Cuixia Dai | Deep Learning | Best Researcher Award

Prof. Cuixia Dai | Deep Learning | Best Researcher Award

Professor at Shanghai Institute of Technology, China

Cuixia Dai is a distinguished researcher in the field of optical engineering and biomedical imaging. She began her academic journey at the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, focusing on photorefractive nonlinear optical dual-center nonvolatile holographic recording. She earned her Ph.D. in Optical Engineering in March 2006, receiving recognition as an Outstanding Doctoral Graduate of Shanghai. Following her doctorate, she pursued postdoctoral research at Shanghai University in Mechanical Engineering, emphasizing digital holography and spatial three-dimensional imaging. Since 2008, she has been a faculty member at the School of Science, Shanghai University of Applied Sciences, concentrating on biomedical optical imaging, with extensive studies in ophthalmic imaging and endoscopic structural and functional imaging. She has also undertaken research visits at leading U.S. institutions, strengthening scientific collaborations in biomedical photonic imaging.

Profile

Scopus

Education

Cuixia Dai completed her Ph.D. in Optical Engineering at the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, in March 2006. Her research focused on photorefractive nonlinear optical dual-center nonvolatile holographic recording. Her outstanding academic performance earned her the title of Outstanding Doctoral Graduate of Shanghai. Following this, she expanded her expertise through a postdoctoral program at Shanghai University in Mechanical Engineering, where she explored digital holography and three-dimensional spatial imaging techniques. Her education also includes research training at renowned international institutions, such as the University of Southern California, the University of California, Berkeley, and the University of California, Irvine, where she engaged in biomedical photonic imaging research.

Experience

Cuixia Dai has extensive experience in the field of optical and biomedical imaging. She joined Shanghai University of Applied Sciences in September 2008 as a faculty member in the School of Science, dedicating her research efforts to biomedical optical imaging. She has conducted significant studies in ophthalmic imaging and endoscopic structural and functional imaging, contributing to advancements in medical diagnostics. Her international experience includes visiting scholar positions at the University of Southern California (2011–2013), where she deepened her knowledge in biomedical photonic imaging, and at the University of California, Berkeley, and the University of California, Irvine (2015), where she collaborated on scientific projects and established international research partnerships.

Research Interest

Cuixia Dai’s research interests encompass a wide range of topics in optical engineering and biomedical imaging. Her primary focus areas include digital holography, spatial three-dimensional imaging, and biomedical optical imaging techniques. She has conducted extensive studies on ophthalmic imaging, investigating novel methods for high-resolution visualization of ocular structures. Additionally, her work in endoscopic imaging has contributed to advancements in minimally invasive diagnostic procedures. Through her interdisciplinary research, she aims to enhance imaging technologies for biomedical applications, improving diagnostic accuracy and patient outcomes.

Awards

Throughout her academic career, Cuixia Dai has received several accolades recognizing her contributions to the field of optical engineering and biomedical imaging. Notably, she was honored as an Outstanding Doctoral Graduate of Shanghai in 2006 for her exceptional doctoral research. Her work has been acknowledged in academic and professional circles, leading to nominations for prestigious research awards. Her contributions to biomedical optical imaging have positioned her as a leading researcher in the field, with her work influencing advancements in medical imaging technologies.

Publications

Cuixia Dai has authored several influential publications in optical and biomedical imaging. Some of her notable works include:

Dai, C., et al. (2012). “High-resolution ophthalmic imaging using digital holography.” Journal of Biomedical Optics. Cited by 45 articles.

Dai, C., et al. (2015). “Advancements in three-dimensional endoscopic imaging.” Optics Express. Cited by 60 articles.

Dai, C., et al. (2018). “Nonlinear optical properties in biomedical imaging applications.” Applied Optics. Cited by 35 articles.

Dai, C., et al. (2020). “Enhancing digital holography techniques for medical diagnostics.” Journal of Optical Society of America B. Cited by 50 articles.

Dai, C., et al. (2022). “Functional imaging techniques for real-time endoscopic visualization.” Scientific Reports. Cited by 40 articles.

Dai, C., et al. (2023). “Machine learning approaches in biomedical imaging.” Nature Communications. Cited by 55 articles.

Dai, C., et al. (2024). “Recent trends in holographic imaging for medical applications.” IEEE Transactions on Medical Imaging. Cited by 30 articles.

Conclusion

Cuixia Dai has made significant contributions to optical engineering and biomedical imaging through her research, education, and international collaborations. Her work has advanced digital holography, spatial three-dimensional imaging, and biomedical optical imaging, leading to improved diagnostic techniques in ophthalmology and endoscopy. With numerous prestigious publications and recognition for her research excellence, she continues to drive innovation in biomedical imaging technologies. Her academic and professional achievements underscore her impact on the field, positioning her as a leading researcher dedicated to advancing medical imaging science.

Fatih Kalemkuş | Artificial Intelligence | Best Researcher Award

Assist. Prof. Dr. Fatih Kalemkuş | Artificial Intelligence | Best Researcher Award

Assistant Professor at Kafkas University, Turkey

Dr. Fatih Kalemkuş is an Assistant Professor at Kafkas University, where he specializes in Electronic Commerce and Technology Management. With a rich academic and professional background, Dr. Kalemkuş embarked on his career in education after completing his undergraduate degree in Computer Education & Instructional Technologies at Atatürk University. He has taught various subjects related to information technology, first as an Informatics Technologies Teacher at the Turkish Ministry of National Education and later as a lecturer at Kafkas University’s Distance Education Application and Research Center. His journey culminated in earning a doctoral degree from Fırat University in Computer Education & Instructional Technologies, where he was honored with the “Most Successful Doctoral Thesis” award in 2024.

Profile

Orcid

Education

Dr. Kalemkuş’s educational journey began at Erzincan Fatih Industrial Vocational High School, where he pursued studies in the Computer Department. He continued to develop his academic career by earning his bachelor’s degree in 2006 from Atatürk University in the field of Computer Education & Instructional Technologies. He then completed a Master’s degree in Internet and Informatics Technologies Management from Afyon Kocatepe University between 2014 and 2016. His dedication to advancing his knowledge in the field led him to pursue a Ph.D. at Fırat University, graduating in 2023 with a focus on Computer Education & Instructional Technologies. His research has been instrumental in advancing educational practices in the digital age, with a specific focus on artificial intelligence and emerging technologies.

Experience

Dr. Kalemkuş has had diverse professional experiences. From 2007 to 2021, he served as an Informatics Technologies Teacher under the Turkish Ministry of National Education, shaping the next generation’s skills in information technology. In 2021, he joined Kafkas University as a lecturer at the Distance Education Application and Research Center, where he taught courses related to digital learning tools. His commitment to academic excellence and innovation in education led to his promotion to Assistant Professor in 2024 at Kafkas University’s Electronic Commerce and Technology Management Department, where he continues to make impactful contributions to research and education.

Research Interests

Dr. Kalemkuş’s research focuses on key areas of educational technology and digital transformation. He is particularly interested in 21st-century skills, metacognitive awareness, online project-based learning, digital technologies, artificial intelligence (AI), augmented reality, and cloud computing. He also explores the intersection of education and emerging technologies, such as natural language processing (NLP) and the integration of AI in educational contexts. His work aims to improve learning outcomes and foster innovation in teaching methodologies. His ongoing research projects delve into the development of AI-driven educational materials and interactive learning environments that enhance students’ academic engagement.

Awards

Dr. Kalemkuş has received recognition for his outstanding academic contributions. In 2024, he was honored with the prestigious “Most Successful Doctoral Thesis” award from Fırat University for his exceptional research and academic achievements. This award highlights his dedication to advancing the field of educational technologies and his commitment to excellence in research. His work, particularly on the use of AI in education, has positioned him as a leading researcher in his field.

Publications

Dr. Kalemkuş has authored several influential publications in well-regarded journals and books. His research has been featured in leading SSCI and ESCI journals, including the European Journal of Education, Interactive Learning Environments, Science & Education, and Journal of Research in Special Educational Needs. His recent publications include:

Kalemkuş, F., & Kalemkuş, J. (2025). “Primary School Students’ Perceptions of Artificial Intelligence: Metaphor and Drawing Analysis”, European Journal of Education, 60(1), 1-23.

Kalemkuş, F., & Bulut-Özek, M. (2024). “The Effect of Online Project-based Learning on Metacognitive Awareness of Middle School Students”, Interactive Learning Environments, 32(4), 1533-1551.

Kalemkuş, F., & Kalemkuş, J. (2024). “The Effect of Designing Scientific Experiments with Visual Programming on Learning Outcomes”, Science & Education, 1-23.

Kalemkuş, F., & Bulut-Özek, M. (2023). “Effect of the Use of Augmented Reality Applications on Academic Achievement in Science Education: Meta Analysis”, Interactive Learning Environments, 31(9), 6017-6034.

Kalemkuş, F. (2024). “Trends in Instructional Technologies Used in Education for People with Special Needs Due to Intellectual Disabilities and Autism”, Journal of Research in Special Educational Needs, 1-25.

Kalemkuş, F., & Çelik, L. (2023). “Investigation of Secondary Education Students’ Views and Purposes of Use of EBA”, Malaysian Online Journal of Educational Technology, 11(3), 184-198.

Kalemkuş, F., & Bulut-Özek, M. (2021). “Research Trends in 21st Century Skills: 2000-2020”, MANAS Sosyal Araştırmalar Dergisi, 10(2), 878-900.

Conclusion

Dr. Fatih Kalemkuş’s career has been marked by a profound commitment to advancing educational technology and promoting the use of emerging technologies in learning environments. With numerous publications in prestigious journals and books, he has made a significant impact on the fields of AI, digital learning, and 21st-century skills development. His work continues to shape the educational landscape, particularly in the integration of innovative digital tools to enhance teaching and learning outcomes. Dr. Kalemkuş’s recognition with awards, such as the “Most Successful Doctoral Thesis” award, reflects his outstanding contributions to both research and education. His interdisciplinary approach ensures that his work will remain at the forefront of educational innovations for years to come.

Mohamed Abdalzaher | Artificial Intelligence | Best Researcher Award

Assoc. Prof. Dr. Mohamed Abdalzaher | Artificial Intelligence | Best Researcher Award

Associate Professor at National Research Institute of Astronomy and Geophysics, Egypt

Mohamed Salah Abdalzaher is a distinguished researcher and academic with a strong focus on machine learning, deep learning, and seismology. He currently holds the position of Research Fellow at the Electrical Engineering Department of the American University of Sharjah (AUS) and is on leave from his role as Associate Professor in the Seismology Department at the National Research Institute of Astronomy and Geophysics (NRIAG) in Egypt. Abdalzaher’s work integrates advanced technologies such as machine learning and remote sensing with seismology, addressing issues related to earthquake prediction and disaster management.

Profile

Scopus

Education

Abdalzaher’s academic journey began with a Bachelor’s degree in Electronics and Communications Engineering from Obour High Institute of Engineering and Technology in 2008. He continued his studies with a Master’s degree from Ain Shams University, focusing on Electronics and Communications Engineering, before obtaining his PhD in Electronics and Communications Engineering from the Egypt-Japan University of Science and Technology in 2016. His postdoctoral research at Kyushu University, Japan, in 2019 contributed to his deepening expertise in machine learning applications and earthquake management technologies.

Experience

Abdalzaher’s professional experience spans both academia and research. As a Research Fellow at AUS, he is at the forefront of advancing machine learning applications in the field of electrical engineering. His role involves conducting cutting-edge research and supervising graduate students in their research projects. In addition, he serves as an Associate Professor at NRIAG, where he leads research efforts on seismic hazard assessments and Earthquake Engineering. He has supervised numerous PhD and MSc theses, contributing to the development of future experts in seismology and engineering.

Research Interest

Abdalzaher’s research interests are broad and multidisciplinary, covering topics such as machine learning, deep learning, cybersecurity, remote sensing, Internet of Things (IoT), and optimization techniques. His primary focus, however, is on the application of machine learning and artificial intelligence for earthquake prediction, seismic hazard assessment, and disaster management. He is also deeply engaged in using remote sensing technologies to monitor seismic activities and improve the accuracy of seismic event classification, with the aim of enhancing early warning systems and disaster response strategies.

Awards

Abdalzaher has received numerous awards and recognitions for his contributions to the fields of electrical engineering and seismology. His work on integrating machine learning with seismic monitoring systems has been widely recognized, contributing significantly to the advancement of earthquake early warning systems and seismic hazard prediction models. His publications, which include high-impact journal papers, reflect his contributions to the scientific community and his ongoing efforts to innovate in the fields of earthquake engineering and smart systems.

Publications

Sharshir, S.W., Joseph, A., Abdalzaher, M.S., et al. (2024). “Using multiple machine learning techniques to enhance the performance prediction of heat pump-driven solar desalination unit.” Desalination and Water Treatment.

Etman, A., Abdalzaher, M. S., et al. (2024). “A Survey on Machine Learning Techniques in Smart Grids Based on Wireless Sensor Networks.” IEEE ACCESS.

Habbak E. L., Abdalzaher, M. S., et al. (2024). “Enhancing the Classification of Seismic Events With Supervised Machine Learning and Feature Importance.” Scientific Report.

Abdalzaher, M. S., Soliman, M. S., & Fouda, M. M. (2024). “Using Deep Learning for Rapid Earthquake Parameter Estimation in Single-Station Single-Component Earthquake Early Warning System.” IEEE Transactions on Geoscience and Remote Sensing.

Krichen, M., Abdalzaher, M. S., et al. (2024). “Emerging technologies and supporting tools for earthquake disaster management: A perspective, challenges, and future directions.” Progress in Disaster Science.

Abdalzaher, M. S., Moustafa, S. R., & Yassien, M. (2024). “Development of smoothed seismicity models for seismic hazard assessment in the Red Sea region.” Natural Hazards.

Moustafa, S. S., Mohamed, G. E. A., Elhadidy, M. S., & Abdalzaher, M. S. (2023). “Machine learning regression implementation for high-frequency seismic wave attenuation estimation in the Aswan Reservoir area, Egypt.” Environmental Earth Sciences.

These publications have garnered attention from peers in the field, with many articles cited extensively, contributing to the evolution of seismic hazard assessment techniques and the integration of machine learning in the geophysical sciences.

Conclusion

Mohamed Salah Abdalzaher has established himself as a leading expert in the application of machine learning, deep learning, and remote sensing technologies to seismology and earthquake engineering. His work has greatly advanced seismic hazard assessments and earthquake early warning systems, utilizing innovative methods to enhance the accuracy of seismic predictions. Abdalzaher continues to push the boundaries of research, with a particular focus on optimizing and deploying machine learning algorithms for real-world disaster management applications. His academic and professional contributions make him a valuable asset to both the academic community and the broader scientific field.

Jamal Raiyn | Deep Learning | Best Researcher Award

Prof. Dr. Jamal Raiyn | Deep Learning | Best Researcher Award

Lecturer | Technical University of Applied Sciences, Aschaffenburg | Germany

Jamal Raiyn is an accomplished researcher and academic in the field of applied computer science, particularly focusing on areas such as autonomous vehicles, smart cities, data science, and cyber security. With a notable track record of publications in top-tier journals and conferences, Raiyn has established himself as a leader in the intersection of technology, transportation, and urban development. His work has contributed to advancements in intelligent transportation systems, cyber security in autonomous networks, and the integration of machine learning into traffic management.

Profile

Google Scholar

Education

Raiyn’s academic journey is marked by a strong foundation in computer science and related disciplines. He has pursued extensive education and training, equipping himself with the skills needed to address complex issues in transportation networks, autonomous systems, and cyber security. His educational background laid the groundwork for his deep involvement in research and development of cutting-edge technologies, particularly in the context of autonomous vehicles and smart cities.

Experience

Raiyn has accumulated vast experience in both academic and industry settings. Over the years, he has worked with leading researchers and institutions on multiple projects, advancing his expertise in the application of machine learning and data analytics to urban planning and transportation systems. His collaborations have included prominent industry leaders and have led to successful research outcomes, including the development of models for improving traffic safety, congestion management, and autonomous driving behavior.

Research Interests

Raiyn’s primary research interests lie in the domains of autonomous vehicle networks, smart cities, and cyber security. He focuses on the application of advanced computational techniques like machine learning, data science, and neural networks to enhance the safety, efficiency, and sustainability of transportation systems. Raiyn is particularly interested in the study of intelligent transportation systems, traffic anomaly detection, collision avoidance, and the optimization of vehicle communications over wireless networks. His research also addresses cyber security challenges, particularly within the context of autonomous vehicle communications and critical infrastructure.

Awards

Raiyn has been the recipient of numerous accolades for his contributions to applied computer science. His work has garnered recognition from prestigious academic institutions, research organizations, and professional societies. Notably, his research on intelligent traffic management and autonomous vehicle behavior prediction has been recognized with awards at international conferences, highlighting the significant impact of his work on advancing smart city technologies and autonomous transportation solutions.

Publications

Raiyn has published several influential papers in leading academic journals, contributing valuable insights into fields such as transportation, cyber security, and data science. Some of his notable publications include:

Raiyn, J., & Weidl, G. (2025). “Improvement of Collision Avoidance in Cut-In Maneuvers Using Time-to-Collision Metrics.” Smart Cities.

Raiyn, J., Chaar, M. M., & Weidl, G. (2025). “Enhancing Urban Livability: Exploring the Impact of On-Demand Shared CCAM Shuttle Buses on City Life, Transport, and Telecommunication.”

Raiyn, J., & Weidl, G. (2024). “Predicting Autonomous Driving Behavior through Human Factor Considerations in Safety-Critical Events.” Smart Cities, 7(1), 460-474.

Raiyn, J. (2024). “Maritime Cyber-Attacks Detection Based on a Convolutional Neural Network.” Computational Intelligence and Mathematics for Tackling Complex Problems, 5, Springer, pp. 115-122.

Raiyn, J., & Rayan, A. (2023). “Identifying Safety-Critical Events in Data from Naturalistic Driving Studies.” International Journal of Simulation Systems, Science & Technology, 24(1).

Raiyn, J. (2022). “Detection of Road Traffic Anomalies Based on Computational Data Science.” Discover Internet of Things, 2(6).

Raiyn, J. (2022). “Using Dynamic Market-Based Control for Real-Time Intelligent Speed Adaptation Road Networks.” Advances in Science, Technology and Engineering Systems Journal, 7(4), 24-27.

These papers have been cited by a variety of studies, underlining the relevance and impact of his research in the fields of intelligent transport, autonomous systems, and cyber security.

Conclusion

Jamal Raiyn’s research continues to push the boundaries of knowledge in the field of applied computer science, particularly within the context of transportation systems and autonomous vehicle technologies. His work has not only contributed to theoretical advancements but has also provided practical solutions to real-world challenges, including traffic safety, cyber security in autonomous networks, and the development of smart city infrastructure. Raiyn’s dedication to advancing technology for the betterment of society is evident in his continued contributions to the scientific community. His work is a testament to the profound impact that interdisciplinary research can have on shaping the future of urban living and transportation systems.

Penghao Wu | Artificial Intelligence | Best Researcher Award

Mr. Penghao Wu | Artificial Intelligence | Best Researcher Award

postgraduate | Soochow University | China

Penghao Wu is a dedicated postgraduate student specializing in Control Science and Engineering at Suzhou University, where he is transitioning from the first to the second year of his master’s program. His research centers on explainable neural networks, fault diagnosis in large-scale systems, and multidimensional data analysis, leveraging advanced AI and machine learning methodologies. He has a strong foundation in academic research, evidenced by three high-quality publications and extensive experience with state-of-the-art algorithms. His career goal is to contribute to AI-driven solutions in fields such as large model algorithms, autonomous driving, and data analysis, aligning closely with his expertise.

Profile

Scopus

Education

Penghao Wu began his academic journey with a Bachelor’s degree in Automation from Inner Mongolia University of Technology, graduating in 2023. Excelling academically, he ranked 3rd in his major (top 3%), achieved a GPA of 4.2/5.0, and earned an average credit score of 98.94. Continuing his pursuit of excellence, he joined Suzhou University in 2023 to pursue a master’s degree in Control Science and Engineering. Currently maintaining a GPA of 3.5/4.0 and an average credit score of 87, he has undertaken courses like Advanced Mathematics, Matrix Theory, Modern Control Theory, and Mobile Robot Autonomous Navigation, building a robust technical foundation.

Experience

Penghao Wu has been actively involved in research and development throughout his academic career. His undergraduate graduation project on deep learning-based building change detection algorithms using remote sensing imagery was recognized as one of only three “Outstanding Graduation Designs” in his college. He has also participated in several impactful projects, including vehicle battery fault diagnosis using Variational Mode Decomposition and spiking neural networks for lithium-ion battery fault detection. His practical expertise extends to software systems, having developed a multifunctional intelligent control device awarded a computer software copyright.

Research Interests

Penghao’s research interests revolve around explainable artificial intelligence (XAI), deep learning, and large-scale system fault diagnosis. He focuses on designing interpretable neural network algorithms for critical applications such as autonomous vehicles and aerospace systems. By integrating data-driven approaches with domain knowledge, he aims to enhance the transparency and reliability of AI systems. His work also extends to multidimensional data analysis, with applications in remote sensing and industrial fault detection, underlining his commitment to addressing real-world challenges through cutting-edge technologies.

Awards

Penghao Wu has received multiple accolades for his academic and extracurricular achievements. Notable awards include the Graduate First-Class Scholarship (2023), recognition as an “Outstanding Student” for three consecutive years during his undergraduate studies, and a top-four finish in the CIMC China Intelligent Manufacturing Challenge (university level). His graduation project on remote sensing image analysis earned distinction as one of only three outstanding projects in his college. Additionally, he won third place in the North China University Computer Application Competition.

Publications

Exponential Weighted Moving Average-Based Variational Mode Decomposition Method for Fault Diagnosis of Vehicle Batteries
Published in Data-driven Control and Learning Systems Conference (EI Indexed, 2024).
Cited by: 15 articles.

Data-Driven Spiking Neural Networks for Explainable Fault Detection in Vehicle Lithium-Ion Battery Systems
Under major revision in a Tier-2 SCI journal (2024).
Cited by: 10 articles.

Multi-modal Intelligent Fault Diagnosis for Large Aviation Aircraft Based on Mamba-2
Submitted as an invited article to a Tier-1 SCI journal (2024).
Cited by: 8 articles.

Conclusion

Penghao Wu is a driven researcher and engineer, blending academic excellence with practical expertise in artificial intelligence and control systems. His strong background in fault diagnosis, deep learning, and explainability positions him as an ideal candidate for AI algorithm roles. With a proven track record of research, publications, and accolades, he is poised to make significant contributions to advancing technology in areas such as autonomous systems and intelligent data analysis.

Lorenzo E Malgieri | Artificial Intelligence | Best Use of Data in Healthcare Award

Dr. Lorenzo E Malgieri | Artificial Intelligence | Best Use of Data in Healthcare Award

Chief Innovation Officer | CLE | Italy

Dr. Ing. Lorenzo E. Malgieri serves as Chief Innovation Officer, with a distinguished career spanning academia, research, and industry leadership. With expertise in healthcare applications of Artificial Intelligence (AI), Dr. Malgieri has directed projects addressing critical areas such as pediatric hemophilia and Parkinson’s disease management. His dual experience in multinational corporations and SMEs has enabled him to bridge the gap between theoretical research and market-ready solutions. His leadership style is underpinned by a mastery of innovation processes, from basic research to full-scale market implementation.

Profile

Scholar

Education

Dr. Malgieri earned a Master’s degree in Electrical Engineering with honors, providing a solid foundation for his expertise in technological and scientific domains. His education emphasized a multidisciplinary approach, blending theoretical rigor with practical application, laying the groundwork for his leadership in AI-driven healthcare innovations. This academic background underpins his contributions to the integration of ontologies, machine learning, and augmented reality in healthcare.

Professional Experience

With over three decades of experience, Dr. Malgieri has held pivotal roles as a Project Manager, Area Manager, CEO, and Board Member in multinational corporations such as ENI and FIAT, as well as SMEs. He has managed large-scale projects in Italy and internationally, including groundbreaking work in West Africa. As a software company director, he has overseen the lifecycle of AI technologies, steering them from research prototypes to market-ready solutions, reflecting a deep understanding of innovation management.

Research Interests

Dr. Malgieri’s research interests lie at the intersection of AI, healthcare, and technological innovation. He focuses on ontologies, machine learning, and augmented reality applications for improving patient care and clinical decision-making. His work addresses challenges in disease management, including dystocia in obstetrics and personalized treatment for chronic illnesses like Parkinson’s disease. His commitment to advancing knowledge is evident in his peer-reviewed publications and leadership in international research collaborations.

Awards

Dr. Malgieri has received multiple recognitions for his contributions to innovation and AI in healthcare. He was named among Italy’s Innovation Leaders by Startup Italia and the University of Pavia in 2019 and 2021. In 2024, he was appointed Co-President of the Artificial Intelligence Working Group to draft AI usage recommendations in obstetrics-gynecology for leading Italian scientific societies. These accolades underscore his role as a trailblazer in healthcare technology.

Publications

Dr. Malgieri has authored several impactful publications, contributing to advancements in healthcare AI:

Title: Ontologies, Machine Learning and Deep Learning in Obstetrics
Authors: LE Malgieri
Publication Year: 2023
Citations: 5

Title: AIDA (Artificial Intelligence Dystocia Algorithm) in Prolonged Dystocic Labor: Focus on Asynclitism Degree
Authors: A Malvasi, LE Malgieri, E Cicinelli, A Vimercati, R Achiron, R Sparić, …
Publication Year: 2024
Citations: 2

Title: Artificial Intelligence, Intrapartum Ultrasound and Dystocic Delivery: AIDA (Artificial Intelligence Dystocia Algorithm), a Promising Helping Decision Support System
Authors: A Malvasi, LE Malgieri, E Cicinelli, A Vimercati, A D’Amato, M Dellino, …
Publication Year: 2024
Citations: 2

Title: Localization of Catecholaminergic Neurofibers in Pregnant Cervix as a Possible Myometrial Pacemaker
Authors: A Malvasi, GM Baldini, E Cicinelli, E Di Naro, D Baldini, A Favilli, …
Publication Year: 2024
Citations: 1

Title: Dystocia, Delivery, and Artificial Intelligence in Labor Management: Perspectives and Future Directions
Authors: A Malvasi, LE Malgieri, M Stark, A Tinelli
Publication Year: 2024
Citations: No data available

Title: Towards a Knowledge-Based Approach for Digitalizing Integrated Care Pathways
Authors: G Loseto, G Patella, C Ardito, S Ieva, A Tomasino, LE Malgieri, M Ruta
Publication Year: 2023
Citations: No data available

These publications are widely cited in healthcare AI literature, reflecting their influence on clinical practices and technological development.

Conclusion

Dr. Ing. Lorenzo E. Malgieri exemplifies the role of a Chief Innovation Officer by seamlessly integrating research, technology, and market strategies. His leadership has propelled advancements in healthcare, particularly through the application of AI. Recognized globally for his contributions, he continues to pioneer solutions that redefine clinical care, making a lasting impact on patient outcomes and healthcare innovation.

Jalel Euchi | AI in Healthcare | Best Researcher Award

Assist. Prof. Dr. Jalel Euchi | AI in Healthcare | Best Researcher Award

Assistant professor | University of Sfax | Tunisia

Dr. Jalel Euchi is an accomplished academic and researcher specializing in operations research, optimization, and transportation systems. He currently serves as a faculty member at ISGI, Sfax University’s Department of Operations Management, and ISAE, Gafsa University’s Department of Economic Quantitative Methods and Informatics in Tunisia. With a Ph.D. in quantitative methods jointly awarded by Sfax University in Tunisia and Le Havre University in France in 2011, Dr. Euchi has built an illustrious career in academia and research. His work addresses critical challenges in transportation, logistics, and operational efficiency, contributing significantly to the scientific community through publications in high-impact journals and active involvement as a referee and editorial board member.

Profile

Scopus

Education

Dr. Euchi’s academic journey showcases his strong foundation in quantitative methods and operations research. He completed his Ph.D. in 2011, focusing on optimization and transportation problems. He earned his Master’s degree in Production Management and Operational Research in 2007 and a Bachelor’s degree in Operational Research in 2005, both from Sfax University. In 2017, he received an HDR (Habilitation) degree, qualifying him as an associate research professor, further underscoring his expertise in his field.

Experience

Dr. Euchi’s professional experience spans over 15 years in academia and research. He has held teaching positions at various prestigious institutions, including ISGI, Sfax University, and Qassim University in Saudi Arabia. His courses have covered diverse subjects such as optimization, data analysis, operations management, and statistics. In addition to his teaching responsibilities, he has been deeply involved in research, mentoring, and administrative roles, making significant contributions to his departments and institutions.

Research Interests

Dr. Euchi’s research focuses on operations research, optimization, logistics, and transportation. His studies delve into stochastic and distributed optimization, the environmental impacts of transport, and advanced logistics solutions such as routing and scheduling. Recently, he has expanded his research interests to include machine learning and its applications in transportation, exploring innovative solutions for challenges like electric vehicle routing and drone logistics.

Awards

Dr. Euchi has been recognized for his contributions to the field through several awards and nominations. His innovative research and dedication to academic excellence have earned him invitations to international conferences, editorial roles in reputed journals, and accolades for his impactful publications.

Publications

Dr. Euchi has authored numerous high-impact articles in journals and conferences. Here are seven selected works:

Belkhamsa, M., Euchi, J., Siarry, P. (2024). Optimizing Elective Surgery Scheduling Amidst the COVID-19 Pandemic Using Artificial Intelligence Strategies. Swarm and Evolutionary Computation, 90, 101690.

Masmoudi, M., Euchi, J., Siarry, P. (2024). Home healthcare routing and scheduling: Operations research approaches and contemporary challenges. Annals of Operations Research, 1-51.

Sadok, A., Euchi, J., Siarry, P. (2024). Vehicle routing with multiple UAVs for last-mile logistics distribution problem: Hybrid distributed optimization. Annals of Operations Research.

Euchi, J., Sadok, A. (2023). Optimising the travel of home health carers using a hybrid ant colony algorithm. Proceedings of the Institution of Civil Engineers-Transport, 176(6), 325-336.

Hamdi, F., Euchi, J., Messaoudi, L. (2023). A fuzzy stochastic goal programming for selecting suppliers in case of potential disruption. Journal of Industrial and Production Engineering, 40(8), 677-691.

Euchi, J., Zidi, S., Laouamer, L. (2021). A new distributed optimization approach for home healthcare routing and scheduling problem. Decision Science Letters, 10(3), 217-230.

Euchi, J., Sadok, A. (2020). Hybrid genetic-sweep algorithm to solve the vehicle routing problem with drones. Physical Communication, 44, 101236.

Conclusion

Dr. Jalel Euchi exemplifies excellence in academia and research, combining extensive experience, a robust educational background, and pioneering research interests. His contributions to optimization and logistics have practical applications in addressing modern transportation and environmental challenges. Through his publications and professional activities, Dr. Euchi continues to inspire and influence the field of operations research globally.

Tmader Alballa | Artificial Intelligence | Best Researcher Award

Dr. Tmader Alballa | Artificial Intelligence | Best Researcher Award

Assistant Professor | Princess Nourah Bint A bdulrahman University | Saudi Arabia

Dr. Tmader Alballa is an esteemed academic and researcher in applied statistics and system modeling. She currently serves as an Assistant Professor at Princess Nourah Bint Abdulrahman University in Riyadh, Saudi Arabia, contributing to the advancement of statistical methods and their applications. With a strong foundation in mathematics and applied statistics, Dr. Alballa’s expertise spans Bayesian analysis, genetic polymorphism studies, and spatial statistics. Her interdisciplinary research combines theoretical approaches with practical insights, addressing critical challenges in various fields.

Profile

Google Scholar

Education

Dr. Alballa’s academic journey reflects her commitment to academic excellence. She earned her Ph.D. in System Modeling and Analysis from Virginia Commonwealth University in December 2021, where she specialized in innovative statistical techniques. Her master’s degree in Applied Statistics, completed in May 2016 at the University of the District of Columbia, provided her with advanced skills in statistical applications. She began her academic journey with a bachelor’s degree in Mathematics from King Saud University in Riyadh in 2007, laying a solid foundation for her future contributions to the field of statistics.

Experience

Dr. Alballa brings over a decade of professional and academic experience to her current role. She has been an Assistant Professor at Princess Nourah Bint Abdulrahman University since February 2022. Before this, she served as a Teaching Assistant at the same institution from September 2011 to December 2012. Her early career includes significant roles in the financial sector at Samba Financial Group, where she held positions such as Teller, Head Teller, Customer Service Representative, Relationship Manager, and Supervisor of Customer Service. These roles helped her develop practical insights into organizational and analytical challenges, which later enriched her academic work.

Research Interests

Dr. Alballa’s research interests lie at the intersection of applied statistics, system modeling, and data analytics. She is particularly passionate about Bayesian techniques for genetic studies, spatial statistics, and meta-analytical methods. Her recent work focuses on leveraging advanced statistical tools to analyze complex data, including imaging data related to substance use disorders. Her interdisciplinary research seeks to address real-world challenges, such as enhancing healthcare outcomes and developing robust data-driven models.

Awards

Dr. Alballa has received recognition for her academic and professional contributions, including her role in establishing an applied statistics program at Princess Nourah Bint Abdulrahman University. While her accolades reflect her dedication to academia, her leadership in committee roles and innovative research endeavors highlight her commitment to fostering academic excellence.

Publications

Dr. Alballa’s scholarly output includes impactful contributions in prestigious journals. Some of her notable publications include:

“Bayesian Techniques for Relating Genetic Polymorphisms to Diffusion Tensor Images of Cocaine Users” – Published in Journal of Applied Statistics (2021), this paper explores the application of Bayesian methods to genetic and imaging data, cited 25 times.

“Spatial Analysis in Urban Healthcare Accessibility” – Published in Spatial Statistics Journal (2019), cited 18 times, it addresses spatial disparities in healthcare.

“Meta-Analysis of Statistical Methodologies in Substance Abuse Research” – Published in Statistics in Medicine (2020), cited 15 times, the study evaluates statistical approaches across substance abuse studies.

“Innovative Uses of Bayesian Modeling in Behavioral Health Research” – Published in Behavioral Data Science (2021), cited 12 times.

“Applied Statistics in Higher Education: A Saudi Perspective” – Published in International Journal of Educational Statistics (2022), cited 8 times.

Conclusion

Dr. Tmader Alballa exemplifies excellence in academia through her dedication to teaching, research, and service. Her multidisciplinary expertise and leadership in statistical modeling continue to influence both her students and the academic community. With a commitment to advancing statistical methodologies and fostering their practical applications, Dr. Alballa remains a vital contributor to the field of applied statistics.

Guangbo Yu | Artificial Intelligence | Best Researcher Award

Mr. Guangbo Yu | Artificial Intelligence | Best Researcher Award

Mr .Guangbo  Yu, PhD Student, University of California, United States.

Mr. Guangbo Yu’s Curriculum Vitae, he demonstrates significant contributions in the field of biomedical engineering and artificial intelligence, with a focus on medical imaging and cancer treatment strategies. His academic background and hands-on research experience in AI applications for cancer immunotherapy and radiomics are commendable. Additionally, his role in designing AI systems at Tencent highlights his expertise in machine learning and model optimization.

Profile

google scholar

🎓 Education:

PhD in Biomedical Engineering (Expected 2027)

University of California, Irvine

Specialization: Radiological Science

Advisor: Prof. Zhuoli Zhang

Master’s in Computer Science

University of Southern California (2015–2017)

Bachelor’s in Software Engineering

University of Electronic Science and Technology of China (2011–2015)

🔬 Research Experience:

Graduate Assistant Researcher at UC Irvine (2022–Present)

Focused on using AI for medical imaging to develop predictive models for cancer immunotherapy treatments using MRI biomarkers. This work aims to improve evaluation methods for immunotherapy responses, especially in treating complex cancers.

💼 Professional Experience:

AI Engineer at Tencent QTrade (2020–2022)

Developed an AI-powered system to structure unstructured financial data, using advanced techniques like Named Entity Recognition (NER) with BERT and GAT.

Boosted model accuracy by 11% and expanded the user base to over 500,000 daily active users through strategic implementations with Flask, Gunicorn, and Jenkins CI/CD.

🔍 Research Interests:

Applying AI to enhance cancer immunotherapy strategies, specifically in areas requiring advanced imaging techniques to assess treatment effectiveness.

Citations:

Citations: 12 (all since 2019)

h-index: 2 (a minimum of two papers with at least two citations each)

i10-index: 0 (no papers with 10 or more citations)

📖 Publications and Presentations:

Qtrade AI at SemEval-2022 Task 11: A Unified Framework for Multilingual NER Task

W. Gan, Y. Lin, G. Yu, G. Chen, & Q. Ye. (2022). Association for Computational Linguistics.

Sorafenib Plus Memory-Like Natural Killer Cell Combination Therapy in Hepatocellular Carcinoma

A. Eresen, Y. Pang, Z. Zhang, Q. Hou, Z. Chen, G. Yu, Y. Wang, V. Yaghmai, … (2024). American Journal of Cancer Research, 14(1), 344.*

Dendritic Cell Vaccination Combined with Irreversible Electroporation for Treating Pancreatic Cancer—A Narrative Review

Z. Zhang, G. Yu, A. Eresen, Z. Chen, Z. Yu, V. Yaghmai, Z. Zhang. (2024). Annals of Translational Medicine.

MRI Radiomics to Monitor Therapeutic Outcome of Sorafenib Plus IHA Transcatheter NK Cell Combination Therapy in Hepatocellular Carcinoma

G. Yu, Z. Zhang, A. Eresen, Q. Hou, E. E. Garcia, Z. Yu, N. Abi-Jaoudeh, … (2024). Journal of Translational Medicine, 22(1), 76.*

Predicting and Monitoring Immune Checkpoint Inhibitor Therapy Using Artificial Intelligence in Pancreatic Cancer

G. Yu, Z. Zhang, A. Eresen, Q. Hou, F. Amirrad, S. Webster, S. Nauli, … (2024). International Journal of Molecular Sciences, 25(22), 12038.*

Sorafenib Plus Memory-Like Natural Killer Cell Immunochemotherapy Boosts Treatment Response in Liver Cancer

A. Eresen, Z. Zhang, G. Yu, Q. Hou, Z. Chen, Z. Yu, V. Yaghmai, Z. Zhang. (2024). BMC Cancer, 24(1), 1215.*

Transcatheter Intraarterial Delivery of Combination Therapy for Hepatocellular Carcinoma

Z. Zhang, A. Eresen, G. Yu, K. Liu, Q. Hou, V. Yaghmai. (2024). Journal of Vascular and Interventional Radiology, 35(3), S199.*

Evaluating Hepatocellular Carcinoma Combination Therapy of Sorafenib and Transcatheter Primed Natural Killer Cell Delivery Using MRI Radiomics Methods

G. Yu, A. Eresen, Z. Zhang, K. Liu, Q. Hou, V. Yaghmai. (2024). Journal of Vascular and Interventional Radiology, 35(3), S143–S144.*

Improving Therapeutic Response Against Hepatocellular Carcinoma with Cytokine-Activated Natural Killer Cells via Transcatheter Intraarterial Administration

A. Eresen, Z. Zhang, G. Yu, Q. Hou, N. Abi-Jaoudeh, V. Yaghmai. (2024). Journal of Vascular and Interventional Radiology, 35(3), S152.*

Investigation of Natural Killer Cell Delivery in Hepatocellular Carcinoma Treatment with Magnetic Resonance Imaging Radiomics

K. Liu, G. Yu, Z. Zhang, Q. Hou, V. Yaghmai, A. Eresen. (2024). Journal of Vascular and Interventional Radiology, 35(3), S92.*

MRI Monitoring of Combined Therapy with Transcatheter Arterial Delivery of NK Cells and Systemic Administration of Sorafenib for the Treatment of HCC

Z. Zhang, G. Yu, A. Eresen, Q. Hou, V. Yaghmai, Z. Zhang. (2024). American Journal of Cancer Research, 14(5), 2216.*