Jia Kaiewei | Artificial Intelligence | Best Scholar Award

Dr. Jia Kaiewei | Artificial Intelligence | Best Scholar Award

Professor at Liaoning Technical University, Huludao, China

Kaiwei Jia is an accomplished academician and researcher currently serving as a Professor and Doctoral Supervisor in the field of Management Science and Engineering. He also holds the role of Vice Dean at the School of Business Administration, Liaoning Technical University. His academic journey is marked by extensive contributions to teaching, research, and institutional development. As a core member of the Liaoning Provincial Teaching Guidance Committee for Finance, he plays a significant role in shaping the financial education framework in the region. With a background in Economics and Statistics, Professor Jia has emerged as a thought leader in financial econometrics and policy research. His career is defined by a blend of theoretical insight and empirical rigor, and he has guided numerous graduate and doctoral students in their academic endeavors. Through his sustained commitment to academic excellence and administrative leadership, he has made substantial contributions to the academic community and the broader field of finance and economics.

Profile

Scopus

Education

Kaiwei Jia’s educational background is deeply rooted in economics and statistics. He earned his Ph.D. in Economics after completing a rigorous postgraduate program that emphasized macroeconomic policy, financial analysis, and quantitative methods. Subsequently, he undertook postdoctoral research in Statistics, where he refined his understanding of data interpretation, econometric modeling, and the application of statistical methodologies to economic problems. This interdisciplinary training has provided him with a comprehensive toolkit for analyzing complex economic phenomena. His academic progression reflects a strong emphasis on research-driven education, equipping him with both theoretical and practical skills. His transition from postgraduate studies to postdoctoral research marked a significant shift in his academic career, allowing him to delve deeper into areas such as financial econometrics, risk modeling, and empirical policy analysis.

Experience

Throughout his career, Professor Jia has maintained an unwavering commitment to teaching and mentoring. He has designed and delivered undergraduate, master’s, and doctoral-level courses in Econometrics, Financial Risk Management, Financial Econometrics, and Financial Data Analysis. His lectures are known for their analytical depth and emphasis on real-world application, which have earned him the respect of both peers and students. Beyond the classroom, he has played a pivotal role in curriculum development and academic governance at Liaoning Technical University. As Vice Dean, he has led several institutional initiatives aimed at enhancing academic quality and fostering innovation in finance education. Additionally, his membership in the Liaoning Provincial Teaching Guidance Committee for Finance has enabled him to influence regional academic standards, ensuring that finance education remains aligned with contemporary global developments.

Research Interest

Professor Jia’s research interests span a diverse array of topics within economics and finance. He focuses on financial stability and risk management, particularly the dynamics of financial contagion and systemic risk. His work explores the governance and risk prevention mechanisms in financial institutions, combining institutional theory with quantitative modeling. Additionally, he is deeply engaged in the study of monetary policy theory and methodology, emphasizing both the rules-based and discretionary approaches to macroeconomic regulation. His research extends to econometric methods, where he utilizes advanced statistical techniques to analyze financial and economic data. More recently, he has contributed to emerging areas such as green finance and climate finance, investigating how environmental factors intersect with financial risk and investment decisions. His multidisciplinary research approach integrates macroeconomic theory, quantitative analysis, and policy insights.

Award

In recognition of his scholarly achievements and academic leadership, Professor Jia has received several prestigious awards. He was honored with the First Prize in the 7th Liaoning Provincial Outstanding Achievement Award in Statistical Sciences, which acknowledges innovative contributions in statistical research. He also received the Second Prize in the Liaoning Provincial Philosophy and Social Science Achievement Award for his impactful work in economics and financial policy. These accolades reflect both the quality and societal relevance of his research, highlighting his role as a leading scholar in his field. His award-winning work has contributed to enhancing the understanding of financial risk, policy formulation, and statistical analysis at both regional and national levels.

Publication

Kaiwei Jia has published more than 30 academic papers in respected journals indexed by SSCI and CSSCI. His recent works reflect his ongoing dedication to cutting-edge research. In 2023, he co-authored “Did the ‘double carbon’ policy improve the green total factor productivity of iron and steel enterprises? A quasi-natural experiment based on carbon emission trading pilot,” published in Frontiers in Energy Research, exploring policy impact through econometric analysis. In the same year, he contributed to Frontiers in Psychology with “Digital financial and banking competition network: Evidence from China,” which examined competitive dynamics using network models. His 2022 publications include “Construction and empirical of investor sentiment evaluation system based on partial least squares” and “Empirical research of risk correlation based on Copula function method,” both appearing in the Journal of Liaoning Technical University (Natural Science Edition). These studies utilized advanced statistical tools to analyze investor behavior and risk correlation. Another 2022 work titled “Spatiotemporal Evolution of Provincial Carbon Emission Network in China,” published on SSRN, tackled environmental finance issues using spatial network methods. These publications not only reflect his diverse expertise but also have been cited by multiple articles, indicating his work’s influence within the academic community.

Conclusion

In summary, Professor Kaiwei Jia’s academic career is characterized by a strong dedication to education, a robust portfolio of interdisciplinary research, and impactful contributions to financial policy and risk management. His dual expertise in economics and statistics has allowed him to bridge theoretical frameworks with empirical application, making his research both rigorous and relevant. Through his teaching, he has nurtured the next generation of economists and financial analysts, while his administrative leadership has helped shape academic standards in finance education. His scholarly output and recognition through awards reflect a sustained contribution to the academic and policy-making community. Professor Jia continues to explore innovative themes in green finance and systemic risk, ensuring that his research remains at the forefront of addressing contemporary economic challenges.

Hemad Zareiforoush | Machine Learning | Best Academic Researcher Award

Dr. Hemad Zareiforoush | Machine Learning | Best Academic Researcher Award

Associate Professor at University of Guilan, Rasht, Iran

Dr. Hemad Zareiforoush is an Assistant Professor at the Department of Biosystems Engineering, University of Guilan, Rasht, Iran, where he has been contributing to both academic and practical advancements in biosystems engineering since 2015. With a focus on agricultural machinery, automation, and quality inspection systems, his work bridges engineering and food science, particularly in areas like computer vision, image processing, and renewable energy applications. His research is highly interdisciplinary, combining mechanical engineering principles with computational intelligence for improving the agricultural industry’s efficiency.

Profile

Google Scholar

Education

Dr. Zareiforoush’s educational background is robust, with a PhD in Mechanical and Biosystems Engineering from Tarbiat Modares University in Tehran, Iran, completed in 2014. His academic excellence is evident in his GPA of 17.84 out of 20. He earned his MSc in Mechanical Engineering of Agricultural Machinery at Urmia University in 2010, where he graduated with a remarkable GPA of 19.29 out of 20. Earlier, Dr. Zareiforoush obtained his BSc in the same field from Urmia University in 2007, graduating with a GPA of 15.75 out of 20. He also attended a specialized governmental high school for excellent pupils, where he focused on mathematics and physics, graduating with a GPA of 18.71 out of 20.

Experience

Since joining the University of Guilan in 2015, Dr. Zareiforoush has been teaching various courses, including Engineering Properties of Food and Agricultural Products, Renewable Energy, and Measurement and Instrumentation Principles. His practical experience spans various engineering disciplines, with a particular emphasis on instrumentation, automation in agriculture, and food quality monitoring. Notably, his research has led to the development of innovative systems for rice quality inspection using computer vision and fuzzy logic. Additionally, he has been involved in numerous projects related to agricultural machinery, renewable energy, and automation for optimizing food production processes.

Research Interests

Dr. Zareiforoush’s research interests lie at the intersection of biosystems engineering, computational intelligence, and food science. He is particularly interested in computer vision applications for food quality inspection, using advanced image processing techniques to enhance product quality and safety. His work also explores hyperspectral imaging and spectroscopy for monitoring the quality of food materials. Another key area of his research is the application of machine learning algorithms for modeling and classifying food products based on their quality attributes. Additionally, he is involved in renewable energy applications in agriculture, focusing on solar-assisted drying systems and energy-efficient food processing methods.

Awards

Dr. Zareiforoush has received several prestigious awards throughout his academic career. He was honored with the Iran Ministry of Science, Research, and Technology Scholarship in 2012 and the National Elite Scholarship by the Iran National Foundation for Elites (INFE) in 2011. His exceptional academic performance earned him the title of “Best Student” at Urmia University in 2009. Additionally, he has been recognized as a “Talented Student” at Tarbiat Modares University and ranked 1st among MSc students in his department.

Publications

Dr. Zareiforoush has published several influential papers in high-impact journals. Some of his notable publications include:

Bakhshipour, A., Zareiforoush, H., Bagheri, I. (2020). Application of decision trees and fuzzy inference system for quality classification and modeling of black and green tea based on visual features. Journal of Food Measurement and Characterization, 14: 1402–1416, Cited by: 43.

Bakhshipour, A., Zareiforoush, H., Bagheri, I. (2020). Development of a fuzzy model for differentiating peanut plant from broadleaf weeds using image features. Plant Methods, 16:153, Cited by: 25.

Bakhshipour, A., Zareiforoush, H., Bagheri, I. (2021). Mathematical and intelligent modeling of stevia (Stevia Rebaudiana) leaves drying in an infrared-assisted continuous hybrid solar dryer. Food Science & Nutrition (JCR), 9(1), 532-543, Cited by: 12.

Zareiforoush, H., Minaei, S., Alizadeh, M.R., Banakar, A. (2016). Design, Development, and Performance Evaluation of an Automatic Control System for Rice Whitening Machine Based on Computer Vision and Fuzzy Logic. Computers and Electronics in Agriculture, 124: 14-22, Cited by: 67.

Soodmand-Moghaddam, S., Sharifi, M., Zareiforoush, H. (2020). Mathematical modeling of lemon verbena leaves drying in a continuous flow dryer equipped with a solar pre-heating system. Quality Assurance and Safety of Crops & Foods, 12(1): 57-66, Cited by: 30.

Zareiforoush, H., Minaei, S., Alizadeh, M.R., Banakar, A. (2015). Qualitative Classification of Milled Rice Grains Using Computer Vision and Metaheuristic Techniques. Journal of Food Science and Technology (Springer), 53(1): 118-131, Cited by: 45.

Zareiforoush, H., Komarizadeh, M.H., Alizadeh, M.R. (2010). Effects of crop-screw parameters on rough rice grain damage in handling with a horizontal screw auger. Journal of Food, Agriculture and Environment, 8(3): 132-138, Cited by: 19.

Conclusion

Dr. Hemad Zareiforoush’s academic and professional contributions significantly impact the fields of biosystems engineering, food science, and agricultural machinery. His work in developing intelligent systems for quality inspection and automation has improved agricultural productivity and food safety. His expertise in computational techniques, including fuzzy logic and machine learning, continues to shape the future of smart farming and food processing. With numerous awards, highly cited publications, and a track record of excellence, Dr. Zareiforoush is a leading figure in his field.

Farhat Nasim | Artificial Intelligence | Best Researcher Award

Ms. Farhat Nasim | Artificial Intelligence | Best Researcher Award

ASSISTANT PROFESSOR GUEST at Jamia Millia Islamia, India

Ms. Farhat Nasim is a dedicated academician and researcher in the field of Control Systems and Instrumentation. With a keen interest in power system optimization and intelligent control methodologies, she has made significant contributions to the development of control strategies for wind power systems. Currently pursuing her Ph.D. at Jamia Millia Islamia, she focuses on designing and implementing intelligent controllers for wind power applications. Her research is driven by a commitment to advancing sustainable energy solutions through novel control techniques. Alongside her research, she serves as an Assistant Professor (Guest Basis) at Jamia Millia Islamia, where she teaches various electrical engineering subjects and undertakes additional academic responsibilities.

Profile

Scopus

Education

Ms. Farhat Nasim’s academic journey is marked by excellence in the field of electrical engineering and control systems. She is currently a Ph.D. candidate in Control Systems and Instrumentation at Jamia Millia Islamia, Central University, Delhi, with a dissertation titled “Design and Implementations of Intelligent Controllers for Wind Power System.” Prior to her doctoral studies, she earned her Master of Technology (M.Tech) in Control and Instrumentation from the same institution, further strengthening her expertise in control methodologies. She also holds a Bachelor of Technology (B.Tech) in Electrical Engineering from Jamia Millia Islamia, where she built a strong foundation in electrical power systems and control engineering.

Professional Experience

Ms. Nasim is currently an Assistant Professor (Guest Basis) at Jamia Millia Islamia, where she teaches a range of subjects, including Electrical Power Generation, Basics of Electrical Engineering, DC and Synchronous Machines, Control Systems, and Advanced Control Systems. Her commitment to academic excellence extends beyond teaching, as she actively engages in administrative and organizational responsibilities. She has served as the Coordinator for the 6th Semester B.Tech students’ Industrial Visit at Losung Automation Pvt. Ltd., Associate Editor for the Departmental Magazine, Co-convener for the Workshop on Syllabus Revision of the B.Tech (EE) program, and Attendance Compiling In-Charge for all B.Tech semesters. Additionally, she has contributed significantly to laboratory coordination, including managing the Control System Lab and Project Lab for NBA accreditation.

Research Interests

Ms. Nasim’s research interests lie at the intersection of power system optimization, intelligent control, and renewable energy integration. Her primary focus is on the design and implementation of advanced control strategies for wind energy systems, particularly Double-Fed Induction Generators (DFIG). She has worked extensively on hybrid ANFIS-PI-based optimization techniques to enhance power conversion efficiency in wind turbines. Her research also explores Ziegler-Nichols-based controller optimization and crowbar protection mechanisms for DFIG systems. Through her work, she aims to develop more efficient and robust control solutions that contribute to the reliability and sustainability of renewable energy sources.

Awards and Achievements

Ms. Nasim has received recognition for her contributions to research and academia. She has successfully published her work in high-impact journals and presented her findings at reputed international conferences. Her role in academic coordination and syllabus revision has been instrumental in improving the curriculum for electrical engineering students at Jamia Millia Islamia. Her dedication to mentoring students and enhancing laboratory infrastructure has further solidified her reputation as a committed educator and researcher.

Publications

Nasim, F., Khatoon, S., Ibraheem, Urooj, S., Shahid, M., Ali, A., & Nasser, N. (2025). Hybrid ANFIS-PI-Based Optimization for Improved Power Conversion in DFIG Wind Turbine. Sustainability, 17(6), 2454. https://doi.org/10.3390/su17062454 (SCI)

Nasim, F., Khatoon, S., Shahid, M., Baranwal, S., & Ahmad Wani, S. (2024). Ziegler-Nichols Based Controller Optimization for DFIG Wind Turbines. Tuijin Jishu/Journal of Propulsion Technology, 45(2). https://doi.org/10.52783/tjjpt.v45.i02.6966 (SCOPUS)

Nasim, F., et al. (2022). Effect of PI Controller on Power Generation in Double-Fed Induction Machine. 4th International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), IEEE. doi: 10.1109/ICAC3N56670.2022.10074573.

Nasim, F., et al. (2024). Implementation of Crowbar Protection in DFIG. Advances in AI for Biomedical Instrumentation, Electronics and Computing, CRC Press. (Taylor and Francis Conference)

Nasim, F., et al. (2023). Field Control Grid Connected DFIG Turbine System. International Conference on Power, Instrumentation, Energy and Control (PIECON), IEEE. doi: 10.1109/PIECON56912.2023.10085726.

Conclusion

Ms. Farhat Nasim’s dedication to research and education reflects her commitment to advancing knowledge in control systems and renewable energy. Her work in optimizing wind power systems through intelligent control strategies has significant implications for sustainable energy solutions. As an educator, she continues to inspire and mentor students, ensuring that future engineers are equipped with the skills and knowledge necessary to address contemporary challenges in electrical engineering. With her strong academic background, research contributions, and teaching excellence, Ms. Nasim remains a key contributor to the field of control systems and instrumentation.

Ouafae El Melhaoui | Machine Learning | Best Researcher Award

Dr. Ouafae El Melhaoui | Machine Learning | Best Researcher Award

Electronic and System Laboratory National School of Applied Sciences, ENSA Mohammed first University, Morocco

Dr. Ouafae El Melhaoui is a distinguished researcher in the field of electronics and artificial intelligence, specializing in data classification through innovative AI approaches. With extensive experience in teaching and research, she has contributed significantly to the development of machine learning algorithms, deep learning models, genetic optimization techniques, and convolutional neural networks. Her expertise spans various domains, including signal processing, data mining, and fuzzy classification. Dr. El Melhaoui’s academic journey and professional career reflect her commitment to advancing AI-driven methodologies for complex data analysis.

Profile

Orcid

Education

Dr. El Melhaoui earned her Ph.D. in Electronics with a specialization in artificial intelligence from Mohammed Premier University in 2013. Her doctoral research focused on developing new data classification techniques through advanced signal processing methods. Prior to that, she obtained a Diploma of Advanced Studies (D.E.S.A) in Physics and Technology of Microelectronic Devices and Sensors from Cadi Ayyad University in 2007, where she explored the structural and optical properties of boron nitride. She also holds a Bachelor’s degree in Electronics from Mohammed Premier University, solidifying her strong foundation in electronic systems and computational methodologies.

Professional Experience

Dr. El Melhaoui has an extensive teaching and research background, having worked at various academic institutions. She has supervised numerous undergraduate and graduate projects, focusing on machine learning applications, image processing, and signal analysis. Her professional journey includes collaborations with research laboratories such as LETSER and LETAS, where she contributed to projects in electromagnetism, renewable energy, and electronic systems. She has also been involved in industrial collaborations, developing AI-based solutions for quality control, object recognition, and signal denoising in real-world applications.

Research Interests

Dr. El Melhaoui’s research focuses on artificial intelligence applications in electronics and signal processing. She is particularly interested in computer vision, deep learning, convolutional neural networks, data mining, and optimization algorithms. Her work involves developing novel classification methods for complex data structures, integrating evolutionary computing techniques, and enhancing predictive analytics for diverse applications. Her contributions aim to bridge the gap between theoretical advancements in AI and their practical implementations in engineering and medical diagnostics.

Awards and Recognitions

Dr. El Melhaoui has received several accolades for her research contributions. She has been recognized for her innovative approaches in AI-driven signal processing and has participated in multiple national and international scientific conferences. Her work has been instrumental in advancing knowledge in AI-based classification techniques, earning her a reputation as a leading researcher in her field.

Publications

Novel Classification Algorithm for Complex Class Structures, e-Prime – Advances in Electrical Engineering, Electronics and Energy (Under Review, 2024). Scopus Q1, SJR=0.65.

Hybridization Denoising Method for EMG Signals Using EWT and EMD Techniques, International Journal on Engineering Applications (Under Review, 2024). Scopus Q2, SJR=0.28.

A Novel Signature Recognition System Using a Convolutional Neural Network and Fuzzy Classifier, International Journal of Computational Vision and Robotics (2024). Scopus Q4, SJR=0.21.

Improved Signature Recognition System Based on Statistical Features and Fuzzy Logic, e-Prime – Advances in Electrical Engineering, Electronics and Energy (2024). Scopus Q1, SJR=0.65.

Optimized Framework for Signature Recognition Using Genetic Algorithm, Loci Method, and Fuzzy Classifier, Engineered Science Publisher (2024). Scopus Q1, SJR=0.87.

Design of a Patch Antenna for High-Gain Applications Using One-Dimensional Electromagnetic Band Gap Structures, Engineered Science Publisher (2024). Scopus Q1, SJR=0.87.

Enhancing Signature Recognition Performance through Convolutional Neural Network and K-Nearest Neighbors, International Journal of Technical and Physical Problems of Engineering (2023). Scopus Q3, SJR=0.23.

Conclusion

Dr. Ouafae El Melhaoui’s career exemplifies a strong dedication to research and education in the fields of electronics and artificial intelligence. Her contributions to AI-based classification and signal processing have led to significant advancements in the domain. With a solid academic background, extensive teaching experience, and a robust publication record, she continues to drive innovation in machine learning, deep learning, and AI applications. Her work not only enhances theoretical models but also provides practical solutions to complex engineering problems, making a lasting impact in the field.

Yunxiang Lu | Neural Networks | Best Researcher Award

Dr. Yunxiang Lu | Neural Networks | Best Researcher Award

Ph.D | College of Automation & College of Artificial Intelligence | China

Dr. Yunxiang Lu is a dedicated researcher and academic currently affiliated with the College of Automation and the College of Artificial Intelligence at Nanjing University of Posts and Telecommunications, China. His work spans advanced topics in control science, neural networks, and ecological competition networks, underpinned by rigorous academic and practical experiences. Dr. Lu’s career is marked by his pursuit of ground breaking research, particularly in the realms of dynamic systems, network topology, and bifurcation analysis. Through a robust combination of theoretical exploration and simulation-based validation, he has significantly contributed to the field of artificial intelligence and control systems.

Profile

Scopus

Education

Dr. Lu embarked on a combined Master and Ph.D. program in Control Science and Engineering in 2019. As part of his academic journey, he is currently affiliated with the Polish Academy of Sciences – Institute of Systems Research for a year-long research collaboration. This academic foundation has provided him with a strong grasp of theoretical frameworks and hands-on application in control engineering, establishing him as a skilled scholar and innovator in his domain.

Experience

Dr. Lu’s professional experience includes a stint as an IT Technical Engineer at China Telecom Corporation, where he contributed to the 5G+MEC smart factory project, enhancing his expertise in telecommunications and automation. His role involved exploring the integration of 5G technologies in industrial applications, further broadening his technical horizon. Additionally, his active participation in academia includes leading research projects funded by Jiangsu Province, with notable achievements in ecological competition networks and time-delay feedback control mechanisms.

Research Interests

Dr. Lu’s research interests focus on fractional-order systems, neural networks, ecological dynamics, and the control of anomalous diffusion processes. He aims to uncover the intricate behaviors of complex networks influenced by various dynamic parameters. His work explores how time delays, fractional orders, and network topologies impact system stability and evolution, with applications ranging from neural systems to cyber-physical and ecological networks.

Awards and Honors

Dr. Lu has received numerous accolades recognizing his academic excellence and contributions. Notably, he was honored as the Excellent Graduate of Nanjing University of Posts and Telecommunications in 2022 and received the prestigious Postgraduate Academic Scholarship awards multiple times during his tenure. These distinctions underscore his dedication and consistent performance in both research and academics.

Publications

Dr. Lu has co-authored several impactful publications in esteemed journals.

Tipping prediction of a class of large-scale radial-ring neural networks

    • Authors: Lu, Y., Xiao, M., Wu, X., Cao, J., Zheng, W.X.
    • Publication Year: 2025
    • Citations: 0

Complex pattern evolution of a two-dimensional space diffusion model of malware spread

    • Authors: Cheng, H., Xiao, M., Lu, Y., Rutkowski, L., Cao, J.
    • Publication Year: 2024
    • Citations: 0

Spatiotemporal Evolution of Large-Scale Bidirectional Associative Memory Neural Networks With Diffusion and Delays

    • Authors: Lu, Y., Xiao, M., Liang, J., Wang, Z., Cao, J.
    • Publication Year: 2024
    • Citations: 1

Stability and Bifurcation Exploration of Delayed Neural Networks with Radial-Ring Configuration and Bidirectional Coupling

    • Authors: Lu, Y., Xiao, M., He, J., Wang, Z.
    • Publication Year: 2024
    • Citations: 6

Stability and Dynamics Analysis of Time-Delay Fractional-Order Large-Scale Dual-Loop Neural Network Model With Cross-Coupling Structure

    • Authors: Du, X., Xiao, M., Qiu, J., Lu, Y., Cao, J.
    • Publication Year: 2024
    • Citations: 0

QUALITATIVE ANALYSIS OF HIGH-DIMENSIONAL NEURAL NETWORKS WITH THREE-LAYER STRUCTURE AND MULTIPLE DELAYS

    • Authors: He, J., Xiao, M., Lu, Y., Sun, Y., Cao, J.
    • Publication Year: 2024
    • Citations: 0

Early warning of tipping in a chemical model with cross-diffusion via spatiotemporal pattern formation and transition

    • Authors: Lu, Y., Xiao, M., Huang, C., Wang, Z., Cao, J.
    • Publication Year: 2023
    • Citations: 8

Tipping point prediction and mechanism analysis of malware spreading in cyber–physical systems

    • Authors: Xiao, M., Chen, S., Zheng, W.X., Wang, Z., Lu, Y.
    • Publication Year: 2023
    • Citations: 10

Control of tipping in a small-world network model via a novel dynamic delayed feedback scheme

    • Authors: He, H., Xiao, M., Lu, Y., Wang, Z., Tao, B.
    • Publication Year: 2023
    • Citations: 9

Bifurcation Dynamics Analysis of A Class of Fractional Neural Networks with Mixed Delays

    • Authors: Luan, Y., Lu, Y., Xiao, M., Zhang, J.
    • Publication Year: 2023
    • Citations: 0

Conclusion

Dr. Yunxiang Lu exemplifies the synthesis of academic brilliance, practical expertise, and research acumen. His dedication to advancing knowledge in control systems and artificial intelligence positions him as a visionary scholar in his field. Through his continued exploration of dynamic networks and innovative control strategies, he remains committed to addressing complex challenges in modern science and technology.

Penghao Wu | Artificial Intelligence | Best Researcher Award

Mr. Penghao Wu | Artificial Intelligence | Best Researcher Award

postgraduate | Soochow University | China

Penghao Wu is a dedicated postgraduate student specializing in Control Science and Engineering at Suzhou University, where he is transitioning from the first to the second year of his master’s program. His research centers on explainable neural networks, fault diagnosis in large-scale systems, and multidimensional data analysis, leveraging advanced AI and machine learning methodologies. He has a strong foundation in academic research, evidenced by three high-quality publications and extensive experience with state-of-the-art algorithms. His career goal is to contribute to AI-driven solutions in fields such as large model algorithms, autonomous driving, and data analysis, aligning closely with his expertise.

Profile

Scopus

Education

Penghao Wu began his academic journey with a Bachelor’s degree in Automation from Inner Mongolia University of Technology, graduating in 2023. Excelling academically, he ranked 3rd in his major (top 3%), achieved a GPA of 4.2/5.0, and earned an average credit score of 98.94. Continuing his pursuit of excellence, he joined Suzhou University in 2023 to pursue a master’s degree in Control Science and Engineering. Currently maintaining a GPA of 3.5/4.0 and an average credit score of 87, he has undertaken courses like Advanced Mathematics, Matrix Theory, Modern Control Theory, and Mobile Robot Autonomous Navigation, building a robust technical foundation.

Experience

Penghao Wu has been actively involved in research and development throughout his academic career. His undergraduate graduation project on deep learning-based building change detection algorithms using remote sensing imagery was recognized as one of only three “Outstanding Graduation Designs” in his college. He has also participated in several impactful projects, including vehicle battery fault diagnosis using Variational Mode Decomposition and spiking neural networks for lithium-ion battery fault detection. His practical expertise extends to software systems, having developed a multifunctional intelligent control device awarded a computer software copyright.

Research Interests

Penghao’s research interests revolve around explainable artificial intelligence (XAI), deep learning, and large-scale system fault diagnosis. He focuses on designing interpretable neural network algorithms for critical applications such as autonomous vehicles and aerospace systems. By integrating data-driven approaches with domain knowledge, he aims to enhance the transparency and reliability of AI systems. His work also extends to multidimensional data analysis, with applications in remote sensing and industrial fault detection, underlining his commitment to addressing real-world challenges through cutting-edge technologies.

Awards

Penghao Wu has received multiple accolades for his academic and extracurricular achievements. Notable awards include the Graduate First-Class Scholarship (2023), recognition as an “Outstanding Student” for three consecutive years during his undergraduate studies, and a top-four finish in the CIMC China Intelligent Manufacturing Challenge (university level). His graduation project on remote sensing image analysis earned distinction as one of only three outstanding projects in his college. Additionally, he won third place in the North China University Computer Application Competition.

Publications

Exponential Weighted Moving Average-Based Variational Mode Decomposition Method for Fault Diagnosis of Vehicle Batteries
Published in Data-driven Control and Learning Systems Conference (EI Indexed, 2024).
Cited by: 15 articles.

Data-Driven Spiking Neural Networks for Explainable Fault Detection in Vehicle Lithium-Ion Battery Systems
Under major revision in a Tier-2 SCI journal (2024).
Cited by: 10 articles.

Multi-modal Intelligent Fault Diagnosis for Large Aviation Aircraft Based on Mamba-2
Submitted as an invited article to a Tier-1 SCI journal (2024).
Cited by: 8 articles.

Conclusion

Penghao Wu is a driven researcher and engineer, blending academic excellence with practical expertise in artificial intelligence and control systems. His strong background in fault diagnosis, deep learning, and explainability positions him as an ideal candidate for AI algorithm roles. With a proven track record of research, publications, and accolades, he is poised to make significant contributions to advancing technology in areas such as autonomous systems and intelligent data analysis.