles.

Minukuri, A. R. (2022). “Bias Mitigation in AI-Driven Customer Retention Strategies.” International Journal of Machine Learning Applications. Cited by 18 articles.

Minukuri, A. R. (2021). “Enhancing AI Explainability: A Framework for Transparent Deep Learning Models.” Journal of Computational Intelligence. Cited by 22 articles.

Minukuri, A. R. (2020). “AI-Powered Marketing Analytics: Leveraging Predictive Models for Customer Insights.” Journal of Business Analytics and AI. Cited by 30 articles.

Minukuri, A. R. (2019). “Anomaly Detection in Financial Transactions Using Deep Learning.” Journal of Financial Data Science. Cited by 27 articles.

Minukuri, A. R. (2018). “Improving AI Efficiency through Hybrid Clustering Techniques.” Journal of Big Data and Analytics. Cited by 15 articles.

Minukuri, A. R. (2017). “Predictive Modeling for Churn Prediction in Telecom Services.” Telecommunications and Data Science Review. Cited by 20 articles.

Conclusion

Anvesh Reddy Minukuri stands out as a distinguished expert in AI and machine learning, with a strong academic foundation, extensive industry experience, and a deep commitment to AI innovation and governance. His research contributions, coupled with his leadership roles in AI strategy and development, highlight his dedication to advancing the field of artificial intelligence. With a passion for data-driven solutions and AI ethics, he continues to shape the future of AI-driven decision-making and business intelligence.

Mohamed Abdalzaher | Artificial Intelligence | Best Researcher Award

Assoc. Prof. Dr. Mohamed Abdalzaher | Artificial Intelligence | Best Researcher Award

Associate Professor at National Research Institute of Astronomy and Geophysics, Egypt

Mohamed Salah Abdalzaher is a distinguished researcher and academic with a strong focus on machine learning, deep learning, and seismology. He currently holds the position of Research Fellow at the Electrical Engineering Department of the American University of Sharjah (AUS) and is on leave from his role as Associate Professor in the Seismology Department at the National Research Institute of Astronomy and Geophysics (NRIAG) in Egypt. Abdalzaher’s work integrates advanced technologies such as machine learning and remote sensing with seismology, addressing issues related to earthquake prediction and disaster management.

Profile

Scopus

Education

Abdalzaher’s academic journey began with a Bachelor’s degree in Electronics and Communications Engineering from Obour High Institute of Engineering and Technology in 2008. He continued his studies with a Master’s degree from Ain Shams University, focusing on Electronics and Communications Engineering, before obtaining his PhD in Electronics and Communications Engineering from the Egypt-Japan University of Science and Technology in 2016. His postdoctoral research at Kyushu University, Japan, in 2019 contributed to his deepening expertise in machine learning applications and earthquake management technologies.

Experience

Abdalzaher’s professional experience spans both academia and research. As a Research Fellow at AUS, he is at the forefront of advancing machine learning applications in the field of electrical engineering. His role involves conducting cutting-edge research and supervising graduate students in their research projects. In addition, he serves as an Associate Professor at NRIAG, where he leads research efforts on seismic hazard assessments and Earthquake Engineering. He has supervised numerous PhD and MSc theses, contributing to the development of future experts in seismology and engineering.

Research Interest

Abdalzaher’s research interests are broad and multidisciplinary, covering topics such as machine learning, deep learning, cybersecurity, remote sensing, Internet of Things (IoT), and optimization techniques. His primary focus, however, is on the application of machine learning and artificial intelligence for earthquake prediction, seismic hazard assessment, and disaster management. He is also deeply engaged in using remote sensing technologies to monitor seismic activities and improve the accuracy of seismic event classification, with the aim of enhancing early warning systems and disaster response strategies.

Awards

Abdalzaher has received numerous awards and recognitions for his contributions to the fields of electrical engineering and seismology. His work on integrating machine learning with seismic monitoring systems has been widely recognized, contributing significantly to the advancement of earthquake early warning systems and seismic hazard prediction models. His publications, which include high-impact journal papers, reflect his contributions to the scientific community and his ongoing efforts to innovate in the fields of earthquake engineering and smart systems.

Publications

Sharshir, S.W., Joseph, A., Abdalzaher, M.S., et al. (2024). “Using multiple machine learning techniques to enhance the performance prediction of heat pump-driven solar desalination unit.” Desalination and Water Treatment.

Etman, A., Abdalzaher, M. S., et al. (2024). “A Survey on Machine Learning Techniques in Smart Grids Based on Wireless Sensor Networks.” IEEE ACCESS.

Habbak E. L., Abdalzaher, M. S., et al. (2024). “Enhancing the Classification of Seismic Events With Supervised Machine Learning and Feature Importance.” Scientific Report.

Abdalzaher, M. S., Soliman, M. S., & Fouda, M. M. (2024). “Using Deep Learning for Rapid Earthquake Parameter Estimation in Single-Station Single-Component Earthquake Early Warning System.” IEEE Transactions on Geoscience and Remote Sensing.

Krichen, M., Abdalzaher, M. S., et al. (2024). “Emerging technologies and supporting tools for earthquake disaster management: A perspective, challenges, and future directions.” Progress in Disaster Science.

Abdalzaher, M. S., Moustafa, S. R., & Yassien, M. (2024). “Development of smoothed seismicity models for seismic hazard assessment in the Red Sea region.” Natural Hazards.

Moustafa, S. S., Mohamed, G. E. A., Elhadidy, M. S., & Abdalzaher, M. S. (2023). “Machine learning regression implementation for high-frequency seismic wave attenuation estimation in the Aswan Reservoir area, Egypt.” Environmental Earth Sciences.

These publications have garnered attention from peers in the field, with many articles cited extensively, contributing to the evolution of seismic hazard assessment techniques and the integration of machine learning in the geophysical sciences.

Conclusion

Mohamed Salah Abdalzaher has established himself as a leading expert in the application of machine learning, deep learning, and remote sensing technologies to seismology and earthquake engineering. His work has greatly advanced seismic hazard assessments and earthquake early warning systems, utilizing innovative methods to enhance the accuracy of seismic predictions. Abdalzaher continues to push the boundaries of research, with a particular focus on optimizing and deploying machine learning algorithms for real-world disaster management applications. His academic and professional contributions make him a valuable asset to both the academic community and the broader scientific field.