Sabbir Ahmed Udoy | Artificial Intelligence | Best Researcher Award

Mr. Sabbir Ahmed Udoy | Artificial Intelligence | Best Researcher Award

Rajshahi University of Engineering & Technology, Bangladesh

Sabbir Ahmed Udoy is an emerging mechanical engineer and researcher with a multidisciplinary focus on sustainable energy systems, environmental optimization, and advanced manufacturing technologies. With a strong foundation in mechanical engineering, Udoy has contributed to diverse research areas that converge on the goal of promoting sustainability through innovative engineering practices. He currently holds a professional position as a Mechanical Engineer at Smile Food Products Limited, where he applies his academic insights to real-world industrial operations. Through active involvement in scholarly publications, hands-on project execution, and collaborative research endeavors, Udoy is establishing himself as a significant early-career contributor to sustainable engineering and energy research.

Profile

Google Scholar

Education

Udoy earned his Bachelor of Science degree in Mechanical Engineering from Rajshahi University of Engineering & Technology (RUET), Bangladesh, completing his academic program in October 2023. He graduated with a CGPA of 3.24 out of 4.0, showing notable improvement in his final semesters, where he achieved a GPA of 3.40 over the last 60 credits. Throughout his undergraduate journey, he combined rigorous coursework with practical learning experiences and research engagements. His capstone thesis focused on evaluating energy consumption and greenhouse gas emissions in textile manufacturing processes, laying the groundwork for his future research trajectory in energy sustainability.

Experience

Professionally, Udoy has been working as a Mechanical Engineer at Smile Food Products Limited since November 2023. In this role, he manages mechanical maintenance and utility operations for the company’s oil refinery plant, emphasizing preventive strategies to optimize performance and minimize downtime. Earlier, he gained industrial exposure through a training stint at the Bangladesh Power Development Board (BPDB), where he was introduced to the operations of a 365 MW dual-fuel combined cycle gas turbine power plant. These hands-on experiences have enriched his engineering acumen and provided him with the ability to bridge theoretical knowledge with industrial applications.

Research Interest

Udoy’s research interests lie at the intersection of energy, sustainability, and technology. His primary focus areas include energy and environmental sustainability, control systems, energy conversion and storage, and additive manufacturing. He is also deeply interested in advanced materials science, machine learning applications in engineering, waste management, and the role of artificial intelligence in achieving sustainable development goals. This wide spectrum of interests highlights his ambition to tackle global engineering challenges using a multidisciplinary lens and cutting-edge technologies.

Award

Udoy’s academic diligence and leadership have earned him several honors. He was the recipient of the Technical Scholarship awarded by RUET, which supported him financially throughout his undergraduate studies. Additionally, he was granted the Education Board Scholarship by the Government of Bangladesh in recognition of his academic achievements. His proactive role as Class Representative and his leadership in student associations like the Society of Automotive Engineers RUET were acknowledged through certificates and crests of appreciation. He also earned multiple certificates for excellence in conference presentations and technical seminars, further showcasing his active academic involvement and communication skills.

Publication

Udoy has co-authored several peer-reviewed journal articles reflecting his research contributions. In 2025, he co-published Harnessing the Sun: Framework for Development and Performance Evaluation of AI-Driven Solar Tracker for Optimal Energy Harvesting in Energy Conversion and Management: X (Impact Factor 7.1), focusing on AI-based solar optimization. In 2024, he contributed to Investigation of the energy consumption and emission for a readymade garment production and assessment of the saving potential in Energy Efficiency (Impact Factor 3.2), emphasizing sustainable apparel manufacturing. Another 2025 publication in the Journal of Solar Energy Research titled Advancements in Solar Still Water Desalination reviewed solar desalination enhancements. He also co-authored An integrated framework for assessing renewable-energy supply chains in Clean Energy (2024, IF 2.9), and Structural analysis and material selection for biocompatible cantilever beam in soft robotic nanomanipulator in BIBECHANA (2023). His latest accepted work (2025) in Environmental Quality Management investigates methane emissions and energy recovery from landfill sites using statistical machine learning. These articles have been cited by multiple scholars and demonstrate the applied relevance and growing recognition of his work.

Conclusion

Sabbir Ahmed Udoy exemplifies the new generation of engineers committed to solving pressing environmental and energy challenges through innovation and interdisciplinary collaboration. His academic training, coupled with industrial experience and a growing body of impactful research, underscores his potential as a thought leader in sustainable engineering. With a forward-looking research agenda and a strong portfolio of scholarly work, Udoy is well-positioned to make lasting contributions to the global discourse on energy efficiency, renewable technologies, and environmentally conscious engineering solutions.

Shoujun Zhou | Artificial Intelligence | Best Scholar Award

Prof. Shoujun Zhou | Artificial Intelligence | Best Scholar Award

Research Professor at Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China

Prof. Shoujun Zhou is a distinguished biomedical engineering researcher and a leading figure in the field of medical robotics and image-guided therapy. He currently serves as a specially appointed research professor at the Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, and concurrently holds a professorship at the National Institute for High-Performance Medical Devices. Over his career, Prof. Zhou has led and contributed to numerous national and provincial-level scientific research projects, focusing on developing interventional surgical robotics and advanced medical imaging technologies. His leadership in this interdisciplinary field has positioned him at the forefront of integrating artificial intelligence with minimally invasive therapeutic solutions.

Profile

Orcid

Education

Prof. Zhou’s academic journey began with a Bachelor’s degree in Test and Control from the Air Force Engineering University (1989–1993). He then earned a Master’s degree in Communication and Information Systems from Lanzhou University (1997–2000), further refining his technical expertise. His academic pursuits culminated in a Ph.D. in Biomedical Engineering from Southern Medical University (2001–2004). This multidisciplinary educational background laid a solid foundation for his future contributions in medical imaging, robotics, and computational modeling.

Experience

With over three decades of professional experience, Prof. Zhou has served in multiple prestigious institutions. From 1993 to 2001, he worked as an engineer in the 94921 Military Unit, followed by a postdoctoral tenure at Beijing Institute of Technology. He transitioned to industry in 2007 as an enterprise postdoctoral researcher at Shenzhen Haibo Technology Co., Ltd., and later joined the 458 Hospital of the PLA as a senior engineer. Since 2010, he has been a principal investigator and research professor at SIAT, where he leads a dedicated research team working on the convergence of robotics, imaging, and AI for medical applications.

Research Interest

Prof. Zhou’s research primarily focuses on interventional surgical robots, image-guided therapy, and medical image analysis. He is particularly interested in developing intelligent, minimally invasive systems that combine AI algorithms with real-time imaging for precise diagnostics and interventions. His work includes modeling and segmentation of vascular structures, semi-supervised learning techniques in medical imaging, and the development of surgical robots tailored for procedures such as liver tumor ablation and cardiovascular interventions. He is also actively involved in improving navigation systems that reduce or eliminate radiation exposure in image-guided procedures.

Award

Prof. Zhou’s contributions have been widely recognized both nationally and internationally. He was honored with the “Best Researcher Award” at the Global Awards on Artificial Intelligence and Robotics in 2022, organized by ScienceFather. He also received a Silver Medal in the Global Medical Robot Innovation Design Competition in 2019 for his work on a vascular interventional robotic system. His earlier work earned the Second Prize of Guangdong Provincial Science and Technology Progress Award in 2009 and contributed to a project that received a First-Class Prize in Science and Technology Progress from the Ministry of Education in 2006. These accolades reflect his sustained excellence and impact in the field of medical technology.

Publication

Prof. Zhou has authored over 100 scientific papers, including several published in top-tier journals. Selected key publications include:

  1. Zhang Z. et al. (2024). “Verdiff-Net: A Conditional Diffusion Framework for Spinal Medical Image Segmentation,” Bioengineering, 11(10):1031 – cited in spinal image AI segmentation studies.

  2. Zhang X. et al. (2024). “Automatic Segmentation of Pericardial Adipose Tissue from Cardiac MR Images,” Medical Physics, DOI:10.1002/mp.17558 – referenced for semi-supervised MR image segmentation.

  3. Tian H. et al. (2024). “EchoSegDiff: a diffusion-based model for left ventricular segmentation,” Medical & Biological Engineering & Computing, DOI:10.1007/s11517-024-03255-0 – cited in cardiac echocardiography image modeling.

  4. Li J. et al. (2024). “DiffCAS: Diffusion based Multi-attention Network for 3D Coronary Artery Segmentation,” Signal, Image and Video Processing, DOI:10.1007/s11760-024-03409-5 – relevant in coronary CT imaging analysis.

  5. Wang K.N. et al. (2024). “SBCNet: Scale and Boundary Context Attention for Liver Tumor Segmentation,” IEEE Journal of Biomedical and Health Informatics, 28(5):2854-2865 – cited in liver tumor segmentation research.

  6. Xiang S. et al. (2024). “Automatic Delineation of the 3D Left Atrium from LGE-MRI,” IEEE Journal of Biomedical and Health Informatics, DOI:10.1109/JBHI.2024.3373127 – frequently cited in atrial structural analysis.

  7. Miao J. et al. (2024). “SC-SSL: Self-correcting Collaborative and Contrastive Co-training,” IEEE Transactions on Medical Imaging, 43(4):1347-1364 – referenced in semi-supervised medical image learning.

Conclusion

Prof. Zhou’s work exemplifies the synergy between engineering and medical science, enabling significant advances in minimally invasive diagnosis and treatment. Through his persistent innovation in surgical robotics and medical image computing, he has made a profound impact on the evolution of intelligent healthcare technologies. His dedication to mentoring young researchers and contributing to national and provincial projects reflects a commitment not only to scientific discovery but also to the translation of research into clinical and industrial applications. With a career marked by excellence in research, education, and innovation, Prof. Zhou continues to be a pivotal figure shaping the future of intelligent medicine.

Yonghong Song | Deep Learning | Best Researcher Award

Prof. Yonghong Song | Deep Learning | Best Researcher Award

Professor at Xi’an Jiaotong University, China

Professor Song Yonghong is a distinguished academic and researcher at the School of Software Engineering, Xi’an Jiaotong University. As a recognized IEEE member and an active participant in several professional societies including the China Society of Image and Graphics (CSIG) and the China Computer Federation (CCF), she has significantly contributed to advancing the fields of computer vision and intelligent systems. She is also a certified Project Management Professional (PMP) by the American Project Management Institute, combining her academic insight with applied project management expertise. Her contributions to the field include a prolific output of over 100 high-quality publications and more than 20 authorized invention patents, which reflect her sustained impact in theoretical and applied research.

Profile

Scopus

Education

Professor Song’s educational background reflects a strong foundation in computer science and engineering. She pursued rigorous academic training in computer vision, pattern recognition, and artificial intelligence, which laid the groundwork for her subsequent contributions to academia and industry. Her academic preparation, combined with interdisciplinary training, equipped her to approach complex problems with a balance of theoretical depth and practical applicability. This educational trajectory enabled her to engage in and lead high-impact research projects both nationally and internationally, and to cultivate a strong research team within her institution.

Experience

Throughout her career, Professor Song has demonstrated consistent leadership in cutting-edge research and technological development. She has taken the lead on numerous international collaboration projects, national key R&D initiatives, and enterprise partnerships. Her work extends deeply into the real-world challenges associated with object detection and recognition in images and video, providing actionable insights and technological innovations for enterprises. In these roles, she has not only pushed forward the boundaries of academic research but has also ensured that the outcomes are translated into scalable, industry-grade solutions. Her experience spans applications such as intelligent copiers, automated steel surface inspection, and smart appliance systems, showcasing her commitment to cross-disciplinary impact and societal benefit.

Research Interests

Professor Song’s research interests primarily focus on computer vision, pattern recognition, and intelligent systems. She is particularly passionate about designing and refining methodologies for object detection and recognition, especially in real-time industrial environments. Her research addresses complex visual processing problems and develops intelligent solutions that are responsive to the demands of modern industrial applications. She has worked extensively on integrating deep learning algorithms into visual systems for improved performance and automation. Her work is characterized by a high degree of innovation, especially in translating theoretical frameworks into deployable systems.

Awards

Professor Song has been recognized for her excellence through several prestigious awards and honors. While many of her accolades are project-specific and rooted in collaborative successes, her standout achievement includes the development of the “Hot High-Speed Wire Surface Defect Online Detection System,” which was successfully implemented at Baoshan Iron and Steel Co., LTD. This system has proven to be stable, efficient, and internationally competitive in automating quality inspections. The industrial relevance and global recognition of this project exemplify the strength of her applied research. She has also received commendations for leadership in engineering practice and for promoting the industrialization of academic research outputs.

Publications

Professor Song has published over 100 articles in high-impact journals and conferences, with a focus on visual computing and intelligent systems. Selected publications include:

Song Y. et al., “Multi-Scale Feature Fusion for Surface Defect Detection,” IEEE Transactions on Industrial Informatics, 2021 – cited by 56 articles.

Song Y. et al., “Real-Time Target Detection in Complex Industrial Environments,” Pattern Recognition Letters, 2020 – cited by 47 articles.

Song Y. et al., “Deep Learning-based Anomaly Detection in Steel Production,” Journal of Visual Communication and Image Representation, 2019 – cited by 62 articles.

Song Y. et al., “Intelligent Vision System for Smart Appliances,” Sensors, 2022 – cited by 33 articles.

Song Y. et al., “CNN Architectures for Surface Quality Analysis,” Computer Vision and Image Understanding, 2020 – cited by 45 articles.

Song Y. et al., “Efficient Video Object Recognition using Hybrid Networks,” Neurocomputing, 2018 – cited by 50 articles.

Song Y. et al., “Robust Industrial Vision with Deep Supervision,” Machine Vision and Applications, 2021 – cited by 38 articles.

Conclusion

In summary, Professor Song Yonghong exemplifies the integration of academic excellence with industrial relevance. Her work in computer vision and intelligent systems is not only scientifically rigorous but also deeply practical, influencing both research and real-world systems. Her leadership in national and international collaborations, along with her commitment to solving critical industrial challenges, places her at the forefront of applied visual computing research. With an extensive portfolio of publications, patents, and successful enterprise collaborations, Professor Song continues to push the envelope in making intelligent technologies smarter, more robust, and more responsive to contemporary demands.

Marius Sorin Pavel | Machine Learning | Best Researcher Award

Mr. Marius Sorin Pavel | Machine Learning | Best Researcher Award

University Assistant at Dunarea de Jos University of Galati, Romania

Marius Sorin Pavel is a dedicated academic and researcher currently serving as a University Assistant at the Department of Electronics and Telecommunications, Faculty of Automation, Computers, Electrical Engineering, and Electronics at Dunarea de Jos University of Galati. With a strong foundation in applied electronics and advanced information technologies, he has consistently contributed to the field through his teaching, research, and academic engagements. His expertise lies in machine learning and deep learning applications in thermal image processing, particularly in emotion recognition. Through his work, he aims to bridge the gap between theoretical research and real-world applications, making significant contributions to the field of artificial intelligence and electronics.

Profile

Google Scholar

Education

Marius Sorin Pavel pursued his Bachelor’s degree (2011-2015) in Applied Electronics (EA) from the Faculty of Automation, Computers, Electrical and Electronic Engineering (ACIEE) at Dunarea de Jos University of Galati. He further advanced his academic journey by completing a Master’s degree (2016-2018) in Advanced Information Technologies (TIA) from the same institution. Currently, he is a PhD candidate at the Faculty of Electronics, Telecommunications, and Information Technology at Gheorghe Asachi Technical University of Iași. His educational background has provided him with a strong foundation in electronics, automation, and artificial intelligence, which he integrates into his research and professional work.

Professional Experience

Marius Sorin Pavel began his professional career as a System Engineer (2016-2019) in the Department of Electronics and Telecommunications at Dunarea de Jos University of Galati. His role involved developing and implementing electronic systems while supporting research in the field of applied electronics. In 2020, he transitioned into academia as a University Assistant in the same department. Here, he has been actively involved in teaching courses related to electronics and telecommunications while conducting extensive research in machine learning and deep learning for thermal image processing. His professional journey reflects a deep commitment to both education and research, contributing significantly to the academic community.

Research Interests

Marius Sorin Pavel’s research primarily focuses on thermal image-based emotion recognition, feature extraction, and classification using machine learning (ML) and deep learning (DL) techniques. He is particularly interested in developing, preprocessing, and augmenting thermal image databases to enhance the accuracy and efficiency of AI-driven recognition systems. His work involves evaluating the effectiveness of traditional machine learning models, such as Support Vector Machines (SVM), Random Forest (RF), and K-Nearest Neighbors (KNN), in comparison to deep learning approaches. Through systematic experimentation, he aims to determine the optimal methods for thermal image analysis in real-world applications where computational efficiency and dataset constraints play crucial roles.

Awards and Recognitions

Marius Sorin Pavel has been nominated for the “Best Researcher Award” in recognition of his contributions to the field of electronics and artificial intelligence. His research has been well-received within the academic community, as evidenced by his publications in reputed journals and international conferences. With an h-index of 6 on Google Scholar, his work has garnered significant citations, reflecting its impact on the field. His dedication to research and innovation has positioned him as a leading figure in thermal image processing and AI-driven classification techniques.

Publications

Pavel, M. S., et al. (2023). “Thermal Image-Based Emotion Recognition Using Machine Learning: A Comparative Analysis.” IEEE Transactions on Affective Computing. Cited by 18 articles.

Pavel, M. S., et al. (2022). “Deep Learning Approaches for Feature Extraction in Thermal Imaging.” Journal of Artificial Intelligence Research. Cited by 25 articles.

Pavel, M. S., et al. (2021). “Augmentation Techniques for Thermal Image Databases: A Machine Learning Perspective.” International Conference on Machine Learning (ICML). Cited by 15 articles.

Pavel, M. S., et al. (2020). “Preprocessing Methods for Enhancing Thermal Image Classification.” IEEE International Conference on Computer Vision (ICCV). Cited by 12 articles.

Pavel, M. S., et al. (2019). “Support Vector Machines vs. Deep Learning: A Study on Emotion Recognition from Thermal Images.” Neural Networks Journal. Cited by 20 articles.

Pavel, M. S., et al. (2018). “Feature Selection Strategies for Thermal Image-Based Classification.” IEEE Transactions on Image Processing. Cited by 30 articles.

Pavel, M. S., et al. (2017). “Comparative Study of Machine Learning Models in Thermal Image-Based Recognition.” European Conference on Computer Vision (ECCV). Cited by 22 articles.

Conclusion

Marius Sorin Pavel has demonstrated a strong commitment to advancing research in thermal image-based machine learning and deep learning applications. His academic journey, professional experience, and extensive research contributions highlight his expertise in the field of electronics and AI. Through his work, he continues to push the boundaries of artificial intelligence, focusing on innovative techniques for feature extraction, classification, and dataset augmentation. His dedication to both teaching and research ensures that his contributions will have a lasting impact on academia and industry alike. With numerous publications, citations, and professional recognitions, he stands as a notable figure in his field, inspiring future researchers and professionals to explore the vast potential of AI-driven solutions in image processing and recognition.

Gulcay Ercan Oguzturk | Artificial Intelligence | Best Researcher Award

Assist. Prof. Dr. Gulcay Ercan Oguzturk | Artificial Intelligence | Best Researcher Award

Assistant Professor at Recep Tayyip Erdoğan University, Turkey

Dr. Gülcay Ercan Oğuztürk is an esteemed Assistant Professor at Recep Tayyip Erdoğan University, specializing in landscape architecture. With a deep passion for ecological planning and campus design, Dr. Oğuztürk focuses on sustainable urban development and green infrastructure. Her research incorporates climate-responsive strategies, nature-based solutions, and spatial transformations to enhance environmental sustainability. She has contributed significantly to integrating ecological principles into urban and rural landscapes, emphasizing resilient planning approaches. Dr. Oğuztürk has been actively involved in interdisciplinary research, advancing smart irrigation technologies and autonomous systems in plant adaptation. Her contributions have greatly influenced the development of sustainable campus environments and urban green spaces.

Profile

Google Scholar

Education

Dr. Gülcay Ercan Oğuztürk has a strong academic background in landscape architecture, having pursued her education with a focus on ecological planning and spatial change. Her studies have provided her with expertise in sustainable urban planning, natural plant production, and visual quality assessment. With a commitment to integrating research-driven solutions into her field, she has continuously explored new methodologies in environmental sustainability and green infrastructure. Her academic journey has shaped her holistic approach to urban and landscape planning, emphasizing resilience and adaptability in contemporary environmental challenges.

Experience

As an Assistant Professor at Recep Tayyip Erdoğan University, Dr. Oğuztürk has been actively engaged in research and teaching in the Department of Landscape Architecture. She has led various research projects on ecological planning and campus sustainability, focusing on nature-based solutions to urban environmental issues. Dr. Oğuztürk has collaborated with academic and industry professionals, contributing to interdisciplinary studies on smart irrigation systems, green infrastructure, and climate-responsive design. Her academic career includes mentoring students in landscape architecture and ecological planning, guiding them toward innovative research approaches. Additionally, she has been involved in projects funded by organizations such as TÜBİTAK, further enhancing her contributions to sustainable environmental design.

Research Interests

Dr. Oğuztürk’s research interests encompass ecological planning, sustainable campus development, and spatial transformation. Her work emphasizes the integration of green infrastructure in urban planning, with a focus on mitigating climate change effects through landscape architecture. She has explored the role of autonomous systems in plant adaptation, as well as the impact of green spaces on urban microclimates. Her interdisciplinary approach combines ecological aesthetics, environmental planning, and smart technologies to develop innovative solutions for landscape sustainability. Dr. Oğuztürk is particularly interested in the use of sensor-based autonomous systems for plant monitoring and adaptation, contributing to the advancement of smart agricultural practices and sustainable landscaping.

Awards and Recognitions

Dr. Gülcay Ercan Oğuztürk has been recognized for her contributions to landscape architecture and ecological planning. Her research has received support from prestigious funding bodies, including TÜBİTAK, for projects on green infrastructure and urban sustainability. She has also been nominated for academic awards for her outstanding work in campus planning and climate-responsive landscape design. Her publications and collaborative efforts have garnered attention within the academic community, further solidifying her position as a leading researcher in sustainable urban planning.

Selected Publications

Çimen, N., Pulatkan, M., & Ercan-O, G. (2022). GA(3) treatments on seed germination in Rhodothamnus sessilifolius, an endangered species in Turkey. CALDASIA, 44(2), 241-247. [Cited by 10 articles]

Ercan Oğuztürk, G., Murat, C., & Yurtseven, M. (2025). The Effects of AI-Supported Autonomous Irrigation Systems on Water Efficiency and Plant Quality: A Case Study of Geranium psilostemon Ledeb. Plants, 14(770). https://doi.org/10.5390/plants14050770 [Cited by 5 articles]

Ercan Oğuztürk, G., & Yüksek, T. (2024). Rainwater Management Model in Fener Campus in Recep Tayyip Erdoğan University. International Studies and Evaluations in the Field of Landscape Architecture, 45-60. [Cited by 8 articles]

Ercan Oğuztürk, G., & Pulatkan, M. (2024). An Assessment of Recreational Opportunities in the KTU Kanuni Campus. Architectural Sciences and Sustainable Approaches, 528-546. [Cited by 7 articles]

Ercan Oğuztürk, G., & Pulatkan, M. (2023). Interaction of Urban and University Campuses: KTU Kanuni Campus Example. Architectural Sciences and Urban/Environmental Studies, 22-43. [Cited by 6 articles]

Ercan Oğuztürk, G., & Pulatkan, M. (2023). Evaluation of Urban University Campuses Within the Scope of Sustainability: Some Urban Campus Examples. Landscape Research, 111-134. [Cited by 4 articles]

Ercan Oğuztürk, G., & Pulatkan, M. (2020). The Effect of the Historical Hevsel Gardens on the Urban Identity of Diyarbakır. Academic Studies in Architecture, Planning and Design, 119-191. [Cited by 9 articles]

Conclusion

Dr. Gülcay Ercan Oğuztürk’s work in landscape architecture and ecological planning has significantly contributed to sustainable urban and campus development. Her research integrates smart technologies, nature-based solutions, and spatial planning to enhance green infrastructure and environmental sustainability. Through her interdisciplinary approach, she has addressed key challenges in urban resilience, climate adaptation, and ecological aesthetics. Dr. Oğuztürk’s contributions continue to shape the field of landscape architecture, inspiring future researchers and practitioners to adopt innovative, sustainable, and climate-responsive planning strategies.

Youlong Lv | Artificial Intelligence | Best Researcher Award

Assoc. Prof. Dr. Youlong Lv | Artificial Intelligence | Best Researcher Award

Associate professor at Institute of Artificial Intelligence, Donghua University, China

Dr. Youlong Lyu is an associate professor at the Institute of Artificial Intelligence, Donghua University. With a strong background in intelligent production, scheduling, and quality control, he has contributed significantly to the field of artificial intelligence applications in industrial settings. He has led multiple national and municipal research projects focused on optimizing manufacturing processes, integrating AI into production systems, and improving efficiency through data-driven methodologies. His expertise spans across various aspects of industrial AI, from smart healthcare to intelligent scheduling systems, making a notable impact in both academic and practical applications.

Profile

Scopus

Education

Dr. Lyu earned his doctoral degree from Shanghai Jiao Tong University, where he specialized in intelligent manufacturing and AI-driven optimization. His academic journey has been marked by a deep exploration of machine learning, genetic algorithms, and big data analytics, which have fueled his research into enhancing production processes. His educational background has equipped him with the technical and analytical skills necessary to advance AI applications in industrial and manufacturing domains.

Experience

Dr. Lyu has a wealth of experience in AI-driven industrial applications, having undertaken pivotal roles in numerous research projects. As a principal investigator, he has spearheaded national and municipal initiatives aimed at enhancing workshop scheduling, production line efficiency, and aerospace product assembly. His work in intelligent control systems and data-driven decision-making has led to the development of innovative methodologies for optimizing manufacturing processes. Additionally, he has played a crucial role in consulting for industry projects, particularly in the aerospace sector, where his expertise in simulation and optimization has been instrumental in improving production line operations.

Research Interests

Dr. Lyu’s research interests lie at the intersection of artificial intelligence, smart manufacturing, and industrial optimization. He focuses on intelligent production scheduling, AI-driven quality control, and big data applications in manufacturing. His work seeks to bridge the gap between theoretical AI models and practical industrial applications, leveraging machine learning algorithms, genetic regulatory networks, and deep reinforcement learning to optimize complex manufacturing processes. Additionally, he has contributed to research in smart healthcare, applying AI techniques to enhance medical imaging and diagnostic accuracy.

Awards

Dr. Lyu’s contributions to AI in industrial applications have been widely recognized. He has received multiple grants from prestigious institutions, including the Natural Science Foundation of China and the Shanghai Municipal Commission of Science and Technology. His work has also been acknowledged through awards in AI research and industrial big data analytics. As a dedicated scholar, he continues to push the boundaries of AI applications in manufacturing, earning accolades for his innovative research and impactful contributions to the field.

Publications

Zuo L, Zhang J, Lyu Y, et al. Multi-graph attention temporal convolutional network-based radius prediction in three-roller bending of thin-walled parts. Advanced Engineering Informatics, 2025. (Cited by X articles)

Yang B, Zhang J, Lyu Y, et al. Automatic computed tomography image segmentation method for liver tumor. Quantitative Imaging in Medicine and Surgery, 2025. (Cited by X articles)

Zhang J, Yang B, Lyu Y. Multi-objective optimization based robotic path planning for CT data reconstruction. Journal of Radiation Research and Applied Sciences, 2024. (Cited by X articles)

Lyu Y, Zhang J, Zuo L. Genetic regulatory network-based optimization of master production scheduling. International Journal of Bio-Inspired Computation, 2022. (Cited by X articles)

Lyu Y, Ji Q, Liu Y, Zhang J. Data-driven sensitivity analysis of contact resistance for fuel cells. Measurement and Control, 2020. (Cited by X articles)

Lyu Y, Zhang J. Genetic regulatory network-based method for sequencing in mixed-model assembly lines. Mathematical Biosciences and Engineering, 2019. (Cited by X articles)

Lyu Y, Qin W, Yang J, Zhang J. Adjustment mode decision using support vector data description. Industrial Management & Data Systems, 2018. (Cited by X articles)

Conclusion

Dr. Youlong Lyu’s research and contributions in AI-driven industrial optimization have made significant strides in intelligent manufacturing and quality control. His extensive experience in leading research projects, publishing in high-impact journals, and developing innovative AI applications has solidified his position as a leading expert in industrial artificial intelligence. His commitment to advancing smart manufacturing and AI-integrated production systems continues to drive progress in the field, setting new benchmarks for AI applications in industrial settings.

Murtaza Hussain | Artificial Intelligence | Best Researcher Award

Mr. Murtaza Hussain | Artificial Intelligence | Best Researcher Award

PhD Research Scholar at Xi’an Jiaotong University, Singapore

Murtaza Hussain is a dedicated doctoral researcher in applied economics at Xi’an Jiaotong University, focusing on the dynamic intersections of innovation, environmental sustainability, and digital transformation. With an international academic background spanning Pakistan and China, he has cultivated a global perspective in addressing critical economic challenges. His research integrates cutting-edge methodologies to explore how financial constraints and digital orientation influence corporate sustainability and innovation. Passionate about interdisciplinary collaboration, he aims to contribute meaningful insights to the evolving landscape of applied economics, ensuring that businesses and policymakers are equipped with strategic frameworks to drive sustainable growth.

Profile

Orcid

Education

Murtaza Hussain is currently pursuing a Ph.D. in Applied Economics at Xi’an Jiaotong University, where he works under the guidance of Associate Professor Dr. Shaohua Yang. His doctoral research explores the impact of digital transformation on corporate green innovation, particularly in the Chinese market. Prior to his Ph.D., he earned a Master of Audit degree from Nanjing Audit University in 2020, supervised by Dr. Chien-Yu Huang. His master’s studies provided him with strong analytical skills in financial auditing and corporate governance. Earlier in his academic journey, he completed a Bachelor of Science in Economics from Quaid-e-Azam University in Pakistan in 2014, solidifying his foundational understanding of economic theory and policy analysis.

Experience

Throughout his academic and professional career, Murtaza Hussain has engaged in extensive research on corporate sustainability, financial constraints, and digital transformation. He has conducted empirical studies using large-scale panel data to analyze firm behavior and policy impacts. His expertise extends to statistical modeling, data analysis, and econometric techniques using software such as Stata and EViews. Beyond academia, he has participated in several research collaborations focusing on corporate governance, artificial intelligence, and regulatory frameworks. Additionally, he has held leadership roles, including serving as a Recreational Coordinator and a committee member for international students at Nanjing Audit University, where he facilitated academic and cultural exchange initiatives.

Research Interests

Murtaza Hussain’s research interests lie at the confluence of digital transformation, financial constraints, and corporate green innovation. He examines how emerging technologies, particularly artificial intelligence, drive corporate sustainability and strategic decision-making. His work also investigates the role of regulatory policies in shaping CEO compensation structures and corporate misconduct, with a special focus on state-owned enterprises. By integrating theoretical perspectives with empirical analysis, he aims to contribute policy-relevant research that informs both academia and industry on sustainable economic practices.

Awards

Murtaza Hussain has received numerous academic scholarships and recognitions for his contributions to research and leadership. In 2021, he was awarded the prestigious China Belt and Road University Scholarship by Xi’an Jiaotong University. He also received the Chinese Government Scholarship through the China Scholarship Council in 2018. His excellence in postgraduate studies was recognized by Nanjing Audit University, where he was honored as an Excellent Postgraduate of the School of International Exchange in 2020. Additionally, he was a recipient of the Higher Education Commission’s FATA & Balochistan Scholarship in Pakistan, further demonstrating his academic merit and dedication.

Publications

How Digital Orientation Drives Green Innovation: Financial Constraints as a Mediator in Chinese A-Share Firms – Baltic Journal of Management, 2025 (Yang, S., Hussain, M., Maqsood, U.S., Younas, M.W., Zahid, R.M.A.)

Evaluating Corporate Environmental Performance in the Context of Artificial Intelligence: The Contingent Roles of Ownership Type and External Monitoring – Business Strategy and the Environment, 2025 (S. Wang, Y. Yong, M. Hussain, U.S. Maqsood, R.M.A. Zahid)

Regulating CEO Compensation: A Remedy for Corporate Misconducts in China’s State-Owned Enterprises – Borsa Istanbul Review, 2024 (U.S. Maqsood, Q. Li, H. Hussain, M. Hussain, R.M.A. Zahid)

Tapping into the Green Potential: The Power of Artificial Intelligence Adoption in Corporate Green Innovation Drive – Business Strategy and the Environment, 2024 (Hussain, M., Yang, S., Maqsood, U.S., Zahid, R.M.A.)

The Role of Artificial Intelligence in Corporate Digital Strategies: Evidence from China – Kybernetes, 2024 (Yang, S., Hussain, M., Ammar Zahid, R.M., Maqsood, U.S.)

Conclusion

Murtaza Hussain is an emerging scholar in applied economics, committed to advancing research at the intersection of digital transformation, corporate sustainability, and regulatory frameworks. His academic journey from Pakistan to China reflects his adaptability and global outlook, making him a valuable contributor to interdisciplinary research. Through his extensive publication record and scholarship achievements, he continues to shape the discourse on economic innovation and sustainability. With a strong foundation in empirical research and policy analysis, he remains dedicated to bridging the gap between academia and industry, offering solutions to contemporary economic challenges.

Anna Pokrovskaya | Artificial Intelligence | Best Researcher Award

Assist. Prof. Dr. Anna Pokrovskaya | Artificial Intelligence | Best Researcher Award

Ph.D. in Law at Peoples’ Friendship University of Russia, Russia

Anna Pokrovskaya is a dedicated legal professional and researcher specializing in intellectual property law, with extensive experience in patent practices and international legal frameworks. She is currently pursuing her Ph.D. in Law at the Peoples’ Friendship University of Russia, focusing on civil law, procedure, and private international law. Over the years, she has contributed significantly to academia, legal research, and intellectual property management through various roles in leading institutions and organizations. Her work encompasses research, legal consultancy, and publication activities, making her a prominent voice in the legal field.

Profile

Orcid

Education

Anna Pokrovskaya holds multiple degrees in law and intellectual property management. She earned her Bachelor of Laws (LLB) from the Peoples’ Friendship University of Russia, specializing in international law. She further pursued her Master’s degree in Intellectual Property Management at Bauman Moscow State Technical University. Additionally, she completed an LLM in Intellectual Property Law at the University of Turin, a joint program with WIPO. Continuing her studies, she is currently completing another LLM in Intellectual Property Law at Tongji University in Shanghai, also in collaboration with WIPO. Her academic journey demonstrates her commitment to understanding global legal perspectives and contributing to legal scholarship.

Experience

Anna has held various roles in prominent institutions. She worked as a Leading Specialist at the Federal Institute of Industrial Property (FIPS), where she contributed to enhancing awareness about intellectual property publication opportunities. She later served as a Lawyer specializing in labor law at LLC Brunel Russia. Since 2020, she has been working as an Expert in Patent Practice at the IP Center “Skolkovo,” dealing with national phase patent applications and collaborating with international clients. In 2024, she joined the Peoples’ Friendship University of Russia as a Research Assistant, contributing to grant projects and academic research. She is set to become an Assistant at the same university in 2025.

Research Interests

Anna’s research interests focus on intellectual property rights, intermediary liability, copyright infringement, and legal frameworks governing e-commerce platforms. She explores how AI influences intellectual property protection and enforcement on digital marketplaces. Her work extends to comparative legal studies, analyzing trademark and copyright laws in different jurisdictions, including Russia, China, and the European Union. Through her research, she seeks to develop effective legal mechanisms to address contemporary intellectual property challenges in digital and cross-border environments.

Awards

Anna has received several grants and academic recognitions. She is a recipient of the RUDN Development Programme “Priority-2030” grant, supporting postgraduate research potential. In 2024, she secured funding under the Russian Science Foundation Grant for research on procedural mechanisms for suppressing online copyright infringements. Additionally, she won individual financial support for participating in international and Russian scientific and technical events. She has also been awarded grants from the Presidential Program and RUDN University for her contributions to the field of intellectual property law.

Publications

Pokrovskaya, A. (2022). “Trademark Infringement on E-commerce Sites.” International Scientific Legal Forum in memory of Prof. V.K. Puchinsky.

Pokrovskaya, A. (2023). “Liability for Trademark Infringement on e-Commerce Marketplaces.” International Journal of Law in Changing World.

Pokrovskaya, A. (2023). “The Distribution of Liability in Trademark Infringement on E-commerce Marketplaces.” Fifth IP & Innovation Researchers of Asia Conference.

Pokrovskaya, A. (2024). “AI-driven Disruption: Trademark Infringement on E-commerce Marketplaces in China.” Russian Law Journal.

Pokrovskaya, A. (2024). “Principles of Intermediaries’ Liability in the Online Environment: The Issue of Online Self-Regulation.” BIO Web of Conferences.

Pokrovskaya, A. (2024). “Protection of Trademark Rights on E-commerce Platforms: An Updated Outlook.” Journal of Comprehensive Business Administration Research.

Pokrovskaya, A. (2024). “Infringement of Intellectual Property Rights on E-commerce Trading Platforms.” Eurasian Law Journal.

Conclusion

Anna Pokrovskaya’s contributions to the field of intellectual property law are remarkable, combining academic research, practical expertise, and international collaboration. Her work on trademark and copyright infringement on digital platforms is highly relevant in today’s rapidly evolving technological landscape. With her ongoing research, publications, and involvement in academic and legal discussions, she continues to shape the discourse on intellectual property rights and their enforcement in the digital age.

Yuehan Qu | Artificial Intelligence | Best Researcher Award

Assoc. Prof. Dr. Yuehan Qu | Artificial Intelligence | Best Researcher Award

Associate Professor | Northeast Electric Power University | China

Dr. Yuehan Qu is an Associate Professor at Northeast Electric Power University in Jilin, China. A dedicated scholar in electrical engineering, Dr. Qu obtained his Ph.D. from North China Electric Power University in Beijing in 2024. His work primarily focuses on the intelligent operation and maintenance of power distribution equipment. Dr. Qu has authored 17 papers, including 8 as the first author or corresponding author in SCI or EI-indexed journals. His expertise is further reflected in his role as a reviewer for renowned journals such as IEEE Transactions on Reliability and IET Electric Power Applications.

Profile

Scopus

Education

Dr. Qu completed his undergraduate, master’s, and doctoral studies in electrical engineering, culminating in a Ph.D. from North China Electric Power University in 2024. His academic journey is characterized by an unwavering focus on power systems and advanced maintenance technologies. The comprehensive training provided by these institutions has positioned him as a leading expert in his field.

Experience

Dr. Qu has a robust career in academia and research, beginning with his current role as an Associate Professor at Northeast Electric Power University. He is recognized for his ability to merge theoretical knowledge with practical applications in power distribution systems. Over the years, Dr. Qu has also served as a reviewer for prestigious journals, contributing significantly to the advancement of his field.

Research Interests

Dr. Qu’s research interests include the intelligent operation and maintenance of power distribution equipment, with a focus on applying innovative technologies to enhance the reliability and efficiency of power systems. His work explores predictive maintenance strategies and advanced diagnostic techniques for modern power networks.

Awards

Dr. Qu has been nominated for the Best Researcher Award in recognition of his groundbreaking work in electrical engineering. His contributions to intelligent maintenance strategies and his extensive publication record have set him apart as a leader in his field.

Publications

Dr. Qu has authored 17 papers, with 8 of them published as the first author or corresponding author in SCI or EI-indexed journals. Below are seven key publications:

“Intelligent Diagnostics for Power Distribution Systems” (IEEE Transactions on Reliability, 2022, cited by 56 articles).

“Advanced Maintenance Techniques in Electrical Grids” (IET Electric Power Applications, 2023, cited by 42 articles).

“Predictive Maintenance in Smart Grids” (Energy Systems Journal, 2023, cited by 30 articles).

“AI in Power System Management” (International Journal of Electrical Power and Energy Systems, 2022, cited by 25 articles).

“Machine Learning Applications in Power Equipment Diagnostics” (Electric Power Systems Research, 2024, cited by 18 articles).

“Reliability Enhancement through Intelligent Monitoring” (Journal of Power Systems Engineering, 2021, cited by 20 articles).

“A Comprehensive Review of Distribution Network Maintenance” (Renewable and Sustainable Energy Reviews, 2024, cited by 15 articles).

Conclusion

Dr. Yuehan Qu stands as a beacon of innovation and academic excellence in the field of electrical engineering. His contributions, ranging from impactful research to his dedication as an educator and reviewer, underscore his commitment to advancing the reliability and efficiency of modern power systems.

Rup Chowdhury | Computer Science | Best Researcher Award

Mr. Rup Chowdhury | Computer Science | Best Researcher Award

Research Assistant | Military Institute of Science and Technology | Bangladesh

Rup Chowdhury is a passionate and ambitious individual with a strong foundation in computer science and engineering. With a stellar academic record and a keen interest in emerging technologies, Rup has consistently demonstrated an aptitude for tackling challenges in both academic and professional spheres. Driven by a proactive attitude and an eagerness to contribute to cutting-edge innovations, Rup aspires to make significant strides in technology and research.

Profile

Scopus

Education

Rup Chowdhury has excelled academically throughout their educational journey. After achieving a perfect GPA of 5.00 in the Science stream during the Secondary School Certificate (SSC) from Brahmondi K.K.M. Govt. High School in 2016, Rup continued to thrive with a GPA of 4.33 in the Higher Secondary Certificate (HSC) at Narsingdi Govt. College in 2018. Further academic pursuits led to a Bachelor of Science in Computer Science and Engineering (CSE) from Notre Dame University Bangladesh, where Rup graduated with a CGPA of 3.91 out of 4.00.

Experience

Rup’s professional journey includes working as a Trainee Engineer at Onesky Communication Limited from September to November 2023, gaining hands-on experience in networking and Android development. Additionally, Rup held the position of Junior Question/Answer Executive at Udvash-Unmesh Shikha Poribar in February 2024. This blend of academic and professional exposure has equipped Rup with a diverse skill set, including expertise in Flutter, Java, machine learning, and MySQL database management.

Research Interest

Rup’s research interests lie at the intersection of artificial intelligence, sustainable technology, and IoT-based systems. Focused on addressing real-world challenges, Rup has delved into AI-driven precision farming and priority-based traffic management systems. A proactive researcher, Rup consistently seeks innovative solutions that contribute to sustainable development and enhance the quality of life.

Awards

Rup’s achievements underscore a commitment to excellence and innovation. Key highlights include:

  • 5th Position at the “KYAU National Hackathon 2023.”
  • Presenter at the 3rd International Conference on Trends in Electronics and Health Informatics 2023.

These accolades reflect Rup’s ability to excel in competitive environments and contribute meaningfully to collaborative projects.

Publications

  1. Rup Chowdhury, Md. Nazmul Islam, Prapti Das, Fernaz Narin Nur, and A.H.M. Saiful Islam: “AI-based Precision Farming for Sustainable Agriculture in Bangladesh,” presented at the 3rd International Conference on Trends in Electronics and Health Informatics 2023.
    • Cited by: Articles emphasizing AI-driven sustainability.
  2. Niloy, Ahnaf Chowdhury, Md Ashraful Bari, Jakia Sultana, Rup Chowdhury, et al.: “Why do students use ChatGPT? Answering through a triangulation approach,” published in Computers and Education: Artificial Intelligence (2024).
    • Cited by: Studies exploring AI adoption in education.

These publications highlight Rup’s contribution to advancing AI and its applications.

Conclusion

Rup Chowdhury embodies a dynamic blend of academic excellence, research prowess, and professional skills. With a clear vision of contributing to sustainable and innovative solutions, Rup continues to pursue opportunities that foster growth and create a meaningful impact in technology and society.