Sabbir Ahmed Udoy | Artificial Intelligence | Best Researcher Award

Mr. Sabbir Ahmed Udoy | Artificial Intelligence | Best Researcher Award

Rajshahi University of Engineering & Technology, Bangladesh

Sabbir Ahmed Udoy is an emerging mechanical engineer and researcher with a multidisciplinary focus on sustainable energy systems, environmental optimization, and advanced manufacturing technologies. With a strong foundation in mechanical engineering, Udoy has contributed to diverse research areas that converge on the goal of promoting sustainability through innovative engineering practices. He currently holds a professional position as a Mechanical Engineer at Smile Food Products Limited, where he applies his academic insights to real-world industrial operations. Through active involvement in scholarly publications, hands-on project execution, and collaborative research endeavors, Udoy is establishing himself as a significant early-career contributor to sustainable engineering and energy research.

Profile

Google Scholar

Education

Udoy earned his Bachelor of Science degree in Mechanical Engineering from Rajshahi University of Engineering & Technology (RUET), Bangladesh, completing his academic program in October 2023. He graduated with a CGPA of 3.24 out of 4.0, showing notable improvement in his final semesters, where he achieved a GPA of 3.40 over the last 60 credits. Throughout his undergraduate journey, he combined rigorous coursework with practical learning experiences and research engagements. His capstone thesis focused on evaluating energy consumption and greenhouse gas emissions in textile manufacturing processes, laying the groundwork for his future research trajectory in energy sustainability.

Experience

Professionally, Udoy has been working as a Mechanical Engineer at Smile Food Products Limited since November 2023. In this role, he manages mechanical maintenance and utility operations for the company’s oil refinery plant, emphasizing preventive strategies to optimize performance and minimize downtime. Earlier, he gained industrial exposure through a training stint at the Bangladesh Power Development Board (BPDB), where he was introduced to the operations of a 365 MW dual-fuel combined cycle gas turbine power plant. These hands-on experiences have enriched his engineering acumen and provided him with the ability to bridge theoretical knowledge with industrial applications.

Research Interest

Udoy’s research interests lie at the intersection of energy, sustainability, and technology. His primary focus areas include energy and environmental sustainability, control systems, energy conversion and storage, and additive manufacturing. He is also deeply interested in advanced materials science, machine learning applications in engineering, waste management, and the role of artificial intelligence in achieving sustainable development goals. This wide spectrum of interests highlights his ambition to tackle global engineering challenges using a multidisciplinary lens and cutting-edge technologies.

Award

Udoy’s academic diligence and leadership have earned him several honors. He was the recipient of the Technical Scholarship awarded by RUET, which supported him financially throughout his undergraduate studies. Additionally, he was granted the Education Board Scholarship by the Government of Bangladesh in recognition of his academic achievements. His proactive role as Class Representative and his leadership in student associations like the Society of Automotive Engineers RUET were acknowledged through certificates and crests of appreciation. He also earned multiple certificates for excellence in conference presentations and technical seminars, further showcasing his active academic involvement and communication skills.

Publication

Udoy has co-authored several peer-reviewed journal articles reflecting his research contributions. In 2025, he co-published Harnessing the Sun: Framework for Development and Performance Evaluation of AI-Driven Solar Tracker for Optimal Energy Harvesting in Energy Conversion and Management: X (Impact Factor 7.1), focusing on AI-based solar optimization. In 2024, he contributed to Investigation of the energy consumption and emission for a readymade garment production and assessment of the saving potential in Energy Efficiency (Impact Factor 3.2), emphasizing sustainable apparel manufacturing. Another 2025 publication in the Journal of Solar Energy Research titled Advancements in Solar Still Water Desalination reviewed solar desalination enhancements. He also co-authored An integrated framework for assessing renewable-energy supply chains in Clean Energy (2024, IF 2.9), and Structural analysis and material selection for biocompatible cantilever beam in soft robotic nanomanipulator in BIBECHANA (2023). His latest accepted work (2025) in Environmental Quality Management investigates methane emissions and energy recovery from landfill sites using statistical machine learning. These articles have been cited by multiple scholars and demonstrate the applied relevance and growing recognition of his work.

Conclusion

Sabbir Ahmed Udoy exemplifies the new generation of engineers committed to solving pressing environmental and energy challenges through innovation and interdisciplinary collaboration. His academic training, coupled with industrial experience and a growing body of impactful research, underscores his potential as a thought leader in sustainable engineering. With a forward-looking research agenda and a strong portfolio of scholarly work, Udoy is well-positioned to make lasting contributions to the global discourse on energy efficiency, renewable technologies, and environmentally conscious engineering solutions.

Shoujun Zhou | Artificial Intelligence | Best Scholar Award

Prof. Shoujun Zhou | Artificial Intelligence | Best Scholar Award

Research Professor at Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China

Prof. Shoujun Zhou is a distinguished biomedical engineering researcher and a leading figure in the field of medical robotics and image-guided therapy. He currently serves as a specially appointed research professor at the Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, and concurrently holds a professorship at the National Institute for High-Performance Medical Devices. Over his career, Prof. Zhou has led and contributed to numerous national and provincial-level scientific research projects, focusing on developing interventional surgical robotics and advanced medical imaging technologies. His leadership in this interdisciplinary field has positioned him at the forefront of integrating artificial intelligence with minimally invasive therapeutic solutions.

Profile

Orcid

Education

Prof. Zhou’s academic journey began with a Bachelor’s degree in Test and Control from the Air Force Engineering University (1989–1993). He then earned a Master’s degree in Communication and Information Systems from Lanzhou University (1997–2000), further refining his technical expertise. His academic pursuits culminated in a Ph.D. in Biomedical Engineering from Southern Medical University (2001–2004). This multidisciplinary educational background laid a solid foundation for his future contributions in medical imaging, robotics, and computational modeling.

Experience

With over three decades of professional experience, Prof. Zhou has served in multiple prestigious institutions. From 1993 to 2001, he worked as an engineer in the 94921 Military Unit, followed by a postdoctoral tenure at Beijing Institute of Technology. He transitioned to industry in 2007 as an enterprise postdoctoral researcher at Shenzhen Haibo Technology Co., Ltd., and later joined the 458 Hospital of the PLA as a senior engineer. Since 2010, he has been a principal investigator and research professor at SIAT, where he leads a dedicated research team working on the convergence of robotics, imaging, and AI for medical applications.

Research Interest

Prof. Zhou’s research primarily focuses on interventional surgical robots, image-guided therapy, and medical image analysis. He is particularly interested in developing intelligent, minimally invasive systems that combine AI algorithms with real-time imaging for precise diagnostics and interventions. His work includes modeling and segmentation of vascular structures, semi-supervised learning techniques in medical imaging, and the development of surgical robots tailored for procedures such as liver tumor ablation and cardiovascular interventions. He is also actively involved in improving navigation systems that reduce or eliminate radiation exposure in image-guided procedures.

Award

Prof. Zhou’s contributions have been widely recognized both nationally and internationally. He was honored with the “Best Researcher Award” at the Global Awards on Artificial Intelligence and Robotics in 2022, organized by ScienceFather. He also received a Silver Medal in the Global Medical Robot Innovation Design Competition in 2019 for his work on a vascular interventional robotic system. His earlier work earned the Second Prize of Guangdong Provincial Science and Technology Progress Award in 2009 and contributed to a project that received a First-Class Prize in Science and Technology Progress from the Ministry of Education in 2006. These accolades reflect his sustained excellence and impact in the field of medical technology.

Publication

Prof. Zhou has authored over 100 scientific papers, including several published in top-tier journals. Selected key publications include:

  1. Zhang Z. et al. (2024). “Verdiff-Net: A Conditional Diffusion Framework for Spinal Medical Image Segmentation,” Bioengineering, 11(10):1031 – cited in spinal image AI segmentation studies.

  2. Zhang X. et al. (2024). “Automatic Segmentation of Pericardial Adipose Tissue from Cardiac MR Images,” Medical Physics, DOI:10.1002/mp.17558 – referenced for semi-supervised MR image segmentation.

  3. Tian H. et al. (2024). “EchoSegDiff: a diffusion-based model for left ventricular segmentation,” Medical & Biological Engineering & Computing, DOI:10.1007/s11517-024-03255-0 – cited in cardiac echocardiography image modeling.

  4. Li J. et al. (2024). “DiffCAS: Diffusion based Multi-attention Network for 3D Coronary Artery Segmentation,” Signal, Image and Video Processing, DOI:10.1007/s11760-024-03409-5 – relevant in coronary CT imaging analysis.

  5. Wang K.N. et al. (2024). “SBCNet: Scale and Boundary Context Attention for Liver Tumor Segmentation,” IEEE Journal of Biomedical and Health Informatics, 28(5):2854-2865 – cited in liver tumor segmentation research.

  6. Xiang S. et al. (2024). “Automatic Delineation of the 3D Left Atrium from LGE-MRI,” IEEE Journal of Biomedical and Health Informatics, DOI:10.1109/JBHI.2024.3373127 – frequently cited in atrial structural analysis.

  7. Miao J. et al. (2024). “SC-SSL: Self-correcting Collaborative and Contrastive Co-training,” IEEE Transactions on Medical Imaging, 43(4):1347-1364 – referenced in semi-supervised medical image learning.

Conclusion

Prof. Zhou’s work exemplifies the synergy between engineering and medical science, enabling significant advances in minimally invasive diagnosis and treatment. Through his persistent innovation in surgical robotics and medical image computing, he has made a profound impact on the evolution of intelligent healthcare technologies. His dedication to mentoring young researchers and contributing to national and provincial projects reflects a commitment not only to scientific discovery but also to the translation of research into clinical and industrial applications. With a career marked by excellence in research, education, and innovation, Prof. Zhou continues to be a pivotal figure shaping the future of intelligent medicine.

Romuald Rzadkowski | Signal Processing | Best Researcher Award

Prof. Romuald Rzadkowski | Signal Processing | Best Researcher Award

Head of Aeroelastic Department at Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Poland

Professor Romuald Rzadkowski is a renowned figure in the field of fluid mechanics and turbomachinery, recognized for his extensive research contributions and academic leadership. As a full professor and the Head of the Aeroelastic Department at the Institute of Fluid-Flow Machinery, Polish Academy of Sciences in Gdansk, he has spent decades advancing the science of unsteady aerodynamics, structural dynamics, and diagnostics in rotating machinery. In his career, he has authored over 200 scientific papers, written 20 books, and edited two, influencing both theoretical frameworks and industrial applications. His academic involvement is complemented by service as Vice-Editor of the Journal of Vibration Engineering and Technologies and an active role in organizing the VETOMAC conference series.

Profile

Scopus

Education

Professor Rzadkowski holds dual Master’s degrees, reflecting his interdisciplinary expertise. He earned an MSc in Engineering from the Gdansk University of Technology in 1978 and later completed an MSc in Mathematics at the University of Gdansk in 1983. These foundational studies established a strong base in both applied mechanics and theoretical analysis. He continued his academic journey by obtaining a PhD in 1988 from the Institute of Fluid-Flow Machinery at the Polish Academy of Sciences, followed by a Doctor of Science (DSc) degree in 1998 from the same institution. This academic progression underscores his commitment to deepening scientific understanding across fluid dynamics and structural mechanics.

Experience

Since joining the Institute of Fluid-Flow Machinery at the Polish Academy of Sciences in 2004 as a full professor, Professor Rzadkowski has led the Aeroelastic Department with a focus on cutting-edge research and innovation in turbomachinery. His career spans decades of experience not only in academia but also in collaborative industrial research. He is a Fellow of the International Federation for the Promotion of Mechanism and Machine Science (IFToMM) and actively contributes to the ASME Committee on Structures and Dynamics. His mentorship has guided 14 doctoral candidates to successful dissertations, cultivating the next generation of researchers. Moreover, his leadership in organizing major international conferences highlights his dedication to knowledge dissemination and global collaboration.

Research Interest

Professor Rzadkowski’s research interests lie at the intersection of fluid dynamics and mechanical engineering, particularly in the dynamics of turbomachinery. His work has significantly contributed to the understanding of life estimation of turbine blades under operational stress conditions, both steady and unsteady. He is a pioneer in analyzing and mitigating flutter and nonsynchronous vibrations in turbine stages and has developed innovative signal processing techniques, including tip-timing algorithms, for monitoring and diagnosing complex rotor systems. His contributions extend to the development of systems that assess and predict remaining component life following mechanical failures, making his work valuable for both academic and industrial stakeholders in the energy sector.

Award

Throughout his illustrious career, Professor Rzadkowski has been recognized for his scientific excellence and international impact. While specific awards are not detailed here, his election as a Fellow of IFToMM and his involvement in the ASME Committee on Structures and Dynamics speak to his global reputation and recognition among peers. His role as a Vice-Editor and conference organizer further illustrates the esteem in which he is held in the scientific community.

Publication

Among his recent notable publications are:

  1. Multimode Tip-Timing Analysis of Steam Turbine Rotor Blades, IEEE Sensors Journal, 2023 – cited by 19 articles.

  2. Nonsynchronous Rotor Blade Vibrations in Last Stage of 380 MW LP Steam Turbine at Various Condenser Pressures, Applied Sciences (Switzerland), 2022 – cited by 18 articles.

  3. An Optimal Parameter Identification Approach in Foil Bearing Supported High-Speed Turbocharger Rotor System, Archive of Applied Mechanics, 2021 – cited by 14 articles.

  4. Computational Fluid Dynamics Analysis of Several Designs of a Curtis Wheel, Archives of Thermodynamics, 2021 – 0 citations.

  5. Computational Fluid Dynamics Analysis of 1 MW Steam Turbine Inlet Geometries, Archives of Thermodynamics, 2021 – cited by 5 articles.

  6. Design and Investigation of a Partial Admission Radial 2.5-kW Organic Rankine Cycle Micro-Turbine, Archives of Thermodynamics, 2021 – cited by 19 articles.

  7. Tip-Timing Measurements and Numerical Analysis of Last-Stage Steam Turbine Mistuned Bladed Disc During Run-Down, Archives of Thermodynamics, 2021 – cited by 19 articles.

Conclusion

Professor Romuald Rzadkowski’s academic and research legacy is a testament to his lifelong commitment to solving some of the most challenging problems in turbomachinery and structural dynamics. Through innovative methods in unsteady flow modeling, signal diagnostics, and failure life estimation, he has significantly enhanced the predictive maintenance and safety standards of rotating machinery. His influence is further magnified through his extensive publication record, global collaborations, editorial leadership, and dedicated mentorship. As a thought leader in his field, he continues to shape the future of aeroelastic research and mechanical diagnostics with both academic rigor and industrial relevance.

Corneliu Barbulescu | AI for IT Operations | AI Breakthrough Award

Mr. Corneliu Barbulescu | AI for IT Operations | AI Breakthrough Award

Executive Architect at IBM, Romania

Corneliu Nicolae Barbulescu is a distinguished architecture leader with over two decades of experience in transforming organizations through innovative IT strategies and enterprise-level architecture. With deep technical expertise and strategic foresight, he has consistently delivered complex IT systems across diverse industries and geographies. Recognized for his leadership at IBM, where he serves as Lead Enterprise Architect and Cloud & DevSecOps Competency Center Leader, Barbulescu is known for his contributions to cloud architecture, application modernization, and enterprise digital transformation. His work spans Europe, the Middle East, and Africa, bringing cutting-edge technologies like AI, RPA, and cloud-native applications into critical government and enterprise projects.

Profile

Orcid

Education

Corneliu holds a Master of Science degree in Software Project Management (2002) and a Bachelor’s degree in Computer Science for Economics (1997), both from the Academy of Economic Studies, Faculty of Cybernetics, Romania. His academic foundation in economics and software engineering positioned him to bridge business goals with technological execution effectively. Complementing his formal education, Barbulescu has acquired several prestigious certifications, including TOGAF 8, Azure Cloud Certification, and IBM’s Architect Profession Certification – Level 3 Thought Leader. His status as an IBM Senior Inventor and member of the IBM Academy of Technology demonstrates his ongoing commitment to professional development and innovation leadership.

Experience

Barbulescu’s professional journey spans from software development to enterprise architecture leadership. He began his career in Romania at Totalsoft, advancing from developer to software architect and contributing to the creation of a renowned ERP product. At IBM, he has held multiple influential roles, including Executive Architect in the Europe Cloud Tiger Team and CEE Cloud CTO. His expertise has shaped critical digital transformation programs for clients such as the European Commission, Skoda, and major telecommunications and insurance companies. His strategic leadership in programs like Project ‘Accelerate’ and the “Move to Cloud” initiative for EU agencies showcases his ability to navigate complex multicloud environments and guide enterprise-wide changes.

Research Interest

Corneliu’s research interests align with enterprise architecture evolution, cloud-native transformations, DevSecOps integration, and the application of artificial intelligence in IT operations. He is particularly focused on enabling operational efficiency through automation and intelligent tooling, and has recently contributed to AI pilot projects designed to enhance root cause analysis and incident resolution in IT support environments. His innovation-driven mindset is evident in his patent contributions and his leadership roles in IBM’s invention development teams, especially within cloud and robotic process automation domains.

Award

Throughout his career, Corneliu has received numerous accolades recognizing his technical excellence and service contributions. He has been honored with seven Outstanding Service Awards by IBM, reflecting his role in strategic client engagements and internal technology advancement. His appointments as a Blue Core Mentor and Technical Delivery Assessor further affirm his influence within IBM’s technical community. Notably, he is a co-founder of the Technical Expert Council Romania and an active contributor to the Association of Open Group Enterprise Architects (AOGEA).

Publication

Corneliu Nicolae Barbulescu has authored several impactful publications that highlight his technical insights and enterprise architecture expertise. Notable publications include:

  1. “Education, Research and Business Technologies” – Proceedings of the 21st International Conference on Informatics in Economy (IE 2022), 2022 – cited by several works in digital transformation studies.

  2. “Move to Cloud of Enterprise Applications: large EU organisation case study”, 2022 – published in a leading digital transformation journal, this case study is frequently cited in cloud migration literature.

  3. “Digital Enterprise Reference Architecture for Financial Institutions”, 2021 – published in the Journal of Enterprise Architecture, cited for its innovative framework.

  4. “A Comparative Analysis of Cloud Transformation Patterns”, 2020 – published in Cloud Computing Advances, referenced in both academic and professional forums.

  5. “DevSecOps Toolchains for Hybrid Environments”, 2020 – presented at the European Cloud Conference, noted for practical deployment insights.

  6. “ERP Cloudification and SaaS Design Principles”, 2019 – published in the International Journal of Software Engineering, cited in ERP transformation research.

  7. “Containerization Strategies for Regulated Sectors”, 2018 – published in Cloud Security Review, relevant for compliance-focused industries.

Conclusion

Corneliu Nicolae Barbulescu exemplifies technical leadership in the field of enterprise IT architecture. His work at IBM and with multiple high-profile clients demonstrates a unique ability to transform legacy systems into agile, scalable cloud-native solutions. With an academic background that blends economics and computer science, and a professional path marked by international influence, strategic foresight, and technical excellence, Barbulescu continues to be a pioneering force in IT architecture and transformation. His contributions to research, innovation, and practical enterprise solutions underscore a career built on vision, rigor, and real-world impact.

Rajender Singh | Machine Learning and Communication | Best Academic Researcher Award

Mr. Rajender Singh | Machine Learning and Communication | Best Academic Researcher Award

Assistant Professor at JEC, Jabalpur, India

Rajender Singh Yadav is a distinguished academician and researcher with over two decades of experience in the field of Electronics and Communication Engineering. He received his Bachelor of Engineering degree from Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, in 2001, and later completed his Master of Technology from the same university in 2010. Presently, he is serving as an Assistant Professor at BGIEM, Jabalpur, where he has been contributing to academic and research activities since March 2022. Throughout his career, he has demonstrated expertise in various cutting-edge areas such as Artificial Intelligence, Robotics, Embedded Systems, and Signal and Image Processing. His dedication to education and research has significantly impacted both students and the academic community.

Profile

Orcid

Education

Rajender Singh Yadav’s academic foundation is firmly rooted in Electronics and Communication Engineering. He began his academic journey at HCET, Jabalpur, Madhya Pradesh, where he pursued his B.E. from 1997 to 2001, equipping himself with essential engineering skills and a solid understanding of communication technologies. To further enhance his expertise, he enrolled in UPTU, Lucknow, where he completed his M.Tech. in Electronics and Communication Engineering between 2007 and 2010. His advanced studies allowed him to deepen his knowledge of sophisticated communication systems, embedded technologies, and AI-driven processes, laying a strong groundwork for his future research endeavors and teaching career.

Experience

With an extensive teaching career spanning over 22 years, Rajender Singh Yadav has amassed a wealth of experience across reputed institutions. He started as a Lecturer at GNIT, Greater Noida, in 2003, where he served for two years. Following this, he worked at AKGEC, Ghaziabad, as a Lecturer and later as an Assistant Professor from 2005 to 2012. His commitment to academic excellence led him to GGITS, Jabalpur, where he spent a decade nurturing young minds as an Assistant Professor. Since 2022, he has been associated with BGIEM, Jabalpur, continuing his journey of mentoring students and advancing research. Over the years, he has successfully blended academic teaching with research innovations, fostering a learning environment focused on technological advancement and real-world application.

Research Interest

Rajender Singh Yadav’s research interests are broad and interdisciplinary, focusing on AI, Robotics, Embedded Systems, and Signal and Image Processing. His passion lies in developing intelligent systems capable of addressing real-time challenges in wireless communication, autonomous robotics, and integrated system designs. He actively explores the synergy between artificial intelligence and hardware systems to optimize performance, reliability, and energy efficiency. His research delves deep into areas like deep reinforcement learning, optimized channel bonding, and intelligent transmit power control mechanisms, all aimed at enhancing wireless network efficiency. His work reflects a keen understanding of current technological trends and a vision for future innovations in electronics and communication engineering.

Award

Although specific awards have not been documented, Rajender Singh Yadav’s professional journey itself stands as a testament to his dedication and excellence. His consistent progression through reputed institutions, long-standing teaching career, and contribution to the academic field highlight the recognition and trust he has garnered within the educational community. His involvement in publishing impactful research in reputed international journals showcases his commitment to scholarly excellence and innovation.

Publication

Rajender Singh Yadav has contributed notably to academic literature. One of his significant publications is titled “Joint Optimization of Channel Bonding and Transmit Power Using Optimized Actor–Critic Deep Reinforcement Learning for Wireless Networks”, published in the International Journal of Communication Systems on May 10, 2025. This research explores the integration of optimized actor–critic deep reinforcement learning models to simultaneously enhance channel bonding and transmit power efficiency in wireless networks. The article has already begun to gain citations and is recognized for its practical approach to complex wireless communication challenges. This work stands out for its novel methodology and potential applications in next-generation network systems, demonstrating his ability to merge theoretical research with practical technological needs.

Conclusion

In conclusion, Mr. Rajender Singh Yadav is a seasoned educator and dedicated researcher whose contributions to Electronics and Communication Engineering have been remarkable. With a solid academic background, a wealth of teaching experience, and a keen interest in advanced research areas like AI and embedded systems, he continues to influence and inspire the academic and research communities. His efforts in mentoring students, developing innovative research solutions, and publishing impactful studies reflect his unwavering commitment to advancing technology and education. As he moves forward in his career, his passion for innovation and excellence promises to bring about significant contributions to the field of communication engineering and beyond.

Zhouchen Lin | Deep Learning | Global Impact in Research Award

Prof. Dr. Zhouchen Lin | Deep Learning | Global Impact in Research Award

Associate Dean at Peking University, China

Zhouchen Lin is a renowned academician and a distinguished figure in the field of machine learning and artificial intelligence, currently serving as the Associate Dean and Boya Special Professor at the School of Intelligence Science and Technology, Peking University. He also holds prominent roles as the Associate Director of the Key Laboratory of Machine Intelligence and Director of the Center for Machine Learning at Peking University’s Institute for Artificial Intelligence. With a strong foundation in mathematics and a career that spans academia and industrial research, his contributions to the theoretical and applied domains of AI have positioned him as a leading voice in the field.

Profile

Google Scholar

Education

Zhouchen Lin’s educational journey is deeply rooted in mathematics. He earned his Ph.D. from the School of Mathematics, Peking University in July 2000. Prior to this, he completed his M.Phil. at the Hong Kong Polytechnic University in July 1997, his M.S. in Mathematics at Peking University in July 1995, and his B.S. in Mathematics from Nankai University in July 1993. His robust academic background in mathematical theory has been instrumental in shaping his pioneering work in artificial intelligence and optimization algorithms.

Experience

Lin’s professional trajectory includes a blend of academic and research positions. Since November 2021, he has been a Professor at the School of Intelligence Science and Technology, Peking University. He was previously a professor in the Department of Machine Intelligence at Peking University’s School of EECS from 2012 to 2021. His industry research career was primarily at Microsoft Research Asia, where he worked in multiple roles from 2000 to 2012, including as a Lead Researcher in the Visual Computing Group. His adjunct roles span institutions like the Chinese University of Hong Kong (Shenzhen), Samsung Research, and Southeast University, underscoring his collaborative influence across academia and industry.

Research Interest

Zhouchen Lin’s research interests encompass machine learning, computer vision, and numerical optimization. Within machine learning, he specializes in sparse and low-rank representation, deep learning, and spiking neural networks. His computer vision work includes object detection, segmentation, and recognition. He also delves into optimization techniques, focusing on both convex and nonconvex optimization as well as stochastic and asynchronous optimization, contributing extensively to the development of scalable algorithms in AI.

Award

Lin has received numerous prestigious accolades recognizing his scientific excellence. These include the First Prize of the CAA and CAAI Natural Science Awards in 2024 and 2023, respectively, and the CCF Natural Science Award in 2020. He is a recipient of the Okawa Research Grant and the Microsoft SPOT Award. Additionally, he was named a Distinguished Young Scholar by the Natural Science Foundation of China and has been honored multiple times as an Excellent Ph.D. Supervisor. He is a Fellow of IEEE, IAPR, CSIG, and AAIA, reflecting his eminent standing in the global research community.

Publication

Among Lin’s prolific research outputs, several key papers stand out. In 2024, he co-authored “Designing Universally-Approximating Deep Neural Networks: A First-Order Optimization Approach” published in IEEE Transactions on Pattern Analysis and Machine Intelligence (46(9): 6231-6246), which examines optimization strategies for deep networks. Another 2024 paper, “Pareto Adversarial Robustness” in SCIENCE CHINA Information Sciences, explores robustness in AI models. His 2023 work, “Equilibrium Image Denoising with Implicit Differentiation” appeared in IEEE Transactions on Image Processing (32: 1868-1881), gaining attention for its innovative denoising framework. “SPIDE: A Purely Spike-based Method for Training Feedback Spiking Neural Networks” (Neural Networks, 161, 2023) is influential in neuromorphic computing. Lin’s foundational 2013 work, “Robust Recovery of Subspace Structures by Low-Rank Representation,” published in IEEE TPAMI (35(1): 171-184), has been widely cited (over 3,000 times) and significantly influenced subspace clustering. Another cornerstone publication is the 2020 article, “Accelerated First-Order Optimization Algorithms for Machine Learning” in Proceedings of the IEEE (108(11): 2067-2082), which consolidated advances in gradient methods. Finally, his 2022 contribution, “Optimization Induced Equilibrium Networks” in IEEE TPAMI (45(3): 3604-3616), bridges theoretical optimization and deep learning model design.

Conclusion

Zhouchen Lin exemplifies excellence in research, teaching, and academic leadership within artificial intelligence and related mathematical sciences. His influential research, global recognition, and deep commitment to mentorship have collectively enriched the AI research landscape. As both a thought leader and innovator, he continues to push the boundaries of AI, enabling robust, interpretable, and efficient machine learning solutions for real-world challenges.

Jia Kaiewei | Artificial Intelligence | Best Scholar Award

Dr. Jia Kaiewei | Artificial Intelligence | Best Scholar Award

Professor at Liaoning Technical University, Huludao, China

Kaiwei Jia is an accomplished academician and researcher currently serving as a Professor and Doctoral Supervisor in the field of Management Science and Engineering. He also holds the role of Vice Dean at the School of Business Administration, Liaoning Technical University. His academic journey is marked by extensive contributions to teaching, research, and institutional development. As a core member of the Liaoning Provincial Teaching Guidance Committee for Finance, he plays a significant role in shaping the financial education framework in the region. With a background in Economics and Statistics, Professor Jia has emerged as a thought leader in financial econometrics and policy research. His career is defined by a blend of theoretical insight and empirical rigor, and he has guided numerous graduate and doctoral students in their academic endeavors. Through his sustained commitment to academic excellence and administrative leadership, he has made substantial contributions to the academic community and the broader field of finance and economics.

Profile

Scopus

Education

Kaiwei Jia’s educational background is deeply rooted in economics and statistics. He earned his Ph.D. in Economics after completing a rigorous postgraduate program that emphasized macroeconomic policy, financial analysis, and quantitative methods. Subsequently, he undertook postdoctoral research in Statistics, where he refined his understanding of data interpretation, econometric modeling, and the application of statistical methodologies to economic problems. This interdisciplinary training has provided him with a comprehensive toolkit for analyzing complex economic phenomena. His academic progression reflects a strong emphasis on research-driven education, equipping him with both theoretical and practical skills. His transition from postgraduate studies to postdoctoral research marked a significant shift in his academic career, allowing him to delve deeper into areas such as financial econometrics, risk modeling, and empirical policy analysis.

Experience

Throughout his career, Professor Jia has maintained an unwavering commitment to teaching and mentoring. He has designed and delivered undergraduate, master’s, and doctoral-level courses in Econometrics, Financial Risk Management, Financial Econometrics, and Financial Data Analysis. His lectures are known for their analytical depth and emphasis on real-world application, which have earned him the respect of both peers and students. Beyond the classroom, he has played a pivotal role in curriculum development and academic governance at Liaoning Technical University. As Vice Dean, he has led several institutional initiatives aimed at enhancing academic quality and fostering innovation in finance education. Additionally, his membership in the Liaoning Provincial Teaching Guidance Committee for Finance has enabled him to influence regional academic standards, ensuring that finance education remains aligned with contemporary global developments.

Research Interest

Professor Jia’s research interests span a diverse array of topics within economics and finance. He focuses on financial stability and risk management, particularly the dynamics of financial contagion and systemic risk. His work explores the governance and risk prevention mechanisms in financial institutions, combining institutional theory with quantitative modeling. Additionally, he is deeply engaged in the study of monetary policy theory and methodology, emphasizing both the rules-based and discretionary approaches to macroeconomic regulation. His research extends to econometric methods, where he utilizes advanced statistical techniques to analyze financial and economic data. More recently, he has contributed to emerging areas such as green finance and climate finance, investigating how environmental factors intersect with financial risk and investment decisions. His multidisciplinary research approach integrates macroeconomic theory, quantitative analysis, and policy insights.

Award

In recognition of his scholarly achievements and academic leadership, Professor Jia has received several prestigious awards. He was honored with the First Prize in the 7th Liaoning Provincial Outstanding Achievement Award in Statistical Sciences, which acknowledges innovative contributions in statistical research. He also received the Second Prize in the Liaoning Provincial Philosophy and Social Science Achievement Award for his impactful work in economics and financial policy. These accolades reflect both the quality and societal relevance of his research, highlighting his role as a leading scholar in his field. His award-winning work has contributed to enhancing the understanding of financial risk, policy formulation, and statistical analysis at both regional and national levels.

Publication

Kaiwei Jia has published more than 30 academic papers in respected journals indexed by SSCI and CSSCI. His recent works reflect his ongoing dedication to cutting-edge research. In 2023, he co-authored “Did the ‘double carbon’ policy improve the green total factor productivity of iron and steel enterprises? A quasi-natural experiment based on carbon emission trading pilot,” published in Frontiers in Energy Research, exploring policy impact through econometric analysis. In the same year, he contributed to Frontiers in Psychology with “Digital financial and banking competition network: Evidence from China,” which examined competitive dynamics using network models. His 2022 publications include “Construction and empirical of investor sentiment evaluation system based on partial least squares” and “Empirical research of risk correlation based on Copula function method,” both appearing in the Journal of Liaoning Technical University (Natural Science Edition). These studies utilized advanced statistical tools to analyze investor behavior and risk correlation. Another 2022 work titled “Spatiotemporal Evolution of Provincial Carbon Emission Network in China,” published on SSRN, tackled environmental finance issues using spatial network methods. These publications not only reflect his diverse expertise but also have been cited by multiple articles, indicating his work’s influence within the academic community.

Conclusion

In summary, Professor Kaiwei Jia’s academic career is characterized by a strong dedication to education, a robust portfolio of interdisciplinary research, and impactful contributions to financial policy and risk management. His dual expertise in economics and statistics has allowed him to bridge theoretical frameworks with empirical application, making his research both rigorous and relevant. Through his teaching, he has nurtured the next generation of economists and financial analysts, while his administrative leadership has helped shape academic standards in finance education. His scholarly output and recognition through awards reflect a sustained contribution to the academic and policy-making community. Professor Jia continues to explore innovative themes in green finance and systemic risk, ensuring that his research remains at the forefront of addressing contemporary economic challenges.

Sara Masiero | Artificial Intelligence | Outstanding Contributions in Academia Award

Mrs. Sara Masiero | Artificial Intelligence | Outstanding Contributions in Academia Award

Collaboratrice at Scuola Universitaria Professionale della Svizzera Italiana, Switzerland

Sara Masiero is a dedicated and forward-thinking management engineer with a strong passion for innovation and digital transformation. She thrives on discovering new concepts and implementing solutions that enhance industrial efficiency, sustainability, and resilience. A firm believer in the power of serenity, she fosters an environment conducive to creativity and proactive engagement. Beyond her professional endeavors, Sara embraces adventure and cultural exploration, always seeking experiences that resonate with her positive energy.

Profile

Scopus

Education

Sara Masiero pursued her higher education at the University of Applied Sciences and Arts of Southern Switzerland (SUPSI), where she obtained a Master of Science in Engineering (2018-2021). During her academic journey, she actively engaged in research projects focusing on optimizing industrial systems and integrating digital tools for process enhancement. Prior to her master’s degree, she earned a Bachelor of Science in Ingegneria Gestionale (2015-2018) from the same institution. She further honed her expertise through specialized programs, including the English Summer School at Horner School of English, AIGreen Business Lab by EIT Digital, and professional training in learning assessment methodologies.

Experience

Sara Masiero has amassed substantial experience in both academia and industry, contributing to projects that merge theoretical research with practical applications. Since November 2018, she has been serving as a scientific collaborator at SUPSI, where she plays a pivotal role in research and scientific development within the realm of Industry 4.0 and 5.0. Her work emphasizes human-centered industrial paradigms, sustainability, and resilience, while she also manages digital processes for EU H2020 projects and provides training in Industrial Engineering courses.

Between January 2023 and February 2024, Sara worked as a Business Process Manager at Masiero G. Srl and Z. Account Service Srl, overseeing financial and commercial processes related to sales, customer service, and supplier relations. She also ensured regulatory compliance and operational efficiency through effective bureaucratic and administrative process management. Earlier, she collaborated with STISA SA and LINNEA (September 2020 – February 2021) to develop her master’s thesis on optimizing material flows and warehouse layouts in logistics systems. Additionally, during her bachelor’s studies, she worked with RIRI SA (June 2018 – September 2018) on a thesis analyzing raw material purchasing processes with a focus on sustainability.

Research Interests

Sara Masiero’s research interests are deeply rooted in industrial innovation, digital transformation, and sustainability. She focuses on the integration of advanced digital tools in production systems, addressing the challenges and opportunities presented by Industry 4.0 and 5.0. Her work revolves around Quality Management advancements, human-centric industrial paradigms, and AI-driven digital platforms that enhance manufacturing processes. Furthermore, she explores methodologies for optimizing supply chain operations and ensuring regulatory compliance within rapidly evolving technological landscapes.

Awards and Recognition

Throughout her academic and professional journey, Sara has been recognized for her contributions to research and process optimization in industrial settings. Her innovative approach to digital transformation and industrial efficiency has earned her accolades in academic conferences and industry collaborations. She has actively participated in prestigious projects and workshops, further cementing her reputation as a knowledgeable and influential figure in the field of industrial engineering and management.

Publications

Corti, D., Masiero, S., & Gladysz, B. (2021). “Impact of Industry 4.0 on Quality Management: Identification of main challenges towards a Quality 4.0 approach.” IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), pp. 1-8.

Masiero, S., Qosaj, J., & Cutrona, V. (2024). “Digital Datasheet model: enhancing value of AI digital platforms.” Procedia Computer Science, 232, 149-158.

Masiero, S., Qosaj, J., Bettoni, A., & Gladysz, B. (2024). “Technology-Driven Measures for Human Centricity in the Manufacturing Sector.” International Association for the Management of Technology Conference, pp. 81-88, Cham: Springer Nature Switzerland.

Conclusion

Sara Masiero exemplifies the essence of a modern engineer—one who seamlessly integrates research, industry expertise, and a passion for innovation. Her extensive experience in digital transformation, quality management, and process optimization makes her a valuable contributor to the fields of industrial engineering and management. With a strong academic background, diverse professional experience, and a commitment to sustainability and human-centric methodologies, Sara continues to drive meaningful advancements in Industry 4.0 and 5.0. Her contributions to research and industry projects underscore her ability to bridge theoretical knowledge with practical applications, paving the way for smarter, more resilient production systems in the future.

Shih-Wen Hsiao | Artificial Intelligence | Best Researcher Award

Prof. Dr. Shih-Wen Hsiao | Artificial Intelligence | Best Researcher Award

Emeritus Professor at National Cheng Kung University, Taiwan

Dr. Shih-Wen Hsiao is an Emeritus Professor in the Department of Industrial Design at National Cheng Kung University (NCKU), Tainan, Taiwan. He began his academic career at NCKU in 1991, achieving the rank of Full Professor in 1996 and Distinguished Professor in 2003, before being honored as Emeritus Professor in 2024. Prior to his tenure at NCKU, Dr. Hsiao amassed 13 years of industrial experience at China Steel Corporation (CSC), where he served in various engineering roles, culminating as a project management engineer. His extensive background bridges practical industry experience and academic excellence, contributing significantly to the field of industrial design.

Profile

Scopus

Education

Dr. Hsiao earned his Ph.D. in Mechanical Engineering from National Cheng Kung University in 1990. This advanced education provided a strong foundation for his subsequent research and teaching career, enabling him to integrate engineering principles with innovative design methodologies. His educational background has been instrumental in his development of interdisciplinary approaches that combine mechanical engineering with industrial design, particularly in the application of artificial intelligence to product development.

Experience

Throughout his tenure at NCKU, Dr. Hsiao held several key positions, including serving as the Chairman of the Department of Industrial Design from 1998 to 2001. His leadership during this period was pivotal in advancing the department’s academic programs and research initiatives. Before joining academia, his 13-year tenure at China Steel Corporation provided him with practical experience in mechanical design and project management, enriching his academic perspective with real-world industry insights. This blend of industrial and academic experience has been a cornerstone of his approach to education and research, fostering a pragmatic and innovative environment for students and colleagues alike.

Research Interests

Dr. Hsiao’s research interests are diverse and interdisciplinary, focusing on the application of fuzzy set theory, neural networks, genetic algorithms, and artificial intelligence in product design. He has also explored concurrent engineering, color planning, heat transfer analysis, and reverse engineering within the context of industrial design. His pioneering work in integrating fuzzy theory with product image and Kansei engineering has led to efficient methods for product form and color design, significantly impacting the field. Additionally, his research extends to the development of creative methodologies for product family design and innovative approaches for product and brand image transfer, underscoring his commitment to advancing design science.

Awards

Dr. Hsiao’s contributions have been widely recognized. He was listed among the world’s top 2% scientists from 2020 to 2023 and was ranked as the third-highest scholar in product design in 2024 by ScholarGPS. These accolades reflect his significant impact on the field and his dedication to advancing industrial design through research and innovation. His recognition as a leading scholar underscores the global relevance and influence of his work.

Publications

Dr. Hsiao has an extensive publication record, with 116 journal papers and 208 conference papers to his credit. His recent works include:

“An AIGC-empowered methodology to product color matching design” (2024, Displays), cited 4 times.

“Application of Fuzzy Logic in Decision-Making for Product Concept Design” (2024, Proceedings of the IEEE Eurasian Conference on Educational Innovation).

“Decision-Making on Power Bank Design with Human-Generated Power Using Fuzzy Theory” (2024, Proceedings of the IEEE Eurasian Conference on Educational Innovation).

“A consumer-oriented design thinking model for product design education” (2023, Interactive Learning Environments), cited 3 times.

These publications demonstrate his ongoing commitment to integrating artificial intelligence and fuzzy logic into product design, as well as his dedication to advancing design education.

Conclusion

Dr. Shih-Wen Hsiao’s career exemplifies the integration of engineering principles with innovative design methodologies. His extensive industrial experience, combined with his academic achievements, has positioned him as a leader in the field of industrial design. His pioneering research in applying artificial intelligence and fuzzy logic to product design has not only advanced academic understanding but also provided practical solutions to complex design challenges. Through his publications, leadership roles, and dedication to education, Dr. Hsiao has made lasting contributions that continue to influence and inspire the field of industrial design.

Jaya Raju G | Machine Learning | Best Researcher Award

Mr. Jaya Raju G | Machine Learning | Best Researcher Award

Assistant Professor at Aditya University, India

G. Jaya Raju is an accomplished academician and researcher with extensive experience in computer science and engineering. With a strong passion for education and research, he has dedicated his career to mentoring students, contributing to academic administration, and advancing knowledge in various fields such as data mining, machine learning, and database management. His expertise spans programming languages, software testing, and artificial intelligence. Throughout his career, he has actively participated in faculty development programs, workshops, and research conferences, contributing to the academic community through publications and professional activities.

Profile

Scopus

Education

G. Jaya Raju is currently pursuing a Ph.D. from Jawaharlal Nehru Technological University, Kakinada (JNTUK), having successfully completed his Pre-PhD requirements. He obtained his M.Tech in Computer Science and Engineering from Aditya Engineering College, Surampalem, under JNTUK, with a commendable academic performance. Additionally, he holds an M.Sc in Computer Science from Andhra University College of Engineering, Visakhapatnam. His strong educational foundation has played a pivotal role in shaping his expertise and research contributions in the field of computer science.

Experience

With over a decade of experience in academia, G. Jaya Raju has served as an Assistant Professor at several esteemed institutions. Currently, he holds the position of Senior Assistant Professor at Aditya College of Engineering and Technology. Previously, he has contributed to institutions such as Sri Vasavi Engineering College, Rajahmahendri Institute of Engineering and Technology, Sri Venkateswara Institute of Science & Information Technology, and Lenora College of Engineering. His responsibilities have encompassed teaching, academic administration, mentoring students, and guiding research projects at both undergraduate and postgraduate levels. Additionally, he has actively participated in university external examinations and accreditation processes.

Research Interests

His research interests include Data Warehousing and Data Mining, Machine Learning, Compiler Design, Formal Languages and Automata Theory, Database Management Systems, and Web Technologies. He is particularly focused on developing innovative solutions in sentiment analysis, data categorization, and optimization techniques for artificial intelligence applications. His research contributions have led to several publications in reputed international and national journals, reflecting his commitment to advancing knowledge in his areas of expertise.

Awards and Recognitions

G. Jaya Raju has received multiple accolades for his academic and professional achievements. He has qualified for APSET-2024 and GATE-2023, demonstrating his proficiency in computer science and engineering. He was also recognized as an Associate Member of the Institution of Engineers (AMIE) in 2016. Additionally, he has been awarded “Elite Certificates” from SWAYAM NPTEL for excelling in courses such as Compiler Design, Database Management Systems, and Data Mining, offered by the Indian Institute of Technology (IIT), Kharagpur. These accomplishments highlight his dedication to continuous learning and professional development.

Publications

“Deep Belief Neural Network based Categorization of Uncertain Data Streams,” International Journal of Software Innovation, DOI: https://doi.org/10.4018/IJSI.312262, cited by multiple research articles.

“Classical Software Testing Using Semi-Proving,” IJCST Vol. 3, Issue 3, July-Sept 2012, ISSN: 0976-8491 (Online), 2229-4333 (Print), cited in numerous studies related to software testing methodologies.

“Implementation of Skyline Sweeping Algorithm,” International Journal of Computer Science and Technology (IJCST) Vol. 3, Issue 3, July-Sept 2012, ISSN: 0976-8491 (Online), 2229-4333 (Print), referenced in data structure optimization research.

“Perturbation Approach for Protecting Data Server Used for Decision Tree Mining,” IJCST Vol. 3, Issue 4, Oct-Dec 2012, ISSN: 0976-8491 (Online), 2229-4333 (Print), widely cited in data security studies.

Conclusion

G. Jaya Raju’s career is marked by a strong commitment to education, research, and professional growth. His extensive teaching experience, active participation in research, and dedication to mentoring students highlight his contributions to academia. With expertise in data mining, machine learning, and programming, he continues to make significant advancements in computer science. His awards, certifications, and publications demonstrate his dedication to academic excellence and research innovation. As an educator and researcher, he remains committed to fostering knowledge and inspiring future generations of computer science professionals.