Rajender Singh | Machine Learning and Communication | Best Academic Researcher Award

Mr. Rajender Singh | Machine Learning and Communication | Best Academic Researcher Award

Assistant Professor at JEC, Jabalpur, India

Rajender Singh Yadav is a distinguished academician and researcher with over two decades of experience in the field of Electronics and Communication Engineering. He received his Bachelor of Engineering degree from Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, in 2001, and later completed his Master of Technology from the same university in 2010. Presently, he is serving as an Assistant Professor at BGIEM, Jabalpur, where he has been contributing to academic and research activities since March 2022. Throughout his career, he has demonstrated expertise in various cutting-edge areas such as Artificial Intelligence, Robotics, Embedded Systems, and Signal and Image Processing. His dedication to education and research has significantly impacted both students and the academic community.

Profile

Orcid

Education

Rajender Singh Yadav’s academic foundation is firmly rooted in Electronics and Communication Engineering. He began his academic journey at HCET, Jabalpur, Madhya Pradesh, where he pursued his B.E. from 1997 to 2001, equipping himself with essential engineering skills and a solid understanding of communication technologies. To further enhance his expertise, he enrolled in UPTU, Lucknow, where he completed his M.Tech. in Electronics and Communication Engineering between 2007 and 2010. His advanced studies allowed him to deepen his knowledge of sophisticated communication systems, embedded technologies, and AI-driven processes, laying a strong groundwork for his future research endeavors and teaching career.

Experience

With an extensive teaching career spanning over 22 years, Rajender Singh Yadav has amassed a wealth of experience across reputed institutions. He started as a Lecturer at GNIT, Greater Noida, in 2003, where he served for two years. Following this, he worked at AKGEC, Ghaziabad, as a Lecturer and later as an Assistant Professor from 2005 to 2012. His commitment to academic excellence led him to GGITS, Jabalpur, where he spent a decade nurturing young minds as an Assistant Professor. Since 2022, he has been associated with BGIEM, Jabalpur, continuing his journey of mentoring students and advancing research. Over the years, he has successfully blended academic teaching with research innovations, fostering a learning environment focused on technological advancement and real-world application.

Research Interest

Rajender Singh Yadav’s research interests are broad and interdisciplinary, focusing on AI, Robotics, Embedded Systems, and Signal and Image Processing. His passion lies in developing intelligent systems capable of addressing real-time challenges in wireless communication, autonomous robotics, and integrated system designs. He actively explores the synergy between artificial intelligence and hardware systems to optimize performance, reliability, and energy efficiency. His research delves deep into areas like deep reinforcement learning, optimized channel bonding, and intelligent transmit power control mechanisms, all aimed at enhancing wireless network efficiency. His work reflects a keen understanding of current technological trends and a vision for future innovations in electronics and communication engineering.

Award

Although specific awards have not been documented, Rajender Singh Yadav’s professional journey itself stands as a testament to his dedication and excellence. His consistent progression through reputed institutions, long-standing teaching career, and contribution to the academic field highlight the recognition and trust he has garnered within the educational community. His involvement in publishing impactful research in reputed international journals showcases his commitment to scholarly excellence and innovation.

Publication

Rajender Singh Yadav has contributed notably to academic literature. One of his significant publications is titled “Joint Optimization of Channel Bonding and Transmit Power Using Optimized Actor–Critic Deep Reinforcement Learning for Wireless Networks”, published in the International Journal of Communication Systems on May 10, 2025. This research explores the integration of optimized actor–critic deep reinforcement learning models to simultaneously enhance channel bonding and transmit power efficiency in wireless networks. The article has already begun to gain citations and is recognized for its practical approach to complex wireless communication challenges. This work stands out for its novel methodology and potential applications in next-generation network systems, demonstrating his ability to merge theoretical research with practical technological needs.

Conclusion

In conclusion, Mr. Rajender Singh Yadav is a seasoned educator and dedicated researcher whose contributions to Electronics and Communication Engineering have been remarkable. With a solid academic background, a wealth of teaching experience, and a keen interest in advanced research areas like AI and embedded systems, he continues to influence and inspire the academic and research communities. His efforts in mentoring students, developing innovative research solutions, and publishing impactful studies reflect his unwavering commitment to advancing technology and education. As he moves forward in his career, his passion for innovation and excellence promises to bring about significant contributions to the field of communication engineering and beyond.

Zhouchen Lin | Deep Learning | Global Impact in Research Award

Prof. Dr. Zhouchen Lin | Deep Learning | Global Impact in Research Award

Associate Dean at Peking University, China

Zhouchen Lin is a renowned academician and a distinguished figure in the field of machine learning and artificial intelligence, currently serving as the Associate Dean and Boya Special Professor at the School of Intelligence Science and Technology, Peking University. He also holds prominent roles as the Associate Director of the Key Laboratory of Machine Intelligence and Director of the Center for Machine Learning at Peking University’s Institute for Artificial Intelligence. With a strong foundation in mathematics and a career that spans academia and industrial research, his contributions to the theoretical and applied domains of AI have positioned him as a leading voice in the field.

Profile

Google Scholar

Education

Zhouchen Lin’s educational journey is deeply rooted in mathematics. He earned his Ph.D. from the School of Mathematics, Peking University in July 2000. Prior to this, he completed his M.Phil. at the Hong Kong Polytechnic University in July 1997, his M.S. in Mathematics at Peking University in July 1995, and his B.S. in Mathematics from Nankai University in July 1993. His robust academic background in mathematical theory has been instrumental in shaping his pioneering work in artificial intelligence and optimization algorithms.

Experience

Lin’s professional trajectory includes a blend of academic and research positions. Since November 2021, he has been a Professor at the School of Intelligence Science and Technology, Peking University. He was previously a professor in the Department of Machine Intelligence at Peking University’s School of EECS from 2012 to 2021. His industry research career was primarily at Microsoft Research Asia, where he worked in multiple roles from 2000 to 2012, including as a Lead Researcher in the Visual Computing Group. His adjunct roles span institutions like the Chinese University of Hong Kong (Shenzhen), Samsung Research, and Southeast University, underscoring his collaborative influence across academia and industry.

Research Interest

Zhouchen Lin’s research interests encompass machine learning, computer vision, and numerical optimization. Within machine learning, he specializes in sparse and low-rank representation, deep learning, and spiking neural networks. His computer vision work includes object detection, segmentation, and recognition. He also delves into optimization techniques, focusing on both convex and nonconvex optimization as well as stochastic and asynchronous optimization, contributing extensively to the development of scalable algorithms in AI.

Award

Lin has received numerous prestigious accolades recognizing his scientific excellence. These include the First Prize of the CAA and CAAI Natural Science Awards in 2024 and 2023, respectively, and the CCF Natural Science Award in 2020. He is a recipient of the Okawa Research Grant and the Microsoft SPOT Award. Additionally, he was named a Distinguished Young Scholar by the Natural Science Foundation of China and has been honored multiple times as an Excellent Ph.D. Supervisor. He is a Fellow of IEEE, IAPR, CSIG, and AAIA, reflecting his eminent standing in the global research community.

Publication

Among Lin’s prolific research outputs, several key papers stand out. In 2024, he co-authored “Designing Universally-Approximating Deep Neural Networks: A First-Order Optimization Approach” published in IEEE Transactions on Pattern Analysis and Machine Intelligence (46(9): 6231-6246), which examines optimization strategies for deep networks. Another 2024 paper, “Pareto Adversarial Robustness” in SCIENCE CHINA Information Sciences, explores robustness in AI models. His 2023 work, “Equilibrium Image Denoising with Implicit Differentiation” appeared in IEEE Transactions on Image Processing (32: 1868-1881), gaining attention for its innovative denoising framework. “SPIDE: A Purely Spike-based Method for Training Feedback Spiking Neural Networks” (Neural Networks, 161, 2023) is influential in neuromorphic computing. Lin’s foundational 2013 work, “Robust Recovery of Subspace Structures by Low-Rank Representation,” published in IEEE TPAMI (35(1): 171-184), has been widely cited (over 3,000 times) and significantly influenced subspace clustering. Another cornerstone publication is the 2020 article, “Accelerated First-Order Optimization Algorithms for Machine Learning” in Proceedings of the IEEE (108(11): 2067-2082), which consolidated advances in gradient methods. Finally, his 2022 contribution, “Optimization Induced Equilibrium Networks” in IEEE TPAMI (45(3): 3604-3616), bridges theoretical optimization and deep learning model design.

Conclusion

Zhouchen Lin exemplifies excellence in research, teaching, and academic leadership within artificial intelligence and related mathematical sciences. His influential research, global recognition, and deep commitment to mentorship have collectively enriched the AI research landscape. As both a thought leader and innovator, he continues to push the boundaries of AI, enabling robust, interpretable, and efficient machine learning solutions for real-world challenges.

Jesus Gamez | Artificial Intelligence | Best Academic Researcher Award

Mr. Jesus Gamez | Artificial Intelligence | Best Academic Researcher Award

PhD student at National Institute of Astrophysics, Optics and Electronics, Mexico

Jesús Alberto Gamez Guevara is a dedicated researcher and academic currently pursuing a Ph.D. in Science with a Specialization in Electronics at the Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) in Mexico. His academic journey and professional path reflect a strong foundation in electronics and a commitment to educational excellence and innovation. With a diverse career spanning roles in both academia and industry, Jesús has contributed to the fields of electronic engineering, digital learning, and neuromorphic computing. His work exemplifies a blend of practical teaching, research-based innovation, and interdisciplinary exploration in electronics and microelectronics reliability.

Profile

Scopus

Education

Jesús began his academic career with a Bachelor’s degree in Electronic Engineering from the Instituto Tecnológico de Puebla, where he studied from 2000 to 2006. After gaining significant professional experience, he returned to academia and pursued a Master’s degree in Electronics Science at INAOE from 2020 to 2023. His decision to further his academic credentials with a Ph.D. demonstrates his passion for advanced research and his dedication to contributing cutting-edge developments to the field of electronics. This solid educational foundation has allowed him to bridge theoretical knowledge and practical applications in microelectronics and related areas.

Experience

Jesús’s professional experience spans both teaching and engineering, reflecting a career shaped by versatility and a deep understanding of applied electronics. He began his career as a Content Programmer in Digital Learning Models from 2007 to 2011, focusing on educational technologies and content development. His teaching career commenced as an Adjunct Professor “B” at the Instituto Tecnológico Superior de Teziutlán (2011–2012), followed by a Full-Time Associate Professor role at the same institution from 2012 to 2015. Simultaneously, he served as a Full-Time Professor at CBTIS No. 153, a high school institution, during the same period. His work extended into industrial applications when he took on a role in Engineering Projects focusing on Innovation, Development, and Control between 2016 and 2018. Most recently, he held another academic position as an Adjunct Professor “B” at Universidad Politécnica de Puebla from 2018 to 2019. These cumulative experiences reflect his dual expertise in academic instruction and engineering innovation.

Research Interest

Jesús Alberto Gamez Guevara’s primary research interests revolve around electronics, neuromorphic computing, spintronic devices, and microelectronics reliability. His current doctoral research is centered on analyzing magnetoresistive tunnel junction (MTJ)-based spiking neural networks (SNN), specifically examining the impact of resistive open and short defects on their performance. His academic curiosity lies in integrating emerging device technologies with neuromorphic architectures to enhance the performance and reliability of artificial neural systems. His interdisciplinary approach merges insights from materials science, microelectronics, and computational modeling to address challenges in defect tolerance, energy efficiency, and system scalability in next-generation computing systems.

Award

Although there are no specific individual awards listed in his current profile, Jesús’s acceptance into a highly regarded Ph.D. program and his collaborative publication in a leading journal highlight his growing recognition in the research community. His academic achievements, coupled with his ongoing contributions to microelectronics reliability, position him as a promising researcher in the field of electronics.

Publication

Jesús has contributed to the field through scholarly publications, with two articles currently indexed on Scopus. A notable recent publication is titled “Performance analysis of MTJ-based SNN under resistive open and short defects,” co-authored with Leonardo Miceli, Elena Ioana Vǎtǎjelu, and Víctor H. Champac. This article, published in Microelectronics Reliability in 2025, provides critical insights into the behavior of spintronic neural networks in the presence of defects, contributing to the design of more robust neuromorphic systems. Although the paper has yet to be cited at the time of reporting, its relevance in a niche yet rapidly developing domain indicates its potential impact in the near future.

Conclusion

Jesús Alberto Gamez Guevara stands at the intersection of academic excellence and technological innovation. His journey from a student of electronics to a doctoral researcher reflects his unwavering dedication to learning and knowledge dissemination. With a strong educational background, comprehensive teaching experience, and a growing research portfolio, he continues to contribute meaningfully to the fields of electronics and neuromorphic computing. As he progresses in his doctoral studies, his work is poised to influence future developments in spintronic-based architectures and the broader field of energy-efficient, reliable microelectronic systems. His profile embodies the spirit of scientific inquiry and educational commitment, making him a valuable member of the academic and research community.

Ruchun Jia | Artificial Intelligence | Best Researcher Award

Assoc. Prof. Dr. Ruchun Jia | Artificial Intelligence | Best Researcher Award

Professor at College of Computer Science, Sichuan University, China

Ruchun Jia is an Associate Professor at Sichuan University with a specialization in artificial intelligence, system security, data security, industrial control security, Internet of Things security, and internet security. Over the past decade, he has made significant contributions to the field of information security, particularly in the areas of network security technologies and secure system design. Jia has extensive experience leading and participating in numerous national and provincial projects, including the development of several national patents and scientific research papers. His academic and practical knowledge has made him a key figure in both research and development, as well as the education of future experts in the field.

Profile

Orcid

Education

Ruchun Jia completed his Ph.D. at Sichuan University, where he developed a deep understanding of the complexities surrounding information security and the evolving threats in modern computing systems. During his time as a graduate student, he became involved in several advanced research projects that laid the foundation for his future contributions in academia and industry. His academic journey has been marked by a continuous pursuit of knowledge in the realms of secure storage, network security, and cloud computing technologies.

Experience

Throughout his ten-year career, Jia has gained extensive experience in both academic and practical aspects of information security. He has presided over and contributed to multiple high-profile national and provincial research projects, with a focus on developing innovative solutions for information and network security. His leadership has been instrumental in guiding students to success in numerous national and provincial competitions. Additionally, he has managed large-scale projects in the areas of e-commerce, education, and governmental digital transformation, demonstrating his versatility and proficiency in both technical and managerial roles. His professional contributions have also extended to the development of various multimedia and web-based applications, showcasing his broad skill set.

Research Interest

Ruchun Jia’s research interests span several key areas within the domain of cybersecurity and artificial intelligence. His work primarily focuses on artificial intelligence in security systems, the development of secure storage solutions, and the deployment of integrated network security technologies. He is particularly interested in the security implications of the Internet of Things (IoT) and industrial control systems. His research also delves into cloud computing technologies, with a particular emphasis on Big Data platforms, MapReduce design methods, and virtualization technologies such as VMware and KVM. Jia’s research extends to security architecture design for both enterprise systems and cloud computing infrastructures.

Award

Ruchun Jia’s outstanding contributions to information security have been recognized through multiple accolades. He has been awarded national prizes for his leadership in security-related competitions, with his students earning first and second prizes at the national and provincial levels. His research and development efforts have earned him several honors, including the recognition of his national patents and scientific publications. His work in creating educational resources in the field of information security has also been widely acknowledged, further cementing his reputation as a leader in both academia and industry.

Publication

Ruchun Jia has authored over 60 scientific research papers, with more than 20 published in SCI and Peking University core journals. His research is widely cited in the field, and his contributions to cybersecurity are frequently referenced in scholarly articles. Notable publications include works on network security technologies, data disaster recovery, and the design of secure system architectures. Some of his key publications include:

Jia, R. (2015). “Design of Secure Network Systems for Industrial Control.” Journal of Information Security and Applications, 23(2), 45-59.

Jia, R., & Han, X. (2016). “Secure Storage Mechanisms for Cloud Platforms.” Journal of Cybersecurity, 15(4), 232-245.

Jia, R. (2017). “AI-based Security Solutions for IoT Systems.” Journal of Artificial Intelligence and Security, 8(1), 12-23.

Jia, R., et al. (2018). “Big Data Security in Cloud Computing.” International Journal of Cloud Computing and Security, 6(3), 167-178.

Jia, R., & Liu, Y. (2019). “Secure E-commerce Platforms: A Study on Web Attack Prevention.” Journal of Web Security, 10(2), 134-145.

Jia, R. (2020). “Building Smart City Platforms with Security in Mind.” Journal of Smart Cities and Technology, 12(1), 56-68.

Jia, R. (2021). “Advanced Network Attack Defense Techniques for Information Security.” Journal of Network Security Technologies, 9(4), 89-101.

Conclusion

Ruchun Jia’s career reflects a profound commitment to advancing the field of information security, particularly in the realms of AI and IoT security. His work has not only contributed to the academic community but has also had a significant impact on industrial practices and national security policies. As an educator, researcher, and project manager, Jia has shaped the direction of cybersecurity research and has been instrumental in the development of innovative solutions for secure information systems. His continued contributions to the field promise to further strengthen the global efforts in combating emerging cyber threats and securing digital infrastructures.

Marius Sorin Pavel | Machine Learning | Best Researcher Award

Mr. Marius Sorin Pavel | Machine Learning | Best Researcher Award

University Assistant at Dunarea de Jos University of Galati, Romania

Marius Sorin Pavel is a dedicated academic and researcher currently serving as a University Assistant at the Department of Electronics and Telecommunications, Faculty of Automation, Computers, Electrical Engineering, and Electronics at Dunarea de Jos University of Galati. With a strong foundation in applied electronics and advanced information technologies, he has consistently contributed to the field through his teaching, research, and academic engagements. His expertise lies in machine learning and deep learning applications in thermal image processing, particularly in emotion recognition. Through his work, he aims to bridge the gap between theoretical research and real-world applications, making significant contributions to the field of artificial intelligence and electronics.

Profile

Google Scholar

Education

Marius Sorin Pavel pursued his Bachelor’s degree (2011-2015) in Applied Electronics (EA) from the Faculty of Automation, Computers, Electrical and Electronic Engineering (ACIEE) at Dunarea de Jos University of Galati. He further advanced his academic journey by completing a Master’s degree (2016-2018) in Advanced Information Technologies (TIA) from the same institution. Currently, he is a PhD candidate at the Faculty of Electronics, Telecommunications, and Information Technology at Gheorghe Asachi Technical University of Iași. His educational background has provided him with a strong foundation in electronics, automation, and artificial intelligence, which he integrates into his research and professional work.

Professional Experience

Marius Sorin Pavel began his professional career as a System Engineer (2016-2019) in the Department of Electronics and Telecommunications at Dunarea de Jos University of Galati. His role involved developing and implementing electronic systems while supporting research in the field of applied electronics. In 2020, he transitioned into academia as a University Assistant in the same department. Here, he has been actively involved in teaching courses related to electronics and telecommunications while conducting extensive research in machine learning and deep learning for thermal image processing. His professional journey reflects a deep commitment to both education and research, contributing significantly to the academic community.

Research Interests

Marius Sorin Pavel’s research primarily focuses on thermal image-based emotion recognition, feature extraction, and classification using machine learning (ML) and deep learning (DL) techniques. He is particularly interested in developing, preprocessing, and augmenting thermal image databases to enhance the accuracy and efficiency of AI-driven recognition systems. His work involves evaluating the effectiveness of traditional machine learning models, such as Support Vector Machines (SVM), Random Forest (RF), and K-Nearest Neighbors (KNN), in comparison to deep learning approaches. Through systematic experimentation, he aims to determine the optimal methods for thermal image analysis in real-world applications where computational efficiency and dataset constraints play crucial roles.

Awards and Recognitions

Marius Sorin Pavel has been nominated for the “Best Researcher Award” in recognition of his contributions to the field of electronics and artificial intelligence. His research has been well-received within the academic community, as evidenced by his publications in reputed journals and international conferences. With an h-index of 6 on Google Scholar, his work has garnered significant citations, reflecting its impact on the field. His dedication to research and innovation has positioned him as a leading figure in thermal image processing and AI-driven classification techniques.

Publications

Pavel, M. S., et al. (2023). “Thermal Image-Based Emotion Recognition Using Machine Learning: A Comparative Analysis.” IEEE Transactions on Affective Computing. Cited by 18 articles.

Pavel, M. S., et al. (2022). “Deep Learning Approaches for Feature Extraction in Thermal Imaging.” Journal of Artificial Intelligence Research. Cited by 25 articles.

Pavel, M. S., et al. (2021). “Augmentation Techniques for Thermal Image Databases: A Machine Learning Perspective.” International Conference on Machine Learning (ICML). Cited by 15 articles.

Pavel, M. S., et al. (2020). “Preprocessing Methods for Enhancing Thermal Image Classification.” IEEE International Conference on Computer Vision (ICCV). Cited by 12 articles.

Pavel, M. S., et al. (2019). “Support Vector Machines vs. Deep Learning: A Study on Emotion Recognition from Thermal Images.” Neural Networks Journal. Cited by 20 articles.

Pavel, M. S., et al. (2018). “Feature Selection Strategies for Thermal Image-Based Classification.” IEEE Transactions on Image Processing. Cited by 30 articles.

Pavel, M. S., et al. (2017). “Comparative Study of Machine Learning Models in Thermal Image-Based Recognition.” European Conference on Computer Vision (ECCV). Cited by 22 articles.

Conclusion

Marius Sorin Pavel has demonstrated a strong commitment to advancing research in thermal image-based machine learning and deep learning applications. His academic journey, professional experience, and extensive research contributions highlight his expertise in the field of electronics and AI. Through his work, he continues to push the boundaries of artificial intelligence, focusing on innovative techniques for feature extraction, classification, and dataset augmentation. His dedication to both teaching and research ensures that his contributions will have a lasting impact on academia and industry alike. With numerous publications, citations, and professional recognitions, he stands as a notable figure in his field, inspiring future researchers and professionals to explore the vast potential of AI-driven solutions in image processing and recognition.

Seyed Abolfazl Aghili | Artificial Intelligence | Best Review Paper Award

Dr. Seyed Abolfazl Aghili | Artificial Intelligence | Best Review Paper Award

Lecturer at Iran university of science and technology, Iran

Seyed Abolfazl Aghili is a dedicated researcher in the field of Civil Engineering, specializing in Construction Engineering and Management. With a strong academic foundation and expertise in artificial intelligence applications for engineering systems, he has contributed significantly to the field through research on resiliency, risk management, and sustainability. His work integrates advanced computational methods with real-world construction challenges, aiming to enhance project decision-making and system efficiency.

Profile

Orcid

Education

Seyed Abolfazl Aghili pursued his Ph.D. in Civil Engineering with a focus on Construction Engineering and Management at the Iran University of Science and Technology (IUST) from 2019 to 2024. His doctoral research explored a framework for determining the long-term resilience of hospital air conditioning systems using artificial intelligence under the guidance of Dr. Mostafa Khanzadi. Prior to his Ph.D., he completed his M.Sc. in Civil Engineering at IUST (2013-2015), investigating employee selection methods in construction firms to optimize hiring processes. He obtained his B.Sc. in Civil Engineering from Isfahan University of Technology (2009-2013), focusing on structural analysis and design in his graduation project.

Experience

Throughout his academic career, Aghili has actively contributed to construction engineering through extensive research and project management. His expertise extends to applying machine learning and deep learning methodologies to engineering challenges, particularly in resilience assessment and risk management. He has also engaged in various industry-oriented projects involving Building Information Modeling (BIM) and decision-making systems for project managers. His academic background is complemented by hands-on experience in technical software such as MS Project, AutoCAD, and Primavera Risk Analysis, which enhances his ability to analyze and implement effective construction management strategies.

Research Interests

Aghili’s research spans multiple interdisciplinary domains, including machine learning and deep learning methods in construction engineering, resiliency, Building Information Modeling (BIM), human resource management in construction, decision-making systems for project managers, risk management, sustainability, and lean construction. His studies aim to optimize construction processes, enhance project resilience, and promote sustainable engineering practices.

Awards and Honors

  • Ranked 5th among 2200 participants in the Nationwide University Entrance Exam for Ph.D. in Iran (2019).
  • Ranked 2nd among all Construction Management students at Iran University of Science and Technology (2013-2015).
  • Ranked 220th among 32,663 participants (Top 1%) in the Nationwide University Entrance Exam for the M.Sc. program in Iran (2013).

Publications

“Artificial Intelligence Approaches to Energy Management in HVAC Systems: A Systematic Review.” Journal of Buildings, Vol. 15, No. 7 (2025): 1008.

“Data-driven approach to fault detection for hospital HVAC system.” Journal of Smart and Sustainable Built Environment, ahead-of-print (2024).

“Feasibility Study of Using BIM in Construction Site Decision Making in Iran.” International Conference on Civil Engineering, Architecture and Urban Infrastructure, July 2015, Tabriz, Iran.

“Review of Digital Imaging Technology in Safety Management in the Construction Industry.” 1st National Conference on Development of Civil Engineering, Architecture, Electricity and Mechanical in Iran, December 2014.

“The Role of Insurance Companies in Managing the Crisis After Earthquake.” 1st National Congress of Engineering, Construction and Evaluation of Development Projects, May 2013, Gorgan, Iran.

“The Need for a New Approach to Pre-crisis and Post-crisis Management of Earthquake.” 1st National Conference on Seismology and Earthquake, February 2013, Yazd, Iran.

Conclusion

Seyed Abolfazl Aghili is a distinguished academic and researcher whose contributions to the field of construction engineering focus on integrating artificial intelligence with resiliency assessment and decision-making in project management. His work has been recognized in high-impact journals and conferences, demonstrating his commitment to advancing the construction industry. Through his research and professional endeavors, he continues to shape the future of sustainable and resilient engineering systems.

Olga Ovtšarenko | Machine Learning | Best Researcher Award

Ms. Olga Ovtšarenko | Machine Learning | Best Researcher Award

Lead Lecturer at TTK University of Applied Sciences, Lithuania

Olga Ovtšarenko is a distinguished academic and researcher in the field of computer sciences and engineering graphics. She has contributed significantly to engineering education, particularly in CAD design and computer graphics. With a career spanning over two decades, she has played a crucial role in advancing pedagogical approaches in digital learning environments. Her expertise extends to informatics and systems theory, where she integrates modern computational techniques into engineering education. Currently serving as a lead lecturer at TTK University of Applied Sciences, she continues to foster innovation in higher education through her research and academic contributions.

Profile

Orcid

Education

Olga Ovtšarenko holds a Master’s degree in Pedagogics with a specialization in vocational training didactics from Tallinn Pedagogical University, completed between 2002 and 2004. She previously earned an engineering diploma from Moscow State University of Design and Technologies in 1984, laying a strong foundation in technical sciences. Furthering her academic pursuits, she is currently a doctoral student in Informatics Engineering at VILNIUS TECH, Lithuania. Her educational journey underscores her dedication to interdisciplinary research and the integration of engineering and informatics in education.

Experience

Olga Ovtšarenko has amassed extensive experience in academia, beginning her tenure at TTK University of Applied Sciences in 2008. Over the years, she has taught subjects such as descriptive geometry, engineering graphics, and computer graphics, shaping the next generation of engineers. Since 2020, she has served as the lead lecturer at the university’s Centre for Sciences, where she specializes in engineering graphics and CAD design. Her contributions to curriculum development and instructional methodologies have had a profound impact on technical education, emphasizing the importance of modern computational tools in engineering disciplines.

Research Interests

Her research interests are centered on informatics, systems theory, and engineering education. She explores the applications of machine learning and artificial intelligence in educational settings, aiming to optimize e-learning environments. Additionally, she investigates the role of Building Information Modeling (BIM) in engineering education, focusing on enhancing visualization skills and interactive learning experiences. Through international collaborations, she contributes to the advancement of sustainable and innovative learning methodologies, emphasizing the integration of digital technologies in technical education.

Awards

Olga Ovtšarenko has been recognized for her contributions to engineering education and research. She has received multiple accolades for her work in developing innovative educational methodologies and integrating computational technologies into teaching. Her participation in international academic conferences and research projects has further solidified her reputation as a leading figure in engineering education.

Selected Publications

Ovtšarenko, Olga; Safiulina, Elena (2025). “Computer-Driven Assessment of Weighted Attributes for E-Learning Optimization.” Computers, 14(116), 1−19. DOI: 10.3390/computers14040116.

Ovtšarenko, Olga (2024). “Opportunities of Machine Learning Algorithms for Education.” Discover Education, 3, 209. DOI: 10.1007/s44217-024-00313-5.

Ovtšarenko, O.; Makuteniene, D.; Ceponis, A. (2024). “Broad Horizons of International Cooperation to Ensure Sustainable and Innovative Learning.” 10th International Conference on Higher Education Advances: HEAd’24. Universidad Politecnica de Valencia, 904−911. DOI: 10.4995/HEAd24.2024.17051.

Ovtšarenko, Olga; Mill, Tarvo (2024). “Engineering Educational Program Design Using Modern BIM Technologies.” ICERI2024 Proceedings, 746−752. DOI: 10.21125/iceri.2024.0283.

Ovtšarenko, Olga (2023). “Opportunities for Automated E-Learning Path Generation in Adaptive E-Learning Systems.” IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), 1−4. DOI: 10.1109/eStream59056.2023.10134844.

Ovtšarenko, Olga; Makuteniene, Daiva; Suwal, Sunil (2023). “Use of BIM for Advanced Training Through Visualization and Implementation.” ICERI2023 Proceedings, 940−947. DOI: 10.21125/iceri.2023.0317.

Ovtšarenko, Olga; Eensaar, Agu (2022). “Methods to Improve the Quality of Design CAD Teaching for Technical Specialists.” Education and New Developments 2022, 231−233. DOI: 10.21125/ened.2022.0524.

Conclusion

Olga Ovtšarenko’s dedication to engineering education and digital learning innovation has positioned her as a prominent academic in her field. Her work in integrating informatics, AI, and BIM technologies into engineering curricula has greatly enhanced educational methodologies. Through her research, teaching, and international collaborations, she continues to contribute to the evolution of modern engineering education, ensuring students and professionals are equipped with cutting-edge skills for the future.

Shih-Wen Hsiao | Artificial Intelligence | Best Researcher Award

Prof. Dr. Shih-Wen Hsiao | Artificial Intelligence | Best Researcher Award

Emeritus Professor at National Cheng Kung University, Taiwan

Dr. Shih-Wen Hsiao is an Emeritus Professor in the Department of Industrial Design at National Cheng Kung University (NCKU), Tainan, Taiwan. He began his academic career at NCKU in 1991, achieving the rank of Full Professor in 1996 and Distinguished Professor in 2003, before being honored as Emeritus Professor in 2024. Prior to his tenure at NCKU, Dr. Hsiao amassed 13 years of industrial experience at China Steel Corporation (CSC), where he served in various engineering roles, culminating as a project management engineer. His extensive background bridges practical industry experience and academic excellence, contributing significantly to the field of industrial design.

Profile

Scopus

Education

Dr. Hsiao earned his Ph.D. in Mechanical Engineering from National Cheng Kung University in 1990. This advanced education provided a strong foundation for his subsequent research and teaching career, enabling him to integrate engineering principles with innovative design methodologies. His educational background has been instrumental in his development of interdisciplinary approaches that combine mechanical engineering with industrial design, particularly in the application of artificial intelligence to product development.

Experience

Throughout his tenure at NCKU, Dr. Hsiao held several key positions, including serving as the Chairman of the Department of Industrial Design from 1998 to 2001. His leadership during this period was pivotal in advancing the department’s academic programs and research initiatives. Before joining academia, his 13-year tenure at China Steel Corporation provided him with practical experience in mechanical design and project management, enriching his academic perspective with real-world industry insights. This blend of industrial and academic experience has been a cornerstone of his approach to education and research, fostering a pragmatic and innovative environment for students and colleagues alike.

Research Interests

Dr. Hsiao’s research interests are diverse and interdisciplinary, focusing on the application of fuzzy set theory, neural networks, genetic algorithms, and artificial intelligence in product design. He has also explored concurrent engineering, color planning, heat transfer analysis, and reverse engineering within the context of industrial design. His pioneering work in integrating fuzzy theory with product image and Kansei engineering has led to efficient methods for product form and color design, significantly impacting the field. Additionally, his research extends to the development of creative methodologies for product family design and innovative approaches for product and brand image transfer, underscoring his commitment to advancing design science.

Awards

Dr. Hsiao’s contributions have been widely recognized. He was listed among the world’s top 2% scientists from 2020 to 2023 and was ranked as the third-highest scholar in product design in 2024 by ScholarGPS. These accolades reflect his significant impact on the field and his dedication to advancing industrial design through research and innovation. His recognition as a leading scholar underscores the global relevance and influence of his work.

Publications

Dr. Hsiao has an extensive publication record, with 116 journal papers and 208 conference papers to his credit. His recent works include:

“An AIGC-empowered methodology to product color matching design” (2024, Displays), cited 4 times.

“Application of Fuzzy Logic in Decision-Making for Product Concept Design” (2024, Proceedings of the IEEE Eurasian Conference on Educational Innovation).

“Decision-Making on Power Bank Design with Human-Generated Power Using Fuzzy Theory” (2024, Proceedings of the IEEE Eurasian Conference on Educational Innovation).

“A consumer-oriented design thinking model for product design education” (2023, Interactive Learning Environments), cited 3 times.

These publications demonstrate his ongoing commitment to integrating artificial intelligence and fuzzy logic into product design, as well as his dedication to advancing design education.

Conclusion

Dr. Shih-Wen Hsiao’s career exemplifies the integration of engineering principles with innovative design methodologies. His extensive industrial experience, combined with his academic achievements, has positioned him as a leader in the field of industrial design. His pioneering research in applying artificial intelligence and fuzzy logic to product design has not only advanced academic understanding but also provided practical solutions to complex design challenges. Through his publications, leadership roles, and dedication to education, Dr. Hsiao has made lasting contributions that continue to influence and inspire the field of industrial design.

Youlong Lv | Artificial Intelligence | Best Researcher Award

Assoc. Prof. Dr. Youlong Lv | Artificial Intelligence | Best Researcher Award

Associate professor at Institute of Artificial Intelligence, Donghua University, China

Dr. Youlong Lyu is an associate professor at the Institute of Artificial Intelligence, Donghua University. With a strong background in intelligent production, scheduling, and quality control, he has contributed significantly to the field of artificial intelligence applications in industrial settings. He has led multiple national and municipal research projects focused on optimizing manufacturing processes, integrating AI into production systems, and improving efficiency through data-driven methodologies. His expertise spans across various aspects of industrial AI, from smart healthcare to intelligent scheduling systems, making a notable impact in both academic and practical applications.

Profile

Scopus

Education

Dr. Lyu earned his doctoral degree from Shanghai Jiao Tong University, where he specialized in intelligent manufacturing and AI-driven optimization. His academic journey has been marked by a deep exploration of machine learning, genetic algorithms, and big data analytics, which have fueled his research into enhancing production processes. His educational background has equipped him with the technical and analytical skills necessary to advance AI applications in industrial and manufacturing domains.

Experience

Dr. Lyu has a wealth of experience in AI-driven industrial applications, having undertaken pivotal roles in numerous research projects. As a principal investigator, he has spearheaded national and municipal initiatives aimed at enhancing workshop scheduling, production line efficiency, and aerospace product assembly. His work in intelligent control systems and data-driven decision-making has led to the development of innovative methodologies for optimizing manufacturing processes. Additionally, he has played a crucial role in consulting for industry projects, particularly in the aerospace sector, where his expertise in simulation and optimization has been instrumental in improving production line operations.

Research Interests

Dr. Lyu’s research interests lie at the intersection of artificial intelligence, smart manufacturing, and industrial optimization. He focuses on intelligent production scheduling, AI-driven quality control, and big data applications in manufacturing. His work seeks to bridge the gap between theoretical AI models and practical industrial applications, leveraging machine learning algorithms, genetic regulatory networks, and deep reinforcement learning to optimize complex manufacturing processes. Additionally, he has contributed to research in smart healthcare, applying AI techniques to enhance medical imaging and diagnostic accuracy.

Awards

Dr. Lyu’s contributions to AI in industrial applications have been widely recognized. He has received multiple grants from prestigious institutions, including the Natural Science Foundation of China and the Shanghai Municipal Commission of Science and Technology. His work has also been acknowledged through awards in AI research and industrial big data analytics. As a dedicated scholar, he continues to push the boundaries of AI applications in manufacturing, earning accolades for his innovative research and impactful contributions to the field.

Publications

Zuo L, Zhang J, Lyu Y, et al. Multi-graph attention temporal convolutional network-based radius prediction in three-roller bending of thin-walled parts. Advanced Engineering Informatics, 2025. (Cited by X articles)

Yang B, Zhang J, Lyu Y, et al. Automatic computed tomography image segmentation method for liver tumor. Quantitative Imaging in Medicine and Surgery, 2025. (Cited by X articles)

Zhang J, Yang B, Lyu Y. Multi-objective optimization based robotic path planning for CT data reconstruction. Journal of Radiation Research and Applied Sciences, 2024. (Cited by X articles)

Lyu Y, Zhang J, Zuo L. Genetic regulatory network-based optimization of master production scheduling. International Journal of Bio-Inspired Computation, 2022. (Cited by X articles)

Lyu Y, Ji Q, Liu Y, Zhang J. Data-driven sensitivity analysis of contact resistance for fuel cells. Measurement and Control, 2020. (Cited by X articles)

Lyu Y, Zhang J. Genetic regulatory network-based method for sequencing in mixed-model assembly lines. Mathematical Biosciences and Engineering, 2019. (Cited by X articles)

Lyu Y, Qin W, Yang J, Zhang J. Adjustment mode decision using support vector data description. Industrial Management & Data Systems, 2018. (Cited by X articles)

Conclusion

Dr. Youlong Lyu’s research and contributions in AI-driven industrial optimization have made significant strides in intelligent manufacturing and quality control. His extensive experience in leading research projects, publishing in high-impact journals, and developing innovative AI applications has solidified his position as a leading expert in industrial artificial intelligence. His commitment to advancing smart manufacturing and AI-integrated production systems continues to drive progress in the field, setting new benchmarks for AI applications in industrial settings.

Anna Pokrovskaya | Artificial Intelligence | Best Researcher Award

Assist. Prof. Dr. Anna Pokrovskaya | Artificial Intelligence | Best Researcher Award

Ph.D. in Law at Peoples’ Friendship University of Russia, Russia

Anna Pokrovskaya is a dedicated legal professional and researcher specializing in intellectual property law, with extensive experience in patent practices and international legal frameworks. She is currently pursuing her Ph.D. in Law at the Peoples’ Friendship University of Russia, focusing on civil law, procedure, and private international law. Over the years, she has contributed significantly to academia, legal research, and intellectual property management through various roles in leading institutions and organizations. Her work encompasses research, legal consultancy, and publication activities, making her a prominent voice in the legal field.

Profile

Orcid

Education

Anna Pokrovskaya holds multiple degrees in law and intellectual property management. She earned her Bachelor of Laws (LLB) from the Peoples’ Friendship University of Russia, specializing in international law. She further pursued her Master’s degree in Intellectual Property Management at Bauman Moscow State Technical University. Additionally, she completed an LLM in Intellectual Property Law at the University of Turin, a joint program with WIPO. Continuing her studies, she is currently completing another LLM in Intellectual Property Law at Tongji University in Shanghai, also in collaboration with WIPO. Her academic journey demonstrates her commitment to understanding global legal perspectives and contributing to legal scholarship.

Experience

Anna has held various roles in prominent institutions. She worked as a Leading Specialist at the Federal Institute of Industrial Property (FIPS), where she contributed to enhancing awareness about intellectual property publication opportunities. She later served as a Lawyer specializing in labor law at LLC Brunel Russia. Since 2020, she has been working as an Expert in Patent Practice at the IP Center “Skolkovo,” dealing with national phase patent applications and collaborating with international clients. In 2024, she joined the Peoples’ Friendship University of Russia as a Research Assistant, contributing to grant projects and academic research. She is set to become an Assistant at the same university in 2025.

Research Interests

Anna’s research interests focus on intellectual property rights, intermediary liability, copyright infringement, and legal frameworks governing e-commerce platforms. She explores how AI influences intellectual property protection and enforcement on digital marketplaces. Her work extends to comparative legal studies, analyzing trademark and copyright laws in different jurisdictions, including Russia, China, and the European Union. Through her research, she seeks to develop effective legal mechanisms to address contemporary intellectual property challenges in digital and cross-border environments.

Awards

Anna has received several grants and academic recognitions. She is a recipient of the RUDN Development Programme “Priority-2030” grant, supporting postgraduate research potential. In 2024, she secured funding under the Russian Science Foundation Grant for research on procedural mechanisms for suppressing online copyright infringements. Additionally, she won individual financial support for participating in international and Russian scientific and technical events. She has also been awarded grants from the Presidential Program and RUDN University for her contributions to the field of intellectual property law.

Publications

Pokrovskaya, A. (2022). “Trademark Infringement on E-commerce Sites.” International Scientific Legal Forum in memory of Prof. V.K. Puchinsky.

Pokrovskaya, A. (2023). “Liability for Trademark Infringement on e-Commerce Marketplaces.” International Journal of Law in Changing World.

Pokrovskaya, A. (2023). “The Distribution of Liability in Trademark Infringement on E-commerce Marketplaces.” Fifth IP & Innovation Researchers of Asia Conference.

Pokrovskaya, A. (2024). “AI-driven Disruption: Trademark Infringement on E-commerce Marketplaces in China.” Russian Law Journal.

Pokrovskaya, A. (2024). “Principles of Intermediaries’ Liability in the Online Environment: The Issue of Online Self-Regulation.” BIO Web of Conferences.

Pokrovskaya, A. (2024). “Protection of Trademark Rights on E-commerce Platforms: An Updated Outlook.” Journal of Comprehensive Business Administration Research.

Pokrovskaya, A. (2024). “Infringement of Intellectual Property Rights on E-commerce Trading Platforms.” Eurasian Law Journal.

Conclusion

Anna Pokrovskaya’s contributions to the field of intellectual property law are remarkable, combining academic research, practical expertise, and international collaboration. Her work on trademark and copyright infringement on digital platforms is highly relevant in today’s rapidly evolving technological landscape. With her ongoing research, publications, and involvement in academic and legal discussions, she continues to shape the discourse on intellectual property rights and their enforcement in the digital age.