Majad Mansoor | Artificial Intelligence | Best Researcher Award

Dr. Majad Mansoor | Artificial Intelligence | Best Researcher Award

postdoctoral researcher at Shenzhen polytechnic university, China

Majad Mansoor is a dedicated postdoctoral researcher at Shenzhen Polytechnic University with expertise in control science, engineering, and sensor fusion techniques. His academic journey has been marked by significant contributions to robotics, energy optimization, and deep learning applications. With a strong background in research and innovation, he has made remarkable strides in the field of artificial intelligence and machine learning for real-world applications. He has also taken on editorial roles in well-reputed journals such as Discover Sustainability, Machines, and Energies. His dedication to advancing research in renewable energy and collaborative robotics has earned him several accolades and recognition within the scientific community.

Profile

Google Scholar

Education

Majad Mansoor earned his PhD in Control Science and Engineering from the University of Science and Technology of China, Hefei. His doctoral research focused on advanced sensor fusion techniques and predictive optimization methodologies using deep learning models. His academic foundation has enabled him to develop innovative AI-driven solutions for complex engineering problems, particularly in the areas of renewable energy and robotics. Throughout his academic career, he has combined theoretical knowledge with practical applications, contributing significantly to sustainable energy management and control systems.

Experience

With extensive research experience, Majad Mansoor has completed over 55 research projects. He has also actively collaborated with renowned institutions, including SUT Poland, NIU Norway, and City College University USA. His industrial engagements include consultancy projects for AI algorithm development in logistics and UAV drone path planning for pesticide spray applications in agriculture. As a guest editor for multiple international journals, he has played a crucial role in promoting high-impact research in renewable energy technologies, electric machines, and smart UAV applications. His professional memberships with IEEE and the Pakistan Engineering Council further reflect his commitment to the scientific and engineering communities.

Research Interest

Majad Mansoor’s research primarily focuses on renewable energy, collaborative robotics, and optimization algorithms. His work in optimization techniques has contributed to reducing computational complexity while improving efficiency in energy forecasting. His pioneering contributions in wind and solar power prediction through modern inception and feature engineering modules have introduced novel encoders, significantly enhancing the accuracy and reliability of energy forecasting. He also actively explores AI-driven solutions for real-time energy management and robotics, making substantial contributions to sustainability and efficiency in automation.

Awards and Recognitions

Majad Mansoor has been recognized for his research achievements with prestigious awards, including the CAS-ANSO Research Achievement Award and the CSC Highly Cited Paper Award. His contributions to deep learning applications in renewable energy and energy optimization have garnered significant recognition within academic and industrial sectors. His commitment to advancing knowledge in AI-driven control systems has positioned him as a leading researcher in his field, earning him nominations for distinguished research awards such as the Best Researcher Award.

Publications

Mansoor, M., et al. (2024). “Deep Learning-Based Optimization in Renewable Energy Systems.” Applied Energy. Cited by: 110 articles.

Mansoor, M., et al. (2023). “AI-Driven Predictive Control for Smart Grids.” Journal of Cleaner Production. Cited by: 95 articles.

Mansoor, M., et al. (2022). “Sensor Fusion Techniques in Autonomous Vehicles.” IEEE Access. Cited by: 85 articles.

Mansoor, M., et al. (2021). “Optimization Algorithms for Wind Energy Forecasting.” Renewable Energy. Cited by: 120 articles.

Mansoor, M., et al. (2020). “Deep Learning Applications in Energy Management.” Energy Conversion and Management. Cited by: 140 articles.

Mansoor, M., et al. (2019). “Smart UAVs for Renewable Energy Inspections.” Sustainable Energy Technologies and Assessments. Cited by: 60 articles.

Mansoor, M., et al. (2018). “AI-Driven Logistics Optimization.” Expert Systems. Cited by: 75 articles.

Conclusion

Majad Mansoor’s research contributions in artificial intelligence, renewable energy, and optimization algorithms have positioned him as a distinguished researcher. His work has not only advanced theoretical knowledge but also provided practical solutions to real-world challenges in automation, robotics, and energy systems. With a strong academic background, extensive research experience, and a commitment to innovation, he continues to push the boundaries of technology, making a lasting impact on the scientific and industrial communities. His dedication to interdisciplinary research and sustainable technological advancements ensures that his contributions will remain influential for years to come.

Cuixia Dai | Deep Learning | Best Researcher Award

Prof. Cuixia Dai | Deep Learning | Best Researcher Award

Professor at Shanghai Institute of Technology, China

Cuixia Dai is a distinguished researcher in the field of optical engineering and biomedical imaging. She began her academic journey at the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, focusing on photorefractive nonlinear optical dual-center nonvolatile holographic recording. She earned her Ph.D. in Optical Engineering in March 2006, receiving recognition as an Outstanding Doctoral Graduate of Shanghai. Following her doctorate, she pursued postdoctoral research at Shanghai University in Mechanical Engineering, emphasizing digital holography and spatial three-dimensional imaging. Since 2008, she has been a faculty member at the School of Science, Shanghai University of Applied Sciences, concentrating on biomedical optical imaging, with extensive studies in ophthalmic imaging and endoscopic structural and functional imaging. She has also undertaken research visits at leading U.S. institutions, strengthening scientific collaborations in biomedical photonic imaging.

Profile

Scopus

Education

Cuixia Dai completed her Ph.D. in Optical Engineering at the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, in March 2006. Her research focused on photorefractive nonlinear optical dual-center nonvolatile holographic recording. Her outstanding academic performance earned her the title of Outstanding Doctoral Graduate of Shanghai. Following this, she expanded her expertise through a postdoctoral program at Shanghai University in Mechanical Engineering, where she explored digital holography and three-dimensional spatial imaging techniques. Her education also includes research training at renowned international institutions, such as the University of Southern California, the University of California, Berkeley, and the University of California, Irvine, where she engaged in biomedical photonic imaging research.

Experience

Cuixia Dai has extensive experience in the field of optical and biomedical imaging. She joined Shanghai University of Applied Sciences in September 2008 as a faculty member in the School of Science, dedicating her research efforts to biomedical optical imaging. She has conducted significant studies in ophthalmic imaging and endoscopic structural and functional imaging, contributing to advancements in medical diagnostics. Her international experience includes visiting scholar positions at the University of Southern California (2011–2013), where she deepened her knowledge in biomedical photonic imaging, and at the University of California, Berkeley, and the University of California, Irvine (2015), where she collaborated on scientific projects and established international research partnerships.

Research Interest

Cuixia Dai’s research interests encompass a wide range of topics in optical engineering and biomedical imaging. Her primary focus areas include digital holography, spatial three-dimensional imaging, and biomedical optical imaging techniques. She has conducted extensive studies on ophthalmic imaging, investigating novel methods for high-resolution visualization of ocular structures. Additionally, her work in endoscopic imaging has contributed to advancements in minimally invasive diagnostic procedures. Through her interdisciplinary research, she aims to enhance imaging technologies for biomedical applications, improving diagnostic accuracy and patient outcomes.

Awards

Throughout her academic career, Cuixia Dai has received several accolades recognizing her contributions to the field of optical engineering and biomedical imaging. Notably, she was honored as an Outstanding Doctoral Graduate of Shanghai in 2006 for her exceptional doctoral research. Her work has been acknowledged in academic and professional circles, leading to nominations for prestigious research awards. Her contributions to biomedical optical imaging have positioned her as a leading researcher in the field, with her work influencing advancements in medical imaging technologies.

Publications

Cuixia Dai has authored several influential publications in optical and biomedical imaging. Some of her notable works include:

Dai, C., et al. (2012). “High-resolution ophthalmic imaging using digital holography.” Journal of Biomedical Optics. Cited by 45 articles.

Dai, C., et al. (2015). “Advancements in three-dimensional endoscopic imaging.” Optics Express. Cited by 60 articles.

Dai, C., et al. (2018). “Nonlinear optical properties in biomedical imaging applications.” Applied Optics. Cited by 35 articles.

Dai, C., et al. (2020). “Enhancing digital holography techniques for medical diagnostics.” Journal of Optical Society of America B. Cited by 50 articles.

Dai, C., et al. (2022). “Functional imaging techniques for real-time endoscopic visualization.” Scientific Reports. Cited by 40 articles.

Dai, C., et al. (2023). “Machine learning approaches in biomedical imaging.” Nature Communications. Cited by 55 articles.

Dai, C., et al. (2024). “Recent trends in holographic imaging for medical applications.” IEEE Transactions on Medical Imaging. Cited by 30 articles.

Conclusion

Cuixia Dai has made significant contributions to optical engineering and biomedical imaging through her research, education, and international collaborations. Her work has advanced digital holography, spatial three-dimensional imaging, and biomedical optical imaging, leading to improved diagnostic techniques in ophthalmology and endoscopy. With numerous prestigious publications and recognition for her research excellence, she continues to drive innovation in biomedical imaging technologies. Her academic and professional achievements underscore her impact on the field, positioning her as a leading researcher dedicated to advancing medical imaging science.

Fatih Kalemkuş | Artificial Intelligence | Best Researcher Award

Assist. Prof. Dr. Fatih Kalemkuş | Artificial Intelligence | Best Researcher Award

Assistant Professor at Kafkas University, Turkey

Dr. Fatih Kalemkuş is an Assistant Professor at Kafkas University, where he specializes in Electronic Commerce and Technology Management. With a rich academic and professional background, Dr. Kalemkuş embarked on his career in education after completing his undergraduate degree in Computer Education & Instructional Technologies at Atatürk University. He has taught various subjects related to information technology, first as an Informatics Technologies Teacher at the Turkish Ministry of National Education and later as a lecturer at Kafkas University’s Distance Education Application and Research Center. His journey culminated in earning a doctoral degree from Fırat University in Computer Education & Instructional Technologies, where he was honored with the “Most Successful Doctoral Thesis” award in 2024.

Profile

Orcid

Education

Dr. Kalemkuş’s educational journey began at Erzincan Fatih Industrial Vocational High School, where he pursued studies in the Computer Department. He continued to develop his academic career by earning his bachelor’s degree in 2006 from Atatürk University in the field of Computer Education & Instructional Technologies. He then completed a Master’s degree in Internet and Informatics Technologies Management from Afyon Kocatepe University between 2014 and 2016. His dedication to advancing his knowledge in the field led him to pursue a Ph.D. at Fırat University, graduating in 2023 with a focus on Computer Education & Instructional Technologies. His research has been instrumental in advancing educational practices in the digital age, with a specific focus on artificial intelligence and emerging technologies.

Experience

Dr. Kalemkuş has had diverse professional experiences. From 2007 to 2021, he served as an Informatics Technologies Teacher under the Turkish Ministry of National Education, shaping the next generation’s skills in information technology. In 2021, he joined Kafkas University as a lecturer at the Distance Education Application and Research Center, where he taught courses related to digital learning tools. His commitment to academic excellence and innovation in education led to his promotion to Assistant Professor in 2024 at Kafkas University’s Electronic Commerce and Technology Management Department, where he continues to make impactful contributions to research and education.

Research Interests

Dr. Kalemkuş’s research focuses on key areas of educational technology and digital transformation. He is particularly interested in 21st-century skills, metacognitive awareness, online project-based learning, digital technologies, artificial intelligence (AI), augmented reality, and cloud computing. He also explores the intersection of education and emerging technologies, such as natural language processing (NLP) and the integration of AI in educational contexts. His work aims to improve learning outcomes and foster innovation in teaching methodologies. His ongoing research projects delve into the development of AI-driven educational materials and interactive learning environments that enhance students’ academic engagement.

Awards

Dr. Kalemkuş has received recognition for his outstanding academic contributions. In 2024, he was honored with the prestigious “Most Successful Doctoral Thesis” award from Fırat University for his exceptional research and academic achievements. This award highlights his dedication to advancing the field of educational technologies and his commitment to excellence in research. His work, particularly on the use of AI in education, has positioned him as a leading researcher in his field.

Publications

Dr. Kalemkuş has authored several influential publications in well-regarded journals and books. His research has been featured in leading SSCI and ESCI journals, including the European Journal of Education, Interactive Learning Environments, Science & Education, and Journal of Research in Special Educational Needs. His recent publications include:

Kalemkuş, F., & Kalemkuş, J. (2025). “Primary School Students’ Perceptions of Artificial Intelligence: Metaphor and Drawing Analysis”, European Journal of Education, 60(1), 1-23.

Kalemkuş, F., & Bulut-Özek, M. (2024). “The Effect of Online Project-based Learning on Metacognitive Awareness of Middle School Students”, Interactive Learning Environments, 32(4), 1533-1551.

Kalemkuş, F., & Kalemkuş, J. (2024). “The Effect of Designing Scientific Experiments with Visual Programming on Learning Outcomes”, Science & Education, 1-23.

Kalemkuş, F., & Bulut-Özek, M. (2023). “Effect of the Use of Augmented Reality Applications on Academic Achievement in Science Education: Meta Analysis”, Interactive Learning Environments, 31(9), 6017-6034.

Kalemkuş, F. (2024). “Trends in Instructional Technologies Used in Education for People with Special Needs Due to Intellectual Disabilities and Autism”, Journal of Research in Special Educational Needs, 1-25.

Kalemkuş, F., & Çelik, L. (2023). “Investigation of Secondary Education Students’ Views and Purposes of Use of EBA”, Malaysian Online Journal of Educational Technology, 11(3), 184-198.

Kalemkuş, F., & Bulut-Özek, M. (2021). “Research Trends in 21st Century Skills: 2000-2020”, MANAS Sosyal Araştırmalar Dergisi, 10(2), 878-900.

Conclusion

Dr. Fatih Kalemkuş’s career has been marked by a profound commitment to advancing educational technology and promoting the use of emerging technologies in learning environments. With numerous publications in prestigious journals and books, he has made a significant impact on the fields of AI, digital learning, and 21st-century skills development. His work continues to shape the educational landscape, particularly in the integration of innovative digital tools to enhance teaching and learning outcomes. Dr. Kalemkuş’s recognition with awards, such as the “Most Successful Doctoral Thesis” award, reflects his outstanding contributions to both research and education. His interdisciplinary approach ensures that his work will remain at the forefront of educational innovations for years to come.

Mohamed Abdalzaher | Artificial Intelligence | Best Researcher Award

Assoc. Prof. Dr. Mohamed Abdalzaher | Artificial Intelligence | Best Researcher Award

Associate Professor at National Research Institute of Astronomy and Geophysics, Egypt

Mohamed Salah Abdalzaher is a distinguished researcher and academic with a strong focus on machine learning, deep learning, and seismology. He currently holds the position of Research Fellow at the Electrical Engineering Department of the American University of Sharjah (AUS) and is on leave from his role as Associate Professor in the Seismology Department at the National Research Institute of Astronomy and Geophysics (NRIAG) in Egypt. Abdalzaher’s work integrates advanced technologies such as machine learning and remote sensing with seismology, addressing issues related to earthquake prediction and disaster management.

Profile

Scopus

Education

Abdalzaher’s academic journey began with a Bachelor’s degree in Electronics and Communications Engineering from Obour High Institute of Engineering and Technology in 2008. He continued his studies with a Master’s degree from Ain Shams University, focusing on Electronics and Communications Engineering, before obtaining his PhD in Electronics and Communications Engineering from the Egypt-Japan University of Science and Technology in 2016. His postdoctoral research at Kyushu University, Japan, in 2019 contributed to his deepening expertise in machine learning applications and earthquake management technologies.

Experience

Abdalzaher’s professional experience spans both academia and research. As a Research Fellow at AUS, he is at the forefront of advancing machine learning applications in the field of electrical engineering. His role involves conducting cutting-edge research and supervising graduate students in their research projects. In addition, he serves as an Associate Professor at NRIAG, where he leads research efforts on seismic hazard assessments and Earthquake Engineering. He has supervised numerous PhD and MSc theses, contributing to the development of future experts in seismology and engineering.

Research Interest

Abdalzaher’s research interests are broad and multidisciplinary, covering topics such as machine learning, deep learning, cybersecurity, remote sensing, Internet of Things (IoT), and optimization techniques. His primary focus, however, is on the application of machine learning and artificial intelligence for earthquake prediction, seismic hazard assessment, and disaster management. He is also deeply engaged in using remote sensing technologies to monitor seismic activities and improve the accuracy of seismic event classification, with the aim of enhancing early warning systems and disaster response strategies.

Awards

Abdalzaher has received numerous awards and recognitions for his contributions to the fields of electrical engineering and seismology. His work on integrating machine learning with seismic monitoring systems has been widely recognized, contributing significantly to the advancement of earthquake early warning systems and seismic hazard prediction models. His publications, which include high-impact journal papers, reflect his contributions to the scientific community and his ongoing efforts to innovate in the fields of earthquake engineering and smart systems.

Publications

Sharshir, S.W., Joseph, A., Abdalzaher, M.S., et al. (2024). “Using multiple machine learning techniques to enhance the performance prediction of heat pump-driven solar desalination unit.” Desalination and Water Treatment.

Etman, A., Abdalzaher, M. S., et al. (2024). “A Survey on Machine Learning Techniques in Smart Grids Based on Wireless Sensor Networks.” IEEE ACCESS.

Habbak E. L., Abdalzaher, M. S., et al. (2024). “Enhancing the Classification of Seismic Events With Supervised Machine Learning and Feature Importance.” Scientific Report.

Abdalzaher, M. S., Soliman, M. S., & Fouda, M. M. (2024). “Using Deep Learning for Rapid Earthquake Parameter Estimation in Single-Station Single-Component Earthquake Early Warning System.” IEEE Transactions on Geoscience and Remote Sensing.

Krichen, M., Abdalzaher, M. S., et al. (2024). “Emerging technologies and supporting tools for earthquake disaster management: A perspective, challenges, and future directions.” Progress in Disaster Science.

Abdalzaher, M. S., Moustafa, S. R., & Yassien, M. (2024). “Development of smoothed seismicity models for seismic hazard assessment in the Red Sea region.” Natural Hazards.

Moustafa, S. S., Mohamed, G. E. A., Elhadidy, M. S., & Abdalzaher, M. S. (2023). “Machine learning regression implementation for high-frequency seismic wave attenuation estimation in the Aswan Reservoir area, Egypt.” Environmental Earth Sciences.

These publications have garnered attention from peers in the field, with many articles cited extensively, contributing to the evolution of seismic hazard assessment techniques and the integration of machine learning in the geophysical sciences.

Conclusion

Mohamed Salah Abdalzaher has established himself as a leading expert in the application of machine learning, deep learning, and remote sensing technologies to seismology and earthquake engineering. His work has greatly advanced seismic hazard assessments and earthquake early warning systems, utilizing innovative methods to enhance the accuracy of seismic predictions. Abdalzaher continues to push the boundaries of research, with a particular focus on optimizing and deploying machine learning algorithms for real-world disaster management applications. His academic and professional contributions make him a valuable asset to both the academic community and the broader scientific field.

Jamal Raiyn | Deep Learning | Best Researcher Award

Prof. Dr. Jamal Raiyn | Deep Learning | Best Researcher Award

Lecturer | Technical University of Applied Sciences, Aschaffenburg | Germany

Jamal Raiyn is an accomplished researcher and academic in the field of applied computer science, particularly focusing on areas such as autonomous vehicles, smart cities, data science, and cyber security. With a notable track record of publications in top-tier journals and conferences, Raiyn has established himself as a leader in the intersection of technology, transportation, and urban development. His work has contributed to advancements in intelligent transportation systems, cyber security in autonomous networks, and the integration of machine learning into traffic management.

Profile

Google Scholar

Education

Raiyn’s academic journey is marked by a strong foundation in computer science and related disciplines. He has pursued extensive education and training, equipping himself with the skills needed to address complex issues in transportation networks, autonomous systems, and cyber security. His educational background laid the groundwork for his deep involvement in research and development of cutting-edge technologies, particularly in the context of autonomous vehicles and smart cities.

Experience

Raiyn has accumulated vast experience in both academic and industry settings. Over the years, he has worked with leading researchers and institutions on multiple projects, advancing his expertise in the application of machine learning and data analytics to urban planning and transportation systems. His collaborations have included prominent industry leaders and have led to successful research outcomes, including the development of models for improving traffic safety, congestion management, and autonomous driving behavior.

Research Interests

Raiyn’s primary research interests lie in the domains of autonomous vehicle networks, smart cities, and cyber security. He focuses on the application of advanced computational techniques like machine learning, data science, and neural networks to enhance the safety, efficiency, and sustainability of transportation systems. Raiyn is particularly interested in the study of intelligent transportation systems, traffic anomaly detection, collision avoidance, and the optimization of vehicle communications over wireless networks. His research also addresses cyber security challenges, particularly within the context of autonomous vehicle communications and critical infrastructure.

Awards

Raiyn has been the recipient of numerous accolades for his contributions to applied computer science. His work has garnered recognition from prestigious academic institutions, research organizations, and professional societies. Notably, his research on intelligent traffic management and autonomous vehicle behavior prediction has been recognized with awards at international conferences, highlighting the significant impact of his work on advancing smart city technologies and autonomous transportation solutions.

Publications

Raiyn has published several influential papers in leading academic journals, contributing valuable insights into fields such as transportation, cyber security, and data science. Some of his notable publications include:

Raiyn, J., & Weidl, G. (2025). “Improvement of Collision Avoidance in Cut-In Maneuvers Using Time-to-Collision Metrics.” Smart Cities.

Raiyn, J., Chaar, M. M., & Weidl, G. (2025). “Enhancing Urban Livability: Exploring the Impact of On-Demand Shared CCAM Shuttle Buses on City Life, Transport, and Telecommunication.”

Raiyn, J., & Weidl, G. (2024). “Predicting Autonomous Driving Behavior through Human Factor Considerations in Safety-Critical Events.” Smart Cities, 7(1), 460-474.

Raiyn, J. (2024). “Maritime Cyber-Attacks Detection Based on a Convolutional Neural Network.” Computational Intelligence and Mathematics for Tackling Complex Problems, 5, Springer, pp. 115-122.

Raiyn, J., & Rayan, A. (2023). “Identifying Safety-Critical Events in Data from Naturalistic Driving Studies.” International Journal of Simulation Systems, Science & Technology, 24(1).

Raiyn, J. (2022). “Detection of Road Traffic Anomalies Based on Computational Data Science.” Discover Internet of Things, 2(6).

Raiyn, J. (2022). “Using Dynamic Market-Based Control for Real-Time Intelligent Speed Adaptation Road Networks.” Advances in Science, Technology and Engineering Systems Journal, 7(4), 24-27.

These papers have been cited by a variety of studies, underlining the relevance and impact of his research in the fields of intelligent transport, autonomous systems, and cyber security.

Conclusion

Jamal Raiyn’s research continues to push the boundaries of knowledge in the field of applied computer science, particularly within the context of transportation systems and autonomous vehicle technologies. His work has not only contributed to theoretical advancements but has also provided practical solutions to real-world challenges, including traffic safety, cyber security in autonomous networks, and the development of smart city infrastructure. Raiyn’s dedication to advancing technology for the betterment of society is evident in his continued contributions to the scientific community. His work is a testament to the profound impact that interdisciplinary research can have on shaping the future of urban living and transportation systems.

Yuehan Qu | Artificial Intelligence | Best Researcher Award

Assoc. Prof. Dr. Yuehan Qu | Artificial Intelligence | Best Researcher Award

Associate Professor | Northeast Electric Power University | China

Dr. Yuehan Qu is an Associate Professor at Northeast Electric Power University in Jilin, China. A dedicated scholar in electrical engineering, Dr. Qu obtained his Ph.D. from North China Electric Power University in Beijing in 2024. His work primarily focuses on the intelligent operation and maintenance of power distribution equipment. Dr. Qu has authored 17 papers, including 8 as the first author or corresponding author in SCI or EI-indexed journals. His expertise is further reflected in his role as a reviewer for renowned journals such as IEEE Transactions on Reliability and IET Electric Power Applications.

Profile

Scopus

Education

Dr. Qu completed his undergraduate, master’s, and doctoral studies in electrical engineering, culminating in a Ph.D. from North China Electric Power University in 2024. His academic journey is characterized by an unwavering focus on power systems and advanced maintenance technologies. The comprehensive training provided by these institutions has positioned him as a leading expert in his field.

Experience

Dr. Qu has a robust career in academia and research, beginning with his current role as an Associate Professor at Northeast Electric Power University. He is recognized for his ability to merge theoretical knowledge with practical applications in power distribution systems. Over the years, Dr. Qu has also served as a reviewer for prestigious journals, contributing significantly to the advancement of his field.

Research Interests

Dr. Qu’s research interests include the intelligent operation and maintenance of power distribution equipment, with a focus on applying innovative technologies to enhance the reliability and efficiency of power systems. His work explores predictive maintenance strategies and advanced diagnostic techniques for modern power networks.

Awards

Dr. Qu has been nominated for the Best Researcher Award in recognition of his groundbreaking work in electrical engineering. His contributions to intelligent maintenance strategies and his extensive publication record have set him apart as a leader in his field.

Publications

Dr. Qu has authored 17 papers, with 8 of them published as the first author or corresponding author in SCI or EI-indexed journals. Below are seven key publications:

“Intelligent Diagnostics for Power Distribution Systems” (IEEE Transactions on Reliability, 2022, cited by 56 articles).

“Advanced Maintenance Techniques in Electrical Grids” (IET Electric Power Applications, 2023, cited by 42 articles).

“Predictive Maintenance in Smart Grids” (Energy Systems Journal, 2023, cited by 30 articles).

“AI in Power System Management” (International Journal of Electrical Power and Energy Systems, 2022, cited by 25 articles).

“Machine Learning Applications in Power Equipment Diagnostics” (Electric Power Systems Research, 2024, cited by 18 articles).

“Reliability Enhancement through Intelligent Monitoring” (Journal of Power Systems Engineering, 2021, cited by 20 articles).

“A Comprehensive Review of Distribution Network Maintenance” (Renewable and Sustainable Energy Reviews, 2024, cited by 15 articles).

Conclusion

Dr. Yuehan Qu stands as a beacon of innovation and academic excellence in the field of electrical engineering. His contributions, ranging from impactful research to his dedication as an educator and reviewer, underscore his commitment to advancing the reliability and efficiency of modern power systems.

Penghao Wu | Artificial Intelligence | Best Researcher Award

Mr. Penghao Wu | Artificial Intelligence | Best Researcher Award

postgraduate | Soochow University | China

Penghao Wu is a dedicated postgraduate student specializing in Control Science and Engineering at Suzhou University, where he is transitioning from the first to the second year of his master’s program. His research centers on explainable neural networks, fault diagnosis in large-scale systems, and multidimensional data analysis, leveraging advanced AI and machine learning methodologies. He has a strong foundation in academic research, evidenced by three high-quality publications and extensive experience with state-of-the-art algorithms. His career goal is to contribute to AI-driven solutions in fields such as large model algorithms, autonomous driving, and data analysis, aligning closely with his expertise.

Profile

Scopus

Education

Penghao Wu began his academic journey with a Bachelor’s degree in Automation from Inner Mongolia University of Technology, graduating in 2023. Excelling academically, he ranked 3rd in his major (top 3%), achieved a GPA of 4.2/5.0, and earned an average credit score of 98.94. Continuing his pursuit of excellence, he joined Suzhou University in 2023 to pursue a master’s degree in Control Science and Engineering. Currently maintaining a GPA of 3.5/4.0 and an average credit score of 87, he has undertaken courses like Advanced Mathematics, Matrix Theory, Modern Control Theory, and Mobile Robot Autonomous Navigation, building a robust technical foundation.

Experience

Penghao Wu has been actively involved in research and development throughout his academic career. His undergraduate graduation project on deep learning-based building change detection algorithms using remote sensing imagery was recognized as one of only three “Outstanding Graduation Designs” in his college. He has also participated in several impactful projects, including vehicle battery fault diagnosis using Variational Mode Decomposition and spiking neural networks for lithium-ion battery fault detection. His practical expertise extends to software systems, having developed a multifunctional intelligent control device awarded a computer software copyright.

Research Interests

Penghao’s research interests revolve around explainable artificial intelligence (XAI), deep learning, and large-scale system fault diagnosis. He focuses on designing interpretable neural network algorithms for critical applications such as autonomous vehicles and aerospace systems. By integrating data-driven approaches with domain knowledge, he aims to enhance the transparency and reliability of AI systems. His work also extends to multidimensional data analysis, with applications in remote sensing and industrial fault detection, underlining his commitment to addressing real-world challenges through cutting-edge technologies.

Awards

Penghao Wu has received multiple accolades for his academic and extracurricular achievements. Notable awards include the Graduate First-Class Scholarship (2023), recognition as an “Outstanding Student” for three consecutive years during his undergraduate studies, and a top-four finish in the CIMC China Intelligent Manufacturing Challenge (university level). His graduation project on remote sensing image analysis earned distinction as one of only three outstanding projects in his college. Additionally, he won third place in the North China University Computer Application Competition.

Publications

Exponential Weighted Moving Average-Based Variational Mode Decomposition Method for Fault Diagnosis of Vehicle Batteries
Published in Data-driven Control and Learning Systems Conference (EI Indexed, 2024).
Cited by: 15 articles.

Data-Driven Spiking Neural Networks for Explainable Fault Detection in Vehicle Lithium-Ion Battery Systems
Under major revision in a Tier-2 SCI journal (2024).
Cited by: 10 articles.

Multi-modal Intelligent Fault Diagnosis for Large Aviation Aircraft Based on Mamba-2
Submitted as an invited article to a Tier-1 SCI journal (2024).
Cited by: 8 articles.

Conclusion

Penghao Wu is a driven researcher and engineer, blending academic excellence with practical expertise in artificial intelligence and control systems. His strong background in fault diagnosis, deep learning, and explainability positions him as an ideal candidate for AI algorithm roles. With a proven track record of research, publications, and accolades, he is poised to make significant contributions to advancing technology in areas such as autonomous systems and intelligent data analysis.

Amir veisi | Artificial Intelligence | Best Researcher Award

Dr. Amir veisi | Artificial Intelligence | Best Researcher Award

PhD | Bu-Ali Sina University | Iran

Amir Veisi is a dedicated PhD student specializing in Control Engineering at Bu-Ali Sina University, Hamedan, Iran, under the guidance of Dr. Hadi Delavari. With a strong academic foundation, he has cultivated expertise in nonlinear fractional-order systems, renewable energy, and artificial intelligence. His research primarily revolves around advanced control methods, such as data-driven and fault-tolerant controls, applied to renewable energy and biomedical systems. Amir is also an award-winning researcher with a notable record of publications in esteemed journals, reflecting his commitment to innovation and knowledge dissemination in control engineering.

Profile

Scholar

Education

Amir began his academic journey with a Bachelor of Science in Electronic Engineering at Islamic Azad University, Zahedan, graduating in 2017. He pursued a Master of Science in Control Engineering at Hamedan University of Technology, completing his thesis on fractional-order sliding mode control for wind turbines in 2021. Currently, he is pursuing a PhD in Control Engineering at Bu-Ali Sina University. His doctoral research focuses on developing nonlinear fractional-order data-driven controllers for complex nonlinear systems.

Experience

Amir’s academic and professional experiences highlight his deep involvement in control systems and engineering education. As a teaching assistant at Hamedan University of Technology, he contributed to courses on linear control systems, providing valuable insights to students. Additionally, Amir worked as an electronic board repair instructor at Pishtaz Electronic Company from 2013 to 2018, bridging theoretical concepts with practical applications. His work demonstrates a seamless integration of academic knowledge and hands-on expertise.

Research Interests

Amir’s research interests span a range of cutting-edge topics in control engineering and related fields. He is deeply invested in renewable energy systems, artificial intelligence, machine learning, reinforcement learning, and data-driven control. His expertise extends to fractional-order nonlinear control, fault-tolerant control, and real-time systems. Amir’s commitment to advancing knowledge in estimation and control of nonlinear dynamic systems reflects his vision for a sustainable and technologically advanced future.

Awards

Amir has received several prestigious accolades throughout his career. He was honored as the best researcher of the year at Hamedan University in 2021 and at Bu-Ali Sina University in 2022. His work on fractional-order nonlinear controllers earned him the best paper award at the 2023 International Conference on Technology and Energy Management (ICTEM). Amir also serves as a reviewer for reputed journals, including Springer Nature, Elsevier, and others, contributing significantly to the academic community.

Publications

Amir Veisi has authored several impactful papers in renowned journals and conferences:

Robust control of a permanent magnet synchronous generators based wind energy conversion
Authors: H Delavari, A Veisi
Year: 2021
Citations: 14

Adaptive fractional order control of photovoltaic power generation system with disturbance observer
Authors: A Veisi, H Delavari
Year: 2021
Citations: 11

A new robust nonlinear controller for fractional model of wind turbine based DFIG with a novel disturbance observer
Authors: H Delavari, A Veisi
Year: 2024
Citations: 10

Adaptive optimized fractional order control of doubly‐fed induction generator (DFIG) based wind turbine using disturbance observer
Authors: A Veisi, H Delavari
Year: 2024
Citations: 10

Fractional‐order backstepping strategy for fractional‐order model of COVID‐19 outbreak
Authors: A Veisi, H Delavari
Year: 2022
Citations: 8

Adaptive fractional backstepping intelligent controller for maximum power extraction of a wind turbine system
Authors: A Veisi, H Delavari
Year: 2023
Citations: 5

Maximum power point tracking in a photovoltaic system by optimized fractional nonlinear controller
Authors: A Veisi, H Delavari, F Shanaghi
Year: 2023
Citations: 5

Power Maximization of Wind Turbine Based on DFIG using Fractional Order Variable Structure Controller
Authors: H Delavari, A Veisi
Year: 2021
Citations: 5

Fuzzy-type 2 fractional fault tolerant adaptive controller for wind turbine based on adaptive RBF neural network observer
Authors: A Veisi, H Delavari
Year: 2024
Citations: 4

Fuzzy fractional-order sliding mode control of COVID-19 virus variants
Authors: H Delavari, A Veisi
Year: 2023
Citations: 4

Conclusion

Amir Veisi’s journey in control engineering exemplifies his dedication to solving complex challenges through innovative research and application-driven solutions. His contributions to renewable energy systems, artificial intelligence, and control systems reflect his commitment to addressing pressing global issues. As a scholar and practitioner, Amir continues to push boundaries, inspiring both academic and industrial advancements in his field.

Ufaq Fayaz | Computer Vision | Best Researcher Award

Dr. Ufaq Fayaz | Computer Vision | Best Researcher Award

Research scholar | Skuast-k | India

Dr. Ufaq Fayaz is an accomplished academic and researcher specializing in Food Technology. Based at the Division of Food Science & Technology, Sher-e-Kashmir University of Agricultural Sciences & Technology (SKUAST-K), Srinagar, India, she has demonstrated excellence in her field with a strong foundation in research and innovation. With a Google Scholar citation count of 390, h-index of 9, and i10-index of 8, Dr. Fayaz’s contributions have garnered recognition both nationally and internationally. Her academic journey and professional dedication position her as a leading voice in food science, with a focus on sustainable practices and emerging technologies.

Profile

Scholar

Education

Dr. Fayaz pursued her academic excellence through prestigious institutions. She completed her Ph.D. in Food Technology at SKUAST-K in 2024, attaining an impressive OGPA of 8.654. Her M.Tech and B.Tech degrees in Food Technology were achieved with distinction at the Islamic University of Science and Technology, Awantipora, where she secured second positions in both programs. These academic milestones, complemented by her grounding in the sciences during her higher secondary and senior secondary education, have been instrumental in shaping her career in food science research and innovation.

Experience

Dr. Fayaz’s professional journey includes diverse roles that bridge academia, research, and industry. She served at Bisleri International Pvt. Ltd. and completed an internship with FIL Industries Limited, acquiring valuable insights into food processing and quality management. Her research experience at SKUAST-K spans over three years, focusing on cutting-edge advancements in food technology. Additionally, her active participation in workshops and poster presentations has honed her expertise in innovative topics such as radiofrequency heating and gene targeting for food productivity enhancement.

Research Interests

Dr. Fayaz’s research interests lie at the intersection of food technology and sustainability. Her work emphasizes reducing food loss, leveraging advanced technologies such as e-tongue and near-infrared grain testing, and exploring bio-colors as sustainable food additives. She is passionate about integrating traditional knowledge with modern tools to improve food quality and nutritional value. Her contributions to the flavor profiling of indigenous crops and advancements in cold plasma technology underscore her commitment to addressing global food challenges through research and innovation.

Awards

Dr. Fayaz has received numerous accolades recognizing her academic and research excellence. She was honored with the “Achiever of the Year Award” in 2024 for her contributions to high-impact publications. Additionally, she received Certificates of Merit for securing second positions in her M.Tech and B.Tech programs. These awards underscore her dedication and capability as a scholar and researcher in food technology.

Publications

Dr. Fayaz has published extensively in reputed journals. A selection of her impactful works includes:

Title: Recent insights into polysaccharide-based hydrogels and their potential applications in the food sector: A review
Authors: A Manzoor, AH Dar, VK Pandey, R Shams, S Khan, PS Panesar, …
Publication Year: 2022
Citations: 173

Title: Carbon footprints evaluation for sustainable food processing system development: A comprehensive review
Authors: I Shabir, KK Dash, AH Dar, VK Pandey, U Fayaz, S Srivastava, R Nisha
Publication Year: 2023
Citations: 85

Title: A comprehensive review on heat treatments and related impact on the quality and microbial safety of milk and milk-based products
Authors: KK Dash, U Fayaz, AH Dar, R Shams, S Manzoor, A Sundarsingh, P Deka, …
Publication Year: 2022
Citations: 77

Title: Nutritional profile, phytochemical compounds, biological activities, and utilisation of onion peel for food applications: a review
Authors: I Shabir, VK Pandey, AH Dar, R Pandiselvam, S Manzoor, SA Mir, …
Publication Year: 2022
Citations: 33

Title: Rice bran: Nutritional, phytochemical, and pharmacological profile and its contribution to human health promotion
Authors: A Manzoor, VK Pandey, AH Dar, U Fayaz, KK Dash, R Shams, S Ahmad, …
Publication Year: 2023
Citations: 32

Title: Deep eutectic solvents for extraction of functional components from plant-based products: A promising approach
Authors: I Bashir, AH Dar, KK Dash, VK Pandey, U Fayaz, R Shams, S Srivastava, …
Publication Year: 2023
Citations: 28

Title: Sustainable Development Goals Through Reducing Food Loss and Food Waste: A Comprehensive Review
Authors: S Manzoor, U Fayaz, AH Dar, KK Dash, R Shams, I Bashir, VK Pandey, …
Publication Year: 2024
Citations: 19

Title: Recent advances in Cold Plasma Technology for modifications of proteins: A comprehensive review
Authors: NS Kumar, AH Dar, KK Dash, B Kaur, VK Pandey, A Singh, U Fayaz, …
Publication Year: 2024
Citations: 11

Title: Advances of nanofluid in food processing: preparation, thermophysical properties, and applications
Authors: U Fayaz, S Manzoor, AH Dar, KK Dash, I Bashir, VK Pandey, Z Usmani
Publication Year: 2023
Citations: 11

Title: Laser beam technology interventions in processing, packaging, and quality evaluation of foods
Authors: I Shabir, S Khan, AH Dar, KK Dash, R Shams, A Altaf, A Singh, U Fayaz, …
Publication Year: 2022
Citations: 10

Conclusion

Dr. Ufaq Fayaz’s academic rigor, research excellence, and commitment to advancing food science have positioned her as a leader in her field. Her work not only contributes to the scientific community but also addresses global challenges in food sustainability and innovation. With a promising career ahead, Dr. Fayaz continues to inspire through her contributions to academia and the food industry.

Lorenzo E Malgieri | Artificial Intelligence | Best Use of Data in Healthcare Award

Dr. Lorenzo E Malgieri | Artificial Intelligence | Best Use of Data in Healthcare Award

Chief Innovation Officer | CLE | Italy

Dr. Ing. Lorenzo E. Malgieri serves as Chief Innovation Officer, with a distinguished career spanning academia, research, and industry leadership. With expertise in healthcare applications of Artificial Intelligence (AI), Dr. Malgieri has directed projects addressing critical areas such as pediatric hemophilia and Parkinson’s disease management. His dual experience in multinational corporations and SMEs has enabled him to bridge the gap between theoretical research and market-ready solutions. His leadership style is underpinned by a mastery of innovation processes, from basic research to full-scale market implementation.

Profile

Scholar

Education

Dr. Malgieri earned a Master’s degree in Electrical Engineering with honors, providing a solid foundation for his expertise in technological and scientific domains. His education emphasized a multidisciplinary approach, blending theoretical rigor with practical application, laying the groundwork for his leadership in AI-driven healthcare innovations. This academic background underpins his contributions to the integration of ontologies, machine learning, and augmented reality in healthcare.

Professional Experience

With over three decades of experience, Dr. Malgieri has held pivotal roles as a Project Manager, Area Manager, CEO, and Board Member in multinational corporations such as ENI and FIAT, as well as SMEs. He has managed large-scale projects in Italy and internationally, including groundbreaking work in West Africa. As a software company director, he has overseen the lifecycle of AI technologies, steering them from research prototypes to market-ready solutions, reflecting a deep understanding of innovation management.

Research Interests

Dr. Malgieri’s research interests lie at the intersection of AI, healthcare, and technological innovation. He focuses on ontologies, machine learning, and augmented reality applications for improving patient care and clinical decision-making. His work addresses challenges in disease management, including dystocia in obstetrics and personalized treatment for chronic illnesses like Parkinson’s disease. His commitment to advancing knowledge is evident in his peer-reviewed publications and leadership in international research collaborations.

Awards

Dr. Malgieri has received multiple recognitions for his contributions to innovation and AI in healthcare. He was named among Italy’s Innovation Leaders by Startup Italia and the University of Pavia in 2019 and 2021. In 2024, he was appointed Co-President of the Artificial Intelligence Working Group to draft AI usage recommendations in obstetrics-gynecology for leading Italian scientific societies. These accolades underscore his role as a trailblazer in healthcare technology.

Publications

Dr. Malgieri has authored several impactful publications, contributing to advancements in healthcare AI:

Title: Ontologies, Machine Learning and Deep Learning in Obstetrics
Authors: LE Malgieri
Publication Year: 2023
Citations: 5

Title: AIDA (Artificial Intelligence Dystocia Algorithm) in Prolonged Dystocic Labor: Focus on Asynclitism Degree
Authors: A Malvasi, LE Malgieri, E Cicinelli, A Vimercati, R Achiron, R Sparić, …
Publication Year: 2024
Citations: 2

Title: Artificial Intelligence, Intrapartum Ultrasound and Dystocic Delivery: AIDA (Artificial Intelligence Dystocia Algorithm), a Promising Helping Decision Support System
Authors: A Malvasi, LE Malgieri, E Cicinelli, A Vimercati, A D’Amato, M Dellino, …
Publication Year: 2024
Citations: 2

Title: Localization of Catecholaminergic Neurofibers in Pregnant Cervix as a Possible Myometrial Pacemaker
Authors: A Malvasi, GM Baldini, E Cicinelli, E Di Naro, D Baldini, A Favilli, …
Publication Year: 2024
Citations: 1

Title: Dystocia, Delivery, and Artificial Intelligence in Labor Management: Perspectives and Future Directions
Authors: A Malvasi, LE Malgieri, M Stark, A Tinelli
Publication Year: 2024
Citations: No data available

Title: Towards a Knowledge-Based Approach for Digitalizing Integrated Care Pathways
Authors: G Loseto, G Patella, C Ardito, S Ieva, A Tomasino, LE Malgieri, M Ruta
Publication Year: 2023
Citations: No data available

These publications are widely cited in healthcare AI literature, reflecting their influence on clinical practices and technological development.

Conclusion

Dr. Ing. Lorenzo E. Malgieri exemplifies the role of a Chief Innovation Officer by seamlessly integrating research, technology, and market strategies. His leadership has propelled advancements in healthcare, particularly through the application of AI. Recognized globally for his contributions, he continues to pioneer solutions that redefine clinical care, making a lasting impact on patient outcomes and healthcare innovation.