Hemad Zareiforoush | Machine Learning | Best Academic Researcher Award

Dr. Hemad Zareiforoush | Machine Learning | Best Academic Researcher Award

Associate Professor at University of Guilan, Rasht, Iran

Dr. Hemad Zareiforoush is an Assistant Professor at the Department of Biosystems Engineering, University of Guilan, Rasht, Iran, where he has been contributing to both academic and practical advancements in biosystems engineering since 2015. With a focus on agricultural machinery, automation, and quality inspection systems, his work bridges engineering and food science, particularly in areas like computer vision, image processing, and renewable energy applications. His research is highly interdisciplinary, combining mechanical engineering principles with computational intelligence for improving the agricultural industry’s efficiency.

Profile

Google Scholar

Education

Dr. Zareiforoush’s educational background is robust, with a PhD in Mechanical and Biosystems Engineering from Tarbiat Modares University in Tehran, Iran, completed in 2014. His academic excellence is evident in his GPA of 17.84 out of 20. He earned his MSc in Mechanical Engineering of Agricultural Machinery at Urmia University in 2010, where he graduated with a remarkable GPA of 19.29 out of 20. Earlier, Dr. Zareiforoush obtained his BSc in the same field from Urmia University in 2007, graduating with a GPA of 15.75 out of 20. He also attended a specialized governmental high school for excellent pupils, where he focused on mathematics and physics, graduating with a GPA of 18.71 out of 20.

Experience

Since joining the University of Guilan in 2015, Dr. Zareiforoush has been teaching various courses, including Engineering Properties of Food and Agricultural Products, Renewable Energy, and Measurement and Instrumentation Principles. His practical experience spans various engineering disciplines, with a particular emphasis on instrumentation, automation in agriculture, and food quality monitoring. Notably, his research has led to the development of innovative systems for rice quality inspection using computer vision and fuzzy logic. Additionally, he has been involved in numerous projects related to agricultural machinery, renewable energy, and automation for optimizing food production processes.

Research Interests

Dr. Zareiforoush’s research interests lie at the intersection of biosystems engineering, computational intelligence, and food science. He is particularly interested in computer vision applications for food quality inspection, using advanced image processing techniques to enhance product quality and safety. His work also explores hyperspectral imaging and spectroscopy for monitoring the quality of food materials. Another key area of his research is the application of machine learning algorithms for modeling and classifying food products based on their quality attributes. Additionally, he is involved in renewable energy applications in agriculture, focusing on solar-assisted drying systems and energy-efficient food processing methods.

Awards

Dr. Zareiforoush has received several prestigious awards throughout his academic career. He was honored with the Iran Ministry of Science, Research, and Technology Scholarship in 2012 and the National Elite Scholarship by the Iran National Foundation for Elites (INFE) in 2011. His exceptional academic performance earned him the title of “Best Student” at Urmia University in 2009. Additionally, he has been recognized as a “Talented Student” at Tarbiat Modares University and ranked 1st among MSc students in his department.

Publications

Dr. Zareiforoush has published several influential papers in high-impact journals. Some of his notable publications include:

Bakhshipour, A., Zareiforoush, H., Bagheri, I. (2020). Application of decision trees and fuzzy inference system for quality classification and modeling of black and green tea based on visual features. Journal of Food Measurement and Characterization, 14: 1402–1416, Cited by: 43.

Bakhshipour, A., Zareiforoush, H., Bagheri, I. (2020). Development of a fuzzy model for differentiating peanut plant from broadleaf weeds using image features. Plant Methods, 16:153, Cited by: 25.

Bakhshipour, A., Zareiforoush, H., Bagheri, I. (2021). Mathematical and intelligent modeling of stevia (Stevia Rebaudiana) leaves drying in an infrared-assisted continuous hybrid solar dryer. Food Science & Nutrition (JCR), 9(1), 532-543, Cited by: 12.

Zareiforoush, H., Minaei, S., Alizadeh, M.R., Banakar, A. (2016). Design, Development, and Performance Evaluation of an Automatic Control System for Rice Whitening Machine Based on Computer Vision and Fuzzy Logic. Computers and Electronics in Agriculture, 124: 14-22, Cited by: 67.

Soodmand-Moghaddam, S., Sharifi, M., Zareiforoush, H. (2020). Mathematical modeling of lemon verbena leaves drying in a continuous flow dryer equipped with a solar pre-heating system. Quality Assurance and Safety of Crops & Foods, 12(1): 57-66, Cited by: 30.

Zareiforoush, H., Minaei, S., Alizadeh, M.R., Banakar, A. (2015). Qualitative Classification of Milled Rice Grains Using Computer Vision and Metaheuristic Techniques. Journal of Food Science and Technology (Springer), 53(1): 118-131, Cited by: 45.

Zareiforoush, H., Komarizadeh, M.H., Alizadeh, M.R. (2010). Effects of crop-screw parameters on rough rice grain damage in handling with a horizontal screw auger. Journal of Food, Agriculture and Environment, 8(3): 132-138, Cited by: 19.

Conclusion

Dr. Hemad Zareiforoush’s academic and professional contributions significantly impact the fields of biosystems engineering, food science, and agricultural machinery. His work in developing intelligent systems for quality inspection and automation has improved agricultural productivity and food safety. His expertise in computational techniques, including fuzzy logic and machine learning, continues to shape the future of smart farming and food processing. With numerous awards, highly cited publications, and a track record of excellence, Dr. Zareiforoush is a leading figure in his field.

Tushar Kafare | Artificial Intelligence | Best Researcher Award

Dr. Tushar Kafare | Artificial Intelligence | Best Researcher Award

Assistant Professor at Sinhgad College of Engineering, India

Dr. Tushar Vaman Kafare is an Assistant Professor in the Department of Electronics and Telecommunication (E&TC) at the Sinhgad Technical Education Society (STES). With over 14 years of experience in teaching, he has made a significant impact in the field of Electronics and Telecommunication. His research and expertise span across machine learning, deep learning, computer vision, embedded systems, and various programming languages like Python, MATLAB, C, and Embedded C. Dr. Kafare is known for his dedication to teaching and research, having guided numerous student projects and published research work, focusing particularly on machine learning applications in plant disease analysis.

Profile

Google Scholar

Education

Dr. Kafare holds an M.E. degree in Electronics and Telecommunication, as well as a B.E. in Electronics. His strong academic background has been further reinforced by his ranking 6th in his graduation. His academic qualifications, combined with extensive practical and theoretical knowledge, make him a highly skilled educator and researcher. His ongoing Ph.D. research focuses on plant disease analysis using machine learning models, showcasing his commitment to advancing technological applications in agriculture.

Experience

Having joined STES on September 7, 2022, Dr. Kafare brings with him a wealth of experience in academia and industry. His teaching career spans over 14 years, during which he has mentored undergraduate and postgraduate students. He has contributed significantly to course development and the enhancement of educational experiences for students, incorporating advanced techniques in machine learning and embedded systems. Additionally, Dr. Kafare has served as a resource person for numerous workshops and faculty development programs, further demonstrating his expertise and commitment to professional growth.

Research Interests

Dr. Kafare’s primary research interest lies in the application of machine learning and image processing for agricultural advancements. His Ph.D. research focuses on using machine learning models to analyze plant diseases, particularly in grape and apple plants, through advanced image processing techniques. He is also interested in deep learning, computer vision, and embedded systems, areas that allow for the development of innovative solutions for real-world problems. Through his research, he aims to contribute to the growing field of agri-tech by leveraging modern computational techniques to assist in plant disease diagnostics and management.

Awards

Dr. Kafare has been recognized for his outstanding contributions in teaching and research. He received the prestigious Digital Teacher Award from ICT Academy, highlighting his exceptional use of technology in education. Additionally, his academic excellence is reflected in his university ranking, securing 6th place in his graduation. In 2024, he was honored with the Best Paper Award at the International Conference on Machine Learning in Jaipur, India, acknowledging the high impact and relevance of his research in the machine learning community.

Publications

Dr. Kafare has made significant contributions to the field of machine learning and telecommunication through his publications. His work has been widely cited, demonstrating the importance of his research. Below is a list of selected publications:

Kafare, T.V. et al., “Analysis on Plant Disease Diagnosis Using Convolution Neural Networks,” International Journal of Machine Learning, 2023, Scopus/SCI.

Kafare, T.V. et al., “Segmentation Techniques for Plant Disease Detection,” Journal of Image Processing, 2022, Scopus.

Kafare, T.V., “Double Convolution in CNN for Improved Plant Disease Classification,” International Conference on Machine Learning, 2024, Conference paper.

Kafare, T.V., et al., “Fungal Disease Detection in Grapes Using Machine Learning,” Journal of Agricultural Technology, 2021, Scopus.

Conclusion

Dr. Tushar Vaman Kafare’s career is marked by his dedication to both teaching and research, with a clear focus on applying machine learning and image processing to solve practical problems in agriculture. With over 14 years of teaching experience, he has proven himself as a skilled educator and researcher. His ongoing Ph.D. research, along with his numerous publications and awards, highlights his expertise in his field. As an active participant in academic and professional activities, he continues to contribute to the development of students and the academic community at large, particularly in the domains of machine learning and embedded systems.

Jafar keighobadi | Automated Machine Learning (AutoML) | Best Researcher Award

Prof. Dr. Jafar keighobadi | Automated Machine Learning (AutoML) | Best Researcher Award

Professor at Tabriz university, Iran

Dr. Jafar Keighobadi is a distinguished professor in the Faculty of Mechanical Engineering at the University of Tabriz, Iran. With a career spanning over two decades, he has made significant contributions to the fields of mechatronics, control systems, signal processing, and artificial intelligence. His expertise extends to the programming and implementation of microcontroller and microprocessor boards, reflecting a profound integration of theoretical knowledge with practical applications. Throughout his tenure, Dr. Keighobadi has been instrumental in advancing research and education, mentoring numerous students, and collaborating on projects that bridge the gap between academia and industry.

Profile

Scopus

Education

Dr. Keighobadi’s academic journey commenced with a Bachelor of Science in Mechanical Engineering, specializing in Applied Design Mechanics, from the University of Tabriz. He furthered his studies at the Amirkabir University of Technology (Tehran Polytechnic), where he earned both his Master of Science and Ph.D. in Mechanical Engineering. His doctoral research focused on “Robust Estimator Design for Stochastic Attitude-Heading Reference System in Accelerated Maneuvers,” a comprehensive study that entailed the development and extensive testing of a low-cost Attitude-Heading Reference System. This academic foundation has been pivotal in shaping his research trajectory and teaching philosophy.

Experience

Dr. Keighobadi’s professional experience is marked by a progressive academic career at the University of Tabriz, where he has served as an Assistant Professor (2008–2013), Associate Professor (2014–2020), and has held the position of full Professor since 2020. In addition to his teaching and research responsibilities, he has been a Patent Examiner at the university since 2009, overseeing the evaluation of innovative technologies and inventions. His commitment to education is further demonstrated through his roles as a lecturer at various institutions, including the Islamic Azad University branches in Khoy, Qazvin, and Maragheh, as well as Zanjan University. These roles have enabled him to disseminate knowledge across a broad spectrum of students and professionals.

Research Interests

Dr. Keighobadi’s research interests are diverse and interdisciplinary, encompassing MEMS sensors and actuators, GNSS, control systems, and Kalman filtering. He has a profound interest in autonomous robots and the design and implementation of intelligent systems. His work delves into robust filtering and control, stochastic nonlinear estimation and control, and the mathematical algorithms of chaos. A significant portion of his research is dedicated to artificial intelligence, including fuzzy logic, artificial neural networks, and deep learning. Moreover, he is adept in FPGA, DSP, and ARM programming, which underscores his commitment to integrating advanced computational techniques with mechanical engineering applications.

Awards

Throughout his illustrious career, Dr. Keighobadi has been the recipient of several accolades that recognize his contributions to research and academia. Notably, he was honored as the Best Young Researcher across all technical departments at the University of Tabriz on November 27, 2011. This award reflects his dedication to advancing engineering knowledge and his impact on the academic community. Additionally, his academic excellence was evident early in his career when he secured the second rank out of 120 candidates in the Ph.D. entrance exam at Amirkabir University of Technology on June 18, 2001. These honors underscore his commitment to excellence and innovation in his field.

Publications

Dr. Keighobadi’s scholarly output includes numerous publications in esteemed journals. A selection of his notable works includes:

“Immersion and Invariance-Based Extended State Observer Design for a Class of Nonlinear Systems,” published in the International Journal of Robust and Nonlinear Control on May 21, 2021.

“Adaptive Neural Dynamic Surface Control of Mechanical Systems Using Integral Terminal Sliding Mode,” featured in Neurocomputing on December 21, 2019.

“Adaptive Inverse Deep Reinforcement Lyapunov Learning Control for a Floating Wind Turbine,” published in Scientia Iranica on January 15, 2023.

“Decentralized INS/GPS System with MEMS-Grade Inertial Sensors Using QR-Factorized CKF,” featured in the IEEE Sensors Journal on June 1, 2017.

“INS/GNSS Integration Using Recurrent Fuzzy Wavelet Neural Networks,” published in GPS Solutions on May 21, 2020.

“Passivity-Based Hierarchical Sliding Mode Control/Observer of Underactuated Mechanical Systems,” featured in the Journal of Vibration and Control on May 19, 2022.

“Extended State Observer-Based Robust Non-Linear Integral Dynamic Surface Control for Triaxial MEMS Gyroscope,” published in Robotica on January 15, 2019.

These publications highlight Dr. Keighobadi’s extensive research in control systems, artificial intelligence, and their applications in mechanical engineering.

Conclusion

Dr. Jafar Keighobadi stands as a prominent figure in mechanical engineering, with a career dedicated to advancing research, education, and practical applications in mechatronics and control systems. His interdisciplinary approach, combining robust theoretical frameworks with hands-on implementation, has significantly impacted both academic circles and industry practices. As a mentor, researcher, and educator, Dr. Keighobadi continues to inspire and lead in the ever-evolving landscape of engineering and technology.

Fatih Kalemkuş | Artificial Intelligence | Best Researcher Award

Assist. Prof. Dr. Fatih Kalemkuş | Artificial Intelligence | Best Researcher Award

Assistant Professor at Kafkas University, Turkey

Dr. Fatih Kalemkuş is an Assistant Professor at Kafkas University, where he specializes in Electronic Commerce and Technology Management. With a rich academic and professional background, Dr. Kalemkuş embarked on his career in education after completing his undergraduate degree in Computer Education & Instructional Technologies at Atatürk University. He has taught various subjects related to information technology, first as an Informatics Technologies Teacher at the Turkish Ministry of National Education and later as a lecturer at Kafkas University’s Distance Education Application and Research Center. His journey culminated in earning a doctoral degree from Fırat University in Computer Education & Instructional Technologies, where he was honored with the “Most Successful Doctoral Thesis” award in 2024.

Profile

Orcid

Education

Dr. Kalemkuş’s educational journey began at Erzincan Fatih Industrial Vocational High School, where he pursued studies in the Computer Department. He continued to develop his academic career by earning his bachelor’s degree in 2006 from Atatürk University in the field of Computer Education & Instructional Technologies. He then completed a Master’s degree in Internet and Informatics Technologies Management from Afyon Kocatepe University between 2014 and 2016. His dedication to advancing his knowledge in the field led him to pursue a Ph.D. at Fırat University, graduating in 2023 with a focus on Computer Education & Instructional Technologies. His research has been instrumental in advancing educational practices in the digital age, with a specific focus on artificial intelligence and emerging technologies.

Experience

Dr. Kalemkuş has had diverse professional experiences. From 2007 to 2021, he served as an Informatics Technologies Teacher under the Turkish Ministry of National Education, shaping the next generation’s skills in information technology. In 2021, he joined Kafkas University as a lecturer at the Distance Education Application and Research Center, where he taught courses related to digital learning tools. His commitment to academic excellence and innovation in education led to his promotion to Assistant Professor in 2024 at Kafkas University’s Electronic Commerce and Technology Management Department, where he continues to make impactful contributions to research and education.

Research Interests

Dr. Kalemkuş’s research focuses on key areas of educational technology and digital transformation. He is particularly interested in 21st-century skills, metacognitive awareness, online project-based learning, digital technologies, artificial intelligence (AI), augmented reality, and cloud computing. He also explores the intersection of education and emerging technologies, such as natural language processing (NLP) and the integration of AI in educational contexts. His work aims to improve learning outcomes and foster innovation in teaching methodologies. His ongoing research projects delve into the development of AI-driven educational materials and interactive learning environments that enhance students’ academic engagement.

Awards

Dr. Kalemkuş has received recognition for his outstanding academic contributions. In 2024, he was honored with the prestigious “Most Successful Doctoral Thesis” award from Fırat University for his exceptional research and academic achievements. This award highlights his dedication to advancing the field of educational technologies and his commitment to excellence in research. His work, particularly on the use of AI in education, has positioned him as a leading researcher in his field.

Publications

Dr. Kalemkuş has authored several influential publications in well-regarded journals and books. His research has been featured in leading SSCI and ESCI journals, including the European Journal of Education, Interactive Learning Environments, Science & Education, and Journal of Research in Special Educational Needs. His recent publications include:

Kalemkuş, F., & Kalemkuş, J. (2025). “Primary School Students’ Perceptions of Artificial Intelligence: Metaphor and Drawing Analysis”, European Journal of Education, 60(1), 1-23.

Kalemkuş, F., & Bulut-Özek, M. (2024). “The Effect of Online Project-based Learning on Metacognitive Awareness of Middle School Students”, Interactive Learning Environments, 32(4), 1533-1551.

Kalemkuş, F., & Kalemkuş, J. (2024). “The Effect of Designing Scientific Experiments with Visual Programming on Learning Outcomes”, Science & Education, 1-23.

Kalemkuş, F., & Bulut-Özek, M. (2023). “Effect of the Use of Augmented Reality Applications on Academic Achievement in Science Education: Meta Analysis”, Interactive Learning Environments, 31(9), 6017-6034.

Kalemkuş, F. (2024). “Trends in Instructional Technologies Used in Education for People with Special Needs Due to Intellectual Disabilities and Autism”, Journal of Research in Special Educational Needs, 1-25.

Kalemkuş, F., & Çelik, L. (2023). “Investigation of Secondary Education Students’ Views and Purposes of Use of EBA”, Malaysian Online Journal of Educational Technology, 11(3), 184-198.

Kalemkuş, F., & Bulut-Özek, M. (2021). “Research Trends in 21st Century Skills: 2000-2020”, MANAS Sosyal Araştırmalar Dergisi, 10(2), 878-900.

Conclusion

Dr. Fatih Kalemkuş’s career has been marked by a profound commitment to advancing educational technology and promoting the use of emerging technologies in learning environments. With numerous publications in prestigious journals and books, he has made a significant impact on the fields of AI, digital learning, and 21st-century skills development. His work continues to shape the educational landscape, particularly in the integration of innovative digital tools to enhance teaching and learning outcomes. Dr. Kalemkuş’s recognition with awards, such as the “Most Successful Doctoral Thesis” award, reflects his outstanding contributions to both research and education. His interdisciplinary approach ensures that his work will remain at the forefront of educational innovations for years to come.

Amir veisi | Artificial Intelligence | Best Researcher Award

Dr. Amir veisi | Artificial Intelligence | Best Researcher Award

PhD | Bu-Ali Sina University | Iran

Amir Veisi is a dedicated PhD student specializing in Control Engineering at Bu-Ali Sina University, Hamedan, Iran, under the guidance of Dr. Hadi Delavari. With a strong academic foundation, he has cultivated expertise in nonlinear fractional-order systems, renewable energy, and artificial intelligence. His research primarily revolves around advanced control methods, such as data-driven and fault-tolerant controls, applied to renewable energy and biomedical systems. Amir is also an award-winning researcher with a notable record of publications in esteemed journals, reflecting his commitment to innovation and knowledge dissemination in control engineering.

Profile

Scholar

Education

Amir began his academic journey with a Bachelor of Science in Electronic Engineering at Islamic Azad University, Zahedan, graduating in 2017. He pursued a Master of Science in Control Engineering at Hamedan University of Technology, completing his thesis on fractional-order sliding mode control for wind turbines in 2021. Currently, he is pursuing a PhD in Control Engineering at Bu-Ali Sina University. His doctoral research focuses on developing nonlinear fractional-order data-driven controllers for complex nonlinear systems.

Experience

Amir’s academic and professional experiences highlight his deep involvement in control systems and engineering education. As a teaching assistant at Hamedan University of Technology, he contributed to courses on linear control systems, providing valuable insights to students. Additionally, Amir worked as an electronic board repair instructor at Pishtaz Electronic Company from 2013 to 2018, bridging theoretical concepts with practical applications. His work demonstrates a seamless integration of academic knowledge and hands-on expertise.

Research Interests

Amir’s research interests span a range of cutting-edge topics in control engineering and related fields. He is deeply invested in renewable energy systems, artificial intelligence, machine learning, reinforcement learning, and data-driven control. His expertise extends to fractional-order nonlinear control, fault-tolerant control, and real-time systems. Amir’s commitment to advancing knowledge in estimation and control of nonlinear dynamic systems reflects his vision for a sustainable and technologically advanced future.

Awards

Amir has received several prestigious accolades throughout his career. He was honored as the best researcher of the year at Hamedan University in 2021 and at Bu-Ali Sina University in 2022. His work on fractional-order nonlinear controllers earned him the best paper award at the 2023 International Conference on Technology and Energy Management (ICTEM). Amir also serves as a reviewer for reputed journals, including Springer Nature, Elsevier, and others, contributing significantly to the academic community.

Publications

Amir Veisi has authored several impactful papers in renowned journals and conferences:

Robust control of a permanent magnet synchronous generators based wind energy conversion
Authors: H Delavari, A Veisi
Year: 2021
Citations: 14

Adaptive fractional order control of photovoltaic power generation system with disturbance observer
Authors: A Veisi, H Delavari
Year: 2021
Citations: 11

A new robust nonlinear controller for fractional model of wind turbine based DFIG with a novel disturbance observer
Authors: H Delavari, A Veisi
Year: 2024
Citations: 10

Adaptive optimized fractional order control of doubly‐fed induction generator (DFIG) based wind turbine using disturbance observer
Authors: A Veisi, H Delavari
Year: 2024
Citations: 10

Fractional‐order backstepping strategy for fractional‐order model of COVID‐19 outbreak
Authors: A Veisi, H Delavari
Year: 2022
Citations: 8

Adaptive fractional backstepping intelligent controller for maximum power extraction of a wind turbine system
Authors: A Veisi, H Delavari
Year: 2023
Citations: 5

Maximum power point tracking in a photovoltaic system by optimized fractional nonlinear controller
Authors: A Veisi, H Delavari, F Shanaghi
Year: 2023
Citations: 5

Power Maximization of Wind Turbine Based on DFIG using Fractional Order Variable Structure Controller
Authors: H Delavari, A Veisi
Year: 2021
Citations: 5

Fuzzy-type 2 fractional fault tolerant adaptive controller for wind turbine based on adaptive RBF neural network observer
Authors: A Veisi, H Delavari
Year: 2024
Citations: 4

Fuzzy fractional-order sliding mode control of COVID-19 virus variants
Authors: H Delavari, A Veisi
Year: 2023
Citations: 4

Conclusion

Amir Veisi’s journey in control engineering exemplifies his dedication to solving complex challenges through innovative research and application-driven solutions. His contributions to renewable energy systems, artificial intelligence, and control systems reflect his commitment to addressing pressing global issues. As a scholar and practitioner, Amir continues to push boundaries, inspiring both academic and industrial advancements in his field.