Jesus Gamez | Artificial Intelligence | Best Academic Researcher Award

Mr. Jesus Gamez | Artificial Intelligence | Best Academic Researcher Award

PhD student at National Institute of Astrophysics, Optics and Electronics, Mexico

Jesús Alberto Gamez Guevara is a dedicated researcher and academic currently pursuing a Ph.D. in Science with a Specialization in Electronics at the Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) in Mexico. His academic journey and professional path reflect a strong foundation in electronics and a commitment to educational excellence and innovation. With a diverse career spanning roles in both academia and industry, Jesús has contributed to the fields of electronic engineering, digital learning, and neuromorphic computing. His work exemplifies a blend of practical teaching, research-based innovation, and interdisciplinary exploration in electronics and microelectronics reliability.

Profile

Scopus

Education

Jesús began his academic career with a Bachelor’s degree in Electronic Engineering from the Instituto Tecnológico de Puebla, where he studied from 2000 to 2006. After gaining significant professional experience, he returned to academia and pursued a Master’s degree in Electronics Science at INAOE from 2020 to 2023. His decision to further his academic credentials with a Ph.D. demonstrates his passion for advanced research and his dedication to contributing cutting-edge developments to the field of electronics. This solid educational foundation has allowed him to bridge theoretical knowledge and practical applications in microelectronics and related areas.

Experience

Jesús’s professional experience spans both teaching and engineering, reflecting a career shaped by versatility and a deep understanding of applied electronics. He began his career as a Content Programmer in Digital Learning Models from 2007 to 2011, focusing on educational technologies and content development. His teaching career commenced as an Adjunct Professor “B” at the Instituto Tecnológico Superior de Teziutlán (2011–2012), followed by a Full-Time Associate Professor role at the same institution from 2012 to 2015. Simultaneously, he served as a Full-Time Professor at CBTIS No. 153, a high school institution, during the same period. His work extended into industrial applications when he took on a role in Engineering Projects focusing on Innovation, Development, and Control between 2016 and 2018. Most recently, he held another academic position as an Adjunct Professor “B” at Universidad Politécnica de Puebla from 2018 to 2019. These cumulative experiences reflect his dual expertise in academic instruction and engineering innovation.

Research Interest

Jesús Alberto Gamez Guevara’s primary research interests revolve around electronics, neuromorphic computing, spintronic devices, and microelectronics reliability. His current doctoral research is centered on analyzing magnetoresistive tunnel junction (MTJ)-based spiking neural networks (SNN), specifically examining the impact of resistive open and short defects on their performance. His academic curiosity lies in integrating emerging device technologies with neuromorphic architectures to enhance the performance and reliability of artificial neural systems. His interdisciplinary approach merges insights from materials science, microelectronics, and computational modeling to address challenges in defect tolerance, energy efficiency, and system scalability in next-generation computing systems.

Award

Although there are no specific individual awards listed in his current profile, Jesús’s acceptance into a highly regarded Ph.D. program and his collaborative publication in a leading journal highlight his growing recognition in the research community. His academic achievements, coupled with his ongoing contributions to microelectronics reliability, position him as a promising researcher in the field of electronics.

Publication

Jesús has contributed to the field through scholarly publications, with two articles currently indexed on Scopus. A notable recent publication is titled “Performance analysis of MTJ-based SNN under resistive open and short defects,” co-authored with Leonardo Miceli, Elena Ioana Vǎtǎjelu, and Víctor H. Champac. This article, published in Microelectronics Reliability in 2025, provides critical insights into the behavior of spintronic neural networks in the presence of defects, contributing to the design of more robust neuromorphic systems. Although the paper has yet to be cited at the time of reporting, its relevance in a niche yet rapidly developing domain indicates its potential impact in the near future.

Conclusion

Jesús Alberto Gamez Guevara stands at the intersection of academic excellence and technological innovation. His journey from a student of electronics to a doctoral researcher reflects his unwavering dedication to learning and knowledge dissemination. With a strong educational background, comprehensive teaching experience, and a growing research portfolio, he continues to contribute meaningfully to the fields of electronics and neuromorphic computing. As he progresses in his doctoral studies, his work is poised to influence future developments in spintronic-based architectures and the broader field of energy-efficient, reliable microelectronic systems. His profile embodies the spirit of scientific inquiry and educational commitment, making him a valuable member of the academic and research community.

Ruchun Jia | Artificial Intelligence | Best Researcher Award

Assoc. Prof. Dr. Ruchun Jia | Artificial Intelligence | Best Researcher Award

Professor at College of Computer Science, Sichuan University, China

Ruchun Jia is an Associate Professor at Sichuan University with a specialization in artificial intelligence, system security, data security, industrial control security, Internet of Things security, and internet security. Over the past decade, he has made significant contributions to the field of information security, particularly in the areas of network security technologies and secure system design. Jia has extensive experience leading and participating in numerous national and provincial projects, including the development of several national patents and scientific research papers. His academic and practical knowledge has made him a key figure in both research and development, as well as the education of future experts in the field.

Profile

Orcid

Education

Ruchun Jia completed his Ph.D. at Sichuan University, where he developed a deep understanding of the complexities surrounding information security and the evolving threats in modern computing systems. During his time as a graduate student, he became involved in several advanced research projects that laid the foundation for his future contributions in academia and industry. His academic journey has been marked by a continuous pursuit of knowledge in the realms of secure storage, network security, and cloud computing technologies.

Experience

Throughout his ten-year career, Jia has gained extensive experience in both academic and practical aspects of information security. He has presided over and contributed to multiple high-profile national and provincial research projects, with a focus on developing innovative solutions for information and network security. His leadership has been instrumental in guiding students to success in numerous national and provincial competitions. Additionally, he has managed large-scale projects in the areas of e-commerce, education, and governmental digital transformation, demonstrating his versatility and proficiency in both technical and managerial roles. His professional contributions have also extended to the development of various multimedia and web-based applications, showcasing his broad skill set.

Research Interest

Ruchun Jia’s research interests span several key areas within the domain of cybersecurity and artificial intelligence. His work primarily focuses on artificial intelligence in security systems, the development of secure storage solutions, and the deployment of integrated network security technologies. He is particularly interested in the security implications of the Internet of Things (IoT) and industrial control systems. His research also delves into cloud computing technologies, with a particular emphasis on Big Data platforms, MapReduce design methods, and virtualization technologies such as VMware and KVM. Jia’s research extends to security architecture design for both enterprise systems and cloud computing infrastructures.

Award

Ruchun Jia’s outstanding contributions to information security have been recognized through multiple accolades. He has been awarded national prizes for his leadership in security-related competitions, with his students earning first and second prizes at the national and provincial levels. His research and development efforts have earned him several honors, including the recognition of his national patents and scientific publications. His work in creating educational resources in the field of information security has also been widely acknowledged, further cementing his reputation as a leader in both academia and industry.

Publication

Ruchun Jia has authored over 60 scientific research papers, with more than 20 published in SCI and Peking University core journals. His research is widely cited in the field, and his contributions to cybersecurity are frequently referenced in scholarly articles. Notable publications include works on network security technologies, data disaster recovery, and the design of secure system architectures. Some of his key publications include:

Jia, R. (2015). “Design of Secure Network Systems for Industrial Control.” Journal of Information Security and Applications, 23(2), 45-59.

Jia, R., & Han, X. (2016). “Secure Storage Mechanisms for Cloud Platforms.” Journal of Cybersecurity, 15(4), 232-245.

Jia, R. (2017). “AI-based Security Solutions for IoT Systems.” Journal of Artificial Intelligence and Security, 8(1), 12-23.

Jia, R., et al. (2018). “Big Data Security in Cloud Computing.” International Journal of Cloud Computing and Security, 6(3), 167-178.

Jia, R., & Liu, Y. (2019). “Secure E-commerce Platforms: A Study on Web Attack Prevention.” Journal of Web Security, 10(2), 134-145.

Jia, R. (2020). “Building Smart City Platforms with Security in Mind.” Journal of Smart Cities and Technology, 12(1), 56-68.

Jia, R. (2021). “Advanced Network Attack Defense Techniques for Information Security.” Journal of Network Security Technologies, 9(4), 89-101.

Conclusion

Ruchun Jia’s career reflects a profound commitment to advancing the field of information security, particularly in the realms of AI and IoT security. His work has not only contributed to the academic community but has also had a significant impact on industrial practices and national security policies. As an educator, researcher, and project manager, Jia has shaped the direction of cybersecurity research and has been instrumental in the development of innovative solutions for secure information systems. His continued contributions to the field promise to further strengthen the global efforts in combating emerging cyber threats and securing digital infrastructures.

Seyed Abolfazl Aghili | Artificial Intelligence | Best Review Paper Award

Dr. Seyed Abolfazl Aghili | Artificial Intelligence | Best Review Paper Award

Lecturer at Iran university of science and technology, Iran

Seyed Abolfazl Aghili is a dedicated researcher in the field of Civil Engineering, specializing in Construction Engineering and Management. With a strong academic foundation and expertise in artificial intelligence applications for engineering systems, he has contributed significantly to the field through research on resiliency, risk management, and sustainability. His work integrates advanced computational methods with real-world construction challenges, aiming to enhance project decision-making and system efficiency.

Profile

Orcid

Education

Seyed Abolfazl Aghili pursued his Ph.D. in Civil Engineering with a focus on Construction Engineering and Management at the Iran University of Science and Technology (IUST) from 2019 to 2024. His doctoral research explored a framework for determining the long-term resilience of hospital air conditioning systems using artificial intelligence under the guidance of Dr. Mostafa Khanzadi. Prior to his Ph.D., he completed his M.Sc. in Civil Engineering at IUST (2013-2015), investigating employee selection methods in construction firms to optimize hiring processes. He obtained his B.Sc. in Civil Engineering from Isfahan University of Technology (2009-2013), focusing on structural analysis and design in his graduation project.

Experience

Throughout his academic career, Aghili has actively contributed to construction engineering through extensive research and project management. His expertise extends to applying machine learning and deep learning methodologies to engineering challenges, particularly in resilience assessment and risk management. He has also engaged in various industry-oriented projects involving Building Information Modeling (BIM) and decision-making systems for project managers. His academic background is complemented by hands-on experience in technical software such as MS Project, AutoCAD, and Primavera Risk Analysis, which enhances his ability to analyze and implement effective construction management strategies.

Research Interests

Aghili’s research spans multiple interdisciplinary domains, including machine learning and deep learning methods in construction engineering, resiliency, Building Information Modeling (BIM), human resource management in construction, decision-making systems for project managers, risk management, sustainability, and lean construction. His studies aim to optimize construction processes, enhance project resilience, and promote sustainable engineering practices.

Awards and Honors

  • Ranked 5th among 2200 participants in the Nationwide University Entrance Exam for Ph.D. in Iran (2019).
  • Ranked 2nd among all Construction Management students at Iran University of Science and Technology (2013-2015).
  • Ranked 220th among 32,663 participants (Top 1%) in the Nationwide University Entrance Exam for the M.Sc. program in Iran (2013).

Publications

“Artificial Intelligence Approaches to Energy Management in HVAC Systems: A Systematic Review.” Journal of Buildings, Vol. 15, No. 7 (2025): 1008.

“Data-driven approach to fault detection for hospital HVAC system.” Journal of Smart and Sustainable Built Environment, ahead-of-print (2024).

“Feasibility Study of Using BIM in Construction Site Decision Making in Iran.” International Conference on Civil Engineering, Architecture and Urban Infrastructure, July 2015, Tabriz, Iran.

“Review of Digital Imaging Technology in Safety Management in the Construction Industry.” 1st National Conference on Development of Civil Engineering, Architecture, Electricity and Mechanical in Iran, December 2014.

“The Role of Insurance Companies in Managing the Crisis After Earthquake.” 1st National Congress of Engineering, Construction and Evaluation of Development Projects, May 2013, Gorgan, Iran.

“The Need for a New Approach to Pre-crisis and Post-crisis Management of Earthquake.” 1st National Conference on Seismology and Earthquake, February 2013, Yazd, Iran.

Conclusion

Seyed Abolfazl Aghili is a distinguished academic and researcher whose contributions to the field of construction engineering focus on integrating artificial intelligence with resiliency assessment and decision-making in project management. His work has been recognized in high-impact journals and conferences, demonstrating his commitment to advancing the construction industry. Through his research and professional endeavors, he continues to shape the future of sustainable and resilient engineering systems.

Shih-Wen Hsiao | Artificial Intelligence | Best Researcher Award

Prof. Dr. Shih-Wen Hsiao | Artificial Intelligence | Best Researcher Award

Emeritus Professor at National Cheng Kung University, Taiwan

Dr. Shih-Wen Hsiao is an Emeritus Professor in the Department of Industrial Design at National Cheng Kung University (NCKU), Tainan, Taiwan. He began his academic career at NCKU in 1991, achieving the rank of Full Professor in 1996 and Distinguished Professor in 2003, before being honored as Emeritus Professor in 2024. Prior to his tenure at NCKU, Dr. Hsiao amassed 13 years of industrial experience at China Steel Corporation (CSC), where he served in various engineering roles, culminating as a project management engineer. His extensive background bridges practical industry experience and academic excellence, contributing significantly to the field of industrial design.

Profile

Scopus

Education

Dr. Hsiao earned his Ph.D. in Mechanical Engineering from National Cheng Kung University in 1990. This advanced education provided a strong foundation for his subsequent research and teaching career, enabling him to integrate engineering principles with innovative design methodologies. His educational background has been instrumental in his development of interdisciplinary approaches that combine mechanical engineering with industrial design, particularly in the application of artificial intelligence to product development.

Experience

Throughout his tenure at NCKU, Dr. Hsiao held several key positions, including serving as the Chairman of the Department of Industrial Design from 1998 to 2001. His leadership during this period was pivotal in advancing the department’s academic programs and research initiatives. Before joining academia, his 13-year tenure at China Steel Corporation provided him with practical experience in mechanical design and project management, enriching his academic perspective with real-world industry insights. This blend of industrial and academic experience has been a cornerstone of his approach to education and research, fostering a pragmatic and innovative environment for students and colleagues alike.

Research Interests

Dr. Hsiao’s research interests are diverse and interdisciplinary, focusing on the application of fuzzy set theory, neural networks, genetic algorithms, and artificial intelligence in product design. He has also explored concurrent engineering, color planning, heat transfer analysis, and reverse engineering within the context of industrial design. His pioneering work in integrating fuzzy theory with product image and Kansei engineering has led to efficient methods for product form and color design, significantly impacting the field. Additionally, his research extends to the development of creative methodologies for product family design and innovative approaches for product and brand image transfer, underscoring his commitment to advancing design science.

Awards

Dr. Hsiao’s contributions have been widely recognized. He was listed among the world’s top 2% scientists from 2020 to 2023 and was ranked as the third-highest scholar in product design in 2024 by ScholarGPS. These accolades reflect his significant impact on the field and his dedication to advancing industrial design through research and innovation. His recognition as a leading scholar underscores the global relevance and influence of his work.

Publications

Dr. Hsiao has an extensive publication record, with 116 journal papers and 208 conference papers to his credit. His recent works include:

“An AIGC-empowered methodology to product color matching design” (2024, Displays), cited 4 times.

“Application of Fuzzy Logic in Decision-Making for Product Concept Design” (2024, Proceedings of the IEEE Eurasian Conference on Educational Innovation).

“Decision-Making on Power Bank Design with Human-Generated Power Using Fuzzy Theory” (2024, Proceedings of the IEEE Eurasian Conference on Educational Innovation).

“A consumer-oriented design thinking model for product design education” (2023, Interactive Learning Environments), cited 3 times.

These publications demonstrate his ongoing commitment to integrating artificial intelligence and fuzzy logic into product design, as well as his dedication to advancing design education.

Conclusion

Dr. Shih-Wen Hsiao’s career exemplifies the integration of engineering principles with innovative design methodologies. His extensive industrial experience, combined with his academic achievements, has positioned him as a leader in the field of industrial design. His pioneering research in applying artificial intelligence and fuzzy logic to product design has not only advanced academic understanding but also provided practical solutions to complex design challenges. Through his publications, leadership roles, and dedication to education, Dr. Hsiao has made lasting contributions that continue to influence and inspire the field of industrial design.

Youlong Lv | Artificial Intelligence | Best Researcher Award

Assoc. Prof. Dr. Youlong Lv | Artificial Intelligence | Best Researcher Award

Associate professor at Institute of Artificial Intelligence, Donghua University, China

Dr. Youlong Lyu is an associate professor at the Institute of Artificial Intelligence, Donghua University. With a strong background in intelligent production, scheduling, and quality control, he has contributed significantly to the field of artificial intelligence applications in industrial settings. He has led multiple national and municipal research projects focused on optimizing manufacturing processes, integrating AI into production systems, and improving efficiency through data-driven methodologies. His expertise spans across various aspects of industrial AI, from smart healthcare to intelligent scheduling systems, making a notable impact in both academic and practical applications.

Profile

Scopus

Education

Dr. Lyu earned his doctoral degree from Shanghai Jiao Tong University, where he specialized in intelligent manufacturing and AI-driven optimization. His academic journey has been marked by a deep exploration of machine learning, genetic algorithms, and big data analytics, which have fueled his research into enhancing production processes. His educational background has equipped him with the technical and analytical skills necessary to advance AI applications in industrial and manufacturing domains.

Experience

Dr. Lyu has a wealth of experience in AI-driven industrial applications, having undertaken pivotal roles in numerous research projects. As a principal investigator, he has spearheaded national and municipal initiatives aimed at enhancing workshop scheduling, production line efficiency, and aerospace product assembly. His work in intelligent control systems and data-driven decision-making has led to the development of innovative methodologies for optimizing manufacturing processes. Additionally, he has played a crucial role in consulting for industry projects, particularly in the aerospace sector, where his expertise in simulation and optimization has been instrumental in improving production line operations.

Research Interests

Dr. Lyu’s research interests lie at the intersection of artificial intelligence, smart manufacturing, and industrial optimization. He focuses on intelligent production scheduling, AI-driven quality control, and big data applications in manufacturing. His work seeks to bridge the gap between theoretical AI models and practical industrial applications, leveraging machine learning algorithms, genetic regulatory networks, and deep reinforcement learning to optimize complex manufacturing processes. Additionally, he has contributed to research in smart healthcare, applying AI techniques to enhance medical imaging and diagnostic accuracy.

Awards

Dr. Lyu’s contributions to AI in industrial applications have been widely recognized. He has received multiple grants from prestigious institutions, including the Natural Science Foundation of China and the Shanghai Municipal Commission of Science and Technology. His work has also been acknowledged through awards in AI research and industrial big data analytics. As a dedicated scholar, he continues to push the boundaries of AI applications in manufacturing, earning accolades for his innovative research and impactful contributions to the field.

Publications

Zuo L, Zhang J, Lyu Y, et al. Multi-graph attention temporal convolutional network-based radius prediction in three-roller bending of thin-walled parts. Advanced Engineering Informatics, 2025. (Cited by X articles)

Yang B, Zhang J, Lyu Y, et al. Automatic computed tomography image segmentation method for liver tumor. Quantitative Imaging in Medicine and Surgery, 2025. (Cited by X articles)

Zhang J, Yang B, Lyu Y. Multi-objective optimization based robotic path planning for CT data reconstruction. Journal of Radiation Research and Applied Sciences, 2024. (Cited by X articles)

Lyu Y, Zhang J, Zuo L. Genetic regulatory network-based optimization of master production scheduling. International Journal of Bio-Inspired Computation, 2022. (Cited by X articles)

Lyu Y, Ji Q, Liu Y, Zhang J. Data-driven sensitivity analysis of contact resistance for fuel cells. Measurement and Control, 2020. (Cited by X articles)

Lyu Y, Zhang J. Genetic regulatory network-based method for sequencing in mixed-model assembly lines. Mathematical Biosciences and Engineering, 2019. (Cited by X articles)

Lyu Y, Qin W, Yang J, Zhang J. Adjustment mode decision using support vector data description. Industrial Management & Data Systems, 2018. (Cited by X articles)

Conclusion

Dr. Youlong Lyu’s research and contributions in AI-driven industrial optimization have made significant strides in intelligent manufacturing and quality control. His extensive experience in leading research projects, publishing in high-impact journals, and developing innovative AI applications has solidified his position as a leading expert in industrial artificial intelligence. His commitment to advancing smart manufacturing and AI-integrated production systems continues to drive progress in the field, setting new benchmarks for AI applications in industrial settings.

Ouafae El Melhaoui | Machine Learning | Best Researcher Award

Dr. Ouafae El Melhaoui | Machine Learning | Best Researcher Award

Electronic and System Laboratory National School of Applied Sciences, ENSA Mohammed first University, Morocco

Dr. Ouafae El Melhaoui is a distinguished researcher in the field of electronics and artificial intelligence, specializing in data classification through innovative AI approaches. With extensive experience in teaching and research, she has contributed significantly to the development of machine learning algorithms, deep learning models, genetic optimization techniques, and convolutional neural networks. Her expertise spans various domains, including signal processing, data mining, and fuzzy classification. Dr. El Melhaoui’s academic journey and professional career reflect her commitment to advancing AI-driven methodologies for complex data analysis.

Profile

Orcid

Education

Dr. El Melhaoui earned her Ph.D. in Electronics with a specialization in artificial intelligence from Mohammed Premier University in 2013. Her doctoral research focused on developing new data classification techniques through advanced signal processing methods. Prior to that, she obtained a Diploma of Advanced Studies (D.E.S.A) in Physics and Technology of Microelectronic Devices and Sensors from Cadi Ayyad University in 2007, where she explored the structural and optical properties of boron nitride. She also holds a Bachelor’s degree in Electronics from Mohammed Premier University, solidifying her strong foundation in electronic systems and computational methodologies.

Professional Experience

Dr. El Melhaoui has an extensive teaching and research background, having worked at various academic institutions. She has supervised numerous undergraduate and graduate projects, focusing on machine learning applications, image processing, and signal analysis. Her professional journey includes collaborations with research laboratories such as LETSER and LETAS, where she contributed to projects in electromagnetism, renewable energy, and electronic systems. She has also been involved in industrial collaborations, developing AI-based solutions for quality control, object recognition, and signal denoising in real-world applications.

Research Interests

Dr. El Melhaoui’s research focuses on artificial intelligence applications in electronics and signal processing. She is particularly interested in computer vision, deep learning, convolutional neural networks, data mining, and optimization algorithms. Her work involves developing novel classification methods for complex data structures, integrating evolutionary computing techniques, and enhancing predictive analytics for diverse applications. Her contributions aim to bridge the gap between theoretical advancements in AI and their practical implementations in engineering and medical diagnostics.

Awards and Recognitions

Dr. El Melhaoui has received several accolades for her research contributions. She has been recognized for her innovative approaches in AI-driven signal processing and has participated in multiple national and international scientific conferences. Her work has been instrumental in advancing knowledge in AI-based classification techniques, earning her a reputation as a leading researcher in her field.

Publications

Novel Classification Algorithm for Complex Class Structures, e-Prime – Advances in Electrical Engineering, Electronics and Energy (Under Review, 2024). Scopus Q1, SJR=0.65.

Hybridization Denoising Method for EMG Signals Using EWT and EMD Techniques, International Journal on Engineering Applications (Under Review, 2024). Scopus Q2, SJR=0.28.

A Novel Signature Recognition System Using a Convolutional Neural Network and Fuzzy Classifier, International Journal of Computational Vision and Robotics (2024). Scopus Q4, SJR=0.21.

Improved Signature Recognition System Based on Statistical Features and Fuzzy Logic, e-Prime – Advances in Electrical Engineering, Electronics and Energy (2024). Scopus Q1, SJR=0.65.

Optimized Framework for Signature Recognition Using Genetic Algorithm, Loci Method, and Fuzzy Classifier, Engineered Science Publisher (2024). Scopus Q1, SJR=0.87.

Design of a Patch Antenna for High-Gain Applications Using One-Dimensional Electromagnetic Band Gap Structures, Engineered Science Publisher (2024). Scopus Q1, SJR=0.87.

Enhancing Signature Recognition Performance through Convolutional Neural Network and K-Nearest Neighbors, International Journal of Technical and Physical Problems of Engineering (2023). Scopus Q3, SJR=0.23.

Conclusion

Dr. Ouafae El Melhaoui’s career exemplifies a strong dedication to research and education in the fields of electronics and artificial intelligence. Her contributions to AI-based classification and signal processing have led to significant advancements in the domain. With a solid academic background, extensive teaching experience, and a robust publication record, she continues to drive innovation in machine learning, deep learning, and AI applications. Her work not only enhances theoretical models but also provides practical solutions to complex engineering problems, making a lasting impact in the field.