Gabriel Osei Forkuo | Machine Learning | Best Researcher Award

Mr. Gabriel Osei Forkuo | Machine Learning | Best Researcher Award

Doctoral Researcher/ Research Assistant at Transilvania University of Brasov, Romania

Gabriel Osei Forkuo is a dedicated forestry specialist and researcher with an extensive background in forest operations engineering, postural ergonomics, and machine learning applications. He has built a career that merges practical field experience with academic research, contributing significantly to the development of innovative and cost-effective technologies in forest monitoring and conservation. Currently pursuing a Ph.D. in Forest Operations Engineering at Transilvania University of Brasov, Romania, Gabriel has emerged as a leading figure in the exploration of low-cost LiDAR technologies and smart solutions for ergonomic assessments in forestry. His multifaceted expertise is grounded in over two decades of professional service in teaching, field operations, and advanced scientific investigations.

Profile

Orcid

Education

Gabriel’s educational journey is marked by academic excellence and a continuous drive for specialized knowledge. He is currently enrolled in a Ph.D. program in Forest Operations Engineering at Transilvania University of Brasov, where his research focuses on integrating machine learning and computer vision for ergonomic assessments in forest operations. He previously earned a Master’s degree in Multiple Purpose Forestry from the same university, achieving excellent grades and a cumulative ECTS average of 9.76. His foundational studies include a Bachelor of Science degree in Natural Resources Management from Kwame Nkrumah University of Science and Technology, Kumasi, Ghana, where he graduated with First Class Honours. Earlier academic milestones include completing his GCE A-Level in science subjects and his GCE O-Level in science, supported by performance scholarships recognizing his consistent academic distinction.

Experience

Gabriel’s professional experience spans across teaching, research, and forest management. Between 2002 and 2011, he worked as a Forest Range Manager and Supervisor at the Forestry Commission Ghana, where he was instrumental in nursery planning, restoration of degraded forests, and report writing. From 1999 to 2001, he served as a Science and Maths Teacher at Maria Montessori School in Kumasi, followed by a role as a Teaching Assistant at his alma mater, Kwame Nkrumah University of Science and Technology. In this capacity, he conducted laboratory classes, supervised research data collection, and participated in academic presentations, establishing a strong foundation in both pedagogical and research methodologies. His leadership in afforestation programs and practical forest management further reflects his field-based competency and organizational capability.

Research Interest

Gabriel’s research interests are centered on forest operations engineering, with a special focus on postural ergonomics, machine learning applications, and smart technologies for environmental monitoring. He is passionate about developing affordable and efficient technological solutions, particularly the use of mobile LiDAR and AI-driven tools for soil disturbance estimation and posture evaluation in forest labor. His interdisciplinary approach merges forestry, computer science, and ergonomics, contributing to sustainable and safe forestry practices. Through these interests, he aims to bridge the gap between traditional forestry operations and modern intelligent systems.

Award

Gabriel’s academic and professional contributions have been recognized through several prestigious scholarships and awards. He has twice secured first place in the “My Bachelor/Dissertation Project” competitions held in 2022 and 2023, scoring nearly perfect marks. In 2022, he received the “Premiul special pentru studenti straini” award at the Premiul AFCO. He has also been a recipient of multiple scholarships, including the Transilvania Academica Scholarship, UNITBV Ph.D. Scholarship for International Graduates, and funding from “Proiectul Meu de Diploma” programs. Earlier in his career, he was awarded performance scholarships by the Government of Ghana and Poku Transport Ghana for his outstanding performance in forest sciences.

Publication

Gabriel has authored several notable publications that demonstrate his expertise in forest operations and technological innovation. His key works include:

Forkuo, G.O., & Borz, S.A. (2023). Accuracy and inter-cloud precision of low-cost mobile LiDAR technology in estimating soil disturbance in forest operations. Frontiers in Forests and Global Change, 6. Cited in multiple studies on forest soil impact monitoring.

Forkuo, G.O. (2023). A systematic survey of conventional and new postural assessment methods. Revista Padurilor, 138(3), 1-34.

Borz, S.A., Morocho Toaza, J.M., Forkuo, G.O., Marcu, M.V. (2022). Potential of measure app in estimating log biometrics: a comparison with conventional log measurement. Forests, 13(7), 1028.

Borz, S.A., Forkuo, G.O., Oprea-Sorescu, O., & Proto, A.R. (2022). Development of a robust machine learning model to monitor the operational performance of sawing machines. Forests, 13(7), 1115.

Forkuo, G.O., Proto, A.R., & Borz, S.A. (2024). Feasibility of low-cost mobile LiDAR technology in estimating soil disturbance in forest operations. SSRN.

Forkuo, G.O. (1999). Post-fire tree regeneration studies in the Kumawu Water Supply Forest Reserve. B.Sc. Thesis, KNUST-Kumasi.

Presented paper at FORMEC 2023 in Florence, Italy, highlighting applications of mobile LiDAR in operational environments.

Conclusion

Gabriel Osei Forkuo exemplifies the intersection of academic rigor, practical expertise, and technological innovation in the field of forest operations. His work continues to advance the integration of smart technologies into sustainable forestry, driven by a deep commitment to both ecological preservation and worker safety. Through his research, publications, and leadership roles, Gabriel has built a profile of excellence, contributing significantly to forestry engineering and shaping the next generation of sustainable forest management solutions.

Majad Mansoor | Artificial Intelligence | Best Researcher Award

Dr. Majad Mansoor | Artificial Intelligence | Best Researcher Award

postdoctoral researcher at Shenzhen polytechnic university, China

Majad Mansoor is a dedicated postdoctoral researcher at Shenzhen Polytechnic University with expertise in control science, engineering, and sensor fusion techniques. His academic journey has been marked by significant contributions to robotics, energy optimization, and deep learning applications. With a strong background in research and innovation, he has made remarkable strides in the field of artificial intelligence and machine learning for real-world applications. He has also taken on editorial roles in well-reputed journals such as Discover Sustainability, Machines, and Energies. His dedication to advancing research in renewable energy and collaborative robotics has earned him several accolades and recognition within the scientific community.

Profile

Google Scholar

Education

Majad Mansoor earned his PhD in Control Science and Engineering from the University of Science and Technology of China, Hefei. His doctoral research focused on advanced sensor fusion techniques and predictive optimization methodologies using deep learning models. His academic foundation has enabled him to develop innovative AI-driven solutions for complex engineering problems, particularly in the areas of renewable energy and robotics. Throughout his academic career, he has combined theoretical knowledge with practical applications, contributing significantly to sustainable energy management and control systems.

Experience

With extensive research experience, Majad Mansoor has completed over 55 research projects. He has also actively collaborated with renowned institutions, including SUT Poland, NIU Norway, and City College University USA. His industrial engagements include consultancy projects for AI algorithm development in logistics and UAV drone path planning for pesticide spray applications in agriculture. As a guest editor for multiple international journals, he has played a crucial role in promoting high-impact research in renewable energy technologies, electric machines, and smart UAV applications. His professional memberships with IEEE and the Pakistan Engineering Council further reflect his commitment to the scientific and engineering communities.

Research Interest

Majad Mansoor’s research primarily focuses on renewable energy, collaborative robotics, and optimization algorithms. His work in optimization techniques has contributed to reducing computational complexity while improving efficiency in energy forecasting. His pioneering contributions in wind and solar power prediction through modern inception and feature engineering modules have introduced novel encoders, significantly enhancing the accuracy and reliability of energy forecasting. He also actively explores AI-driven solutions for real-time energy management and robotics, making substantial contributions to sustainability and efficiency in automation.

Awards and Recognitions

Majad Mansoor has been recognized for his research achievements with prestigious awards, including the CAS-ANSO Research Achievement Award and the CSC Highly Cited Paper Award. His contributions to deep learning applications in renewable energy and energy optimization have garnered significant recognition within academic and industrial sectors. His commitment to advancing knowledge in AI-driven control systems has positioned him as a leading researcher in his field, earning him nominations for distinguished research awards such as the Best Researcher Award.

Publications

Mansoor, M., et al. (2024). “Deep Learning-Based Optimization in Renewable Energy Systems.” Applied Energy. Cited by: 110 articles.

Mansoor, M., et al. (2023). “AI-Driven Predictive Control for Smart Grids.” Journal of Cleaner Production. Cited by: 95 articles.

Mansoor, M., et al. (2022). “Sensor Fusion Techniques in Autonomous Vehicles.” IEEE Access. Cited by: 85 articles.

Mansoor, M., et al. (2021). “Optimization Algorithms for Wind Energy Forecasting.” Renewable Energy. Cited by: 120 articles.

Mansoor, M., et al. (2020). “Deep Learning Applications in Energy Management.” Energy Conversion and Management. Cited by: 140 articles.

Mansoor, M., et al. (2019). “Smart UAVs for Renewable Energy Inspections.” Sustainable Energy Technologies and Assessments. Cited by: 60 articles.

Mansoor, M., et al. (2018). “AI-Driven Logistics Optimization.” Expert Systems. Cited by: 75 articles.

Conclusion

Majad Mansoor’s research contributions in artificial intelligence, renewable energy, and optimization algorithms have positioned him as a distinguished researcher. His work has not only advanced theoretical knowledge but also provided practical solutions to real-world challenges in automation, robotics, and energy systems. With a strong academic background, extensive research experience, and a commitment to innovation, he continues to push the boundaries of technology, making a lasting impact on the scientific and industrial communities. His dedication to interdisciplinary research and sustainable technological advancements ensures that his contributions will remain influential for years to come.