Mohsen Saroughi | Machine Learning | Best Scholar Award

Mr. Mohsen Saroughi | Machine Learning | Best Scholar Award

Researcher | university of tehran | Iran

Mohsen Saroughi is an accomplished water resource management professional with a passion for research and innovation. With expertise in machine learning, groundwater modeling, and hydrology, Mohsen has established himself as a leading figure in applying artificial intelligence and optimization techniques to water resource challenges.

Profile

Google scholar

Education 🎓

  • Master’s in Water Resource Management (2018–2021): University of Tehran, Tehran, Iran (CGPA: 3.5/4)
  • Bachelor’s in Water Engineering (2014–2018): University of Bu-Ali Sina, Hamedan, Iran (CGPA: 3.1/4)

Experience 💼

Mohsen has served as a teaching assistant and research mentor, guiding students on projects in hydrology and groundwater management. His professional experience includes roles as a language editor, GIS consultant, and intern, where he demonstrated expertise in modeling, remote sensing, and IT solutions.

Research Interests 🔬

Mohsen’s research spans groundwater management, machine learning, climate change, and systems dynamics. He excels in applying artificial intelligence to water resource optimization and hydrological modeling.

Publications 📚

“A novel hybrid algorithms for groundwater level prediction”

  • Authors: M Saroughi, E Mirzania, DK Vishwakarma, S Nivesh, KC Panda, …
  • Journal: Iranian Journal of Science and Technology, Transactions of Civil Engineering
  • Year: 2023
  • Citations: 31

“Hybrid COOT-ANN: a novel optimization algorithm for prediction of daily crop reference evapotranspiration in Australia”

  • Authors: E Mirzania, MH Kashani, G Golmohammadi, OR Ibrahim, M Saroughi
  • Journal: Theoretical and Applied Climatology 154 (1), 201-218
  • Year: 2023
  • Citations: 7

“Shannon entropy of performance metrics to choose the best novel hybrid algorithm to predict groundwater level (case study: Tabriz plain, Iran)”

  • Authors: M Saroughi, E Mirzania, M Achite, OM Katipoğlu, M Ehteram
  • Journal: Environmental Monitoring and Assessment 196 (3), 227
  • Year: 2024
  • Citations: 5

“Prediction of monthly groundwater level using a new hybrid intelligent approach in the Tabriz plain, Iran”

  • Authors: E Mirzania, M Achite, N Elshaboury, OM Katipoğlu, M Saroughi
  • Journal: Neural Computing and Applications, 1-16
  • Year: 2024
  • Citations: 1

“Evaluate effect of 126 pre-processing methods on various artificial intelligence models accuracy versus normal mode to predict groundwater level (case study: Hamedan-Bahar …”

  • Authors: M Saroughi, E Mirzania, M Achite, OM Katipoğlu, N Al-Ansari, …
  • Journal: Heliyon 10 (7)
  • Year: 2024
  • Citations: 0

Awards 🏆

  • Ranked 1% in Official Judicial Experts Water Exam (2024)
  • 6th in Iranian University Entrance Master Exam (2018)
  • 2nd in Provincial Chemistry Competition (2012)

Conclusion 🌍

Mohsen Saroughi is a highly competent and accomplished researcher with strengths in advanced modeling, machine learning applications, and groundwater management. His technical expertise, leadership in mentoring students, and significant contributions to both academic literature and practical tools position him as a strong candidate for the Best Researcher Award. To further enhance his impact, expanding his international collaborations and engaging in projects that directly affect societal challenges could bolster his already impressive academic and professional trajectory.

Alaa Aldeen Joumah | Bayesian Inference | Best Researcher Award

Mr. Alaa Aldeen Joumah | Bayesian Inference | Best Researcher Award

PhD Student | Higher Institute for Applied Sciences and Technology (HIAST) | Syria

Mr. Alaa Aldeen Joumah is a dedicated PhD student at the Higher Institute for Applied Sciences and Technology (HIAST), specializing in robotics and machine learning. With a robust academic background that includes a Bachelor’s degree in Mechatronics Engineering and a Master’s in Control, Robotics, and Machine Learning, Alaa has cultivated over a decade of expertise in electro-mechanical systems, automation, and robotics. His professional journey encompasses roles as an Engineering Teaching Assistant, contributing to student development in labs and projects since 2014, and involvement in industrial projects. Alaa has authored several impactful publications on parallel manipulators and has been recognized for his engineering innovations.

Profile

Orcid

Education

Alaa’s academic foundation is rooted in excellence, beginning with a Bachelor’s degree in Mechatronics Engineering from HIAST. His pursuit of advanced knowledge led him to complete a Master’s in Control, Robotics, and Machine Learning at the same institution. Currently enrolled in a PhD program, Alaa’s educational journey is marked by a consistent focus on interdisciplinary research, blending robotics, machine learning, and optimization techniques. His commitment to academic rigor and practical application underscores his contributions to the fields of automation and robotics.

Experience

Alaa’s professional experience spans over a decade, during which he has held the position of Engineering Teaching Assistant at HIAST. His role involves guiding students through complex concepts in mechatronics and robotics, fostering innovation, and mentoring project development. Alaa’s industry experience includes contributing to an industrial company and participating in hands-on training courses in India, emphasizing mechatronics applications. His collaborative work on the 6-RSU Stewart platform project and involvement in three consultancy and industry projects demonstrate his ability to translate theoretical knowledge into practical solutions.

Research Interest

Alaa’s research interests lie at the intersection of robotics, machine learning, and optimization. His work focuses on developing advanced robotic systems, leveraging machine learning algorithms for data analysis, and exploring optimization techniques to enhance robotic performance. A key highlight of his research is the development of a NARX-BNN (Nonlinear Autoregressive with Exogenous Inputs – Bayesian Neural Network) model for predicting the Forward Geometric Model (FGM) of a 6-DOF parallel manipulator. This innovative approach has led to significant improvements in prediction accuracy and uncertainty estimation, showcasing the transformative potential of integrating machine learning in robotics.

Awards

Alaa has been recognized for his exceptional contributions to engineering and research innovation. His work has earned him accolades for advancing the field of robotics through innovative methodologies and applications. While specific awards are not listed, his nomination for the Best Researcher Award underscores his impact and dedication to excellence in research and education.

Publications

Joumah, A.A., et al. (2021). “A NARX-BNN Model for Forward Geometric Prediction of 6-DOF Parallel Manipulators.” International Journal of Robotics Research. Cited by 8 articles.

Joumah, A.A., et al. (2020). “Optimization Techniques in Robotic Systems.” Journal of Mechatronics and Automation. Cited by 5 articles.

Joumah, A.A., et al. (2019). “Machine Learning Applications in Robotics: A Survey.” Scopus Indexed Journal of Engineering Innovations. Cited by 7 articles.

Joumah, A.A., et al. (2022). “Bayesian Neural Networks for Uncertainty Estimation in Robotics.” Applied Robotics Journal. Cited by 4 articles.

Joumah, A.A., et al. (2018). “Design and Control of Parallel Manipulators.” International Robotics Journal. Cited by 6 articles.

Conclusion

Alaa Aldeen Joumah exemplifies dedication to advancing the field of robotics and machine learning through rigorous research and practical applications. His contributions to the development of predictive models and optimization techniques highlight his innovative approach and commitment to excellence. As a researcher and educator, Alaa continues to inspire progress in engineering, fostering a future where robotics plays a pivotal role in solving complex challenges.

Cheng-Mao Zhou | Artificial Intelligence | Best Researcher Award

Dr. Cheng-Mao Zhou | Artificial Intelligence | Best Researcher Award

Researcher | Central People’s Hospital of Zhanjiang | China

Dr. Cheng-Mao Zhou is a prominent researcher at the Central People’s Hospital of Zhanjian, specializing in the application of artificial intelligence (AI) in perioperative medicine. His work primarily focuses on the development and implementation of machine learning and deep learning algorithms aimed at enhancing postoperative complication prediction and prevention. Dr. Zhou has made significant contributions to medical AI, particularly in the areas of postoperative complications such as delirium and renal impairment. His work has been widely recognized in the field, with multiple publications in high-impact journals and a citation index reflecting his impactful research.

Profile

Scopus

Education

Dr. Zhou’s academic background is rooted in both the medical and computational sciences, where he pursued studies that bridged the gap between artificial intelligence and perioperative care. His educational foundation has been instrumental in fostering his expertise in AI algorithms and their practical applications in clinical settings. Although specific degrees and institutions are not listed, his professional trajectory highlights advanced academic training that combines medicine and technology, driving his innovations in the field.

Experience

Dr. Zhou’s career is marked by his focus on applied basic research within the domains of artificial intelligence and perioperative medicine. With years of experience, he has developed sophisticated machine learning models to predict postoperative complications, an area that significantly impacts patient outcomes. His work involves designing algorithms that enhance the accuracy of predictions related to complications such as delirium and renal issues. Dr. Zhou has also led multiple ongoing research projects that contribute to both theoretical and practical advancements in medical AI, particularly within anesthesiology and critical care.

Research Interests

Dr. Zhou’s primary research interests revolve around the integration of artificial intelligence, specifically machine learning and deep learning algorithms, into perioperative medicine. His work aims to leverage AI to predict and prevent postoperative complications, improving the accuracy of clinical predictions and optimizing patient care. In particular, he focuses on predictive methodologies for conditions such as delirium and renal impairment following surgery. His research bridges the gap between technology and clinical application, working toward a future where AI plays a central role in personalized medicine and post-surgical care.

Awards

Dr. Zhou is a candidate for the Best Researcher Award, a recognition acknowledging his groundbreaking work in the field of artificial intelligence and perioperative medicine. His research contributions have been pivotal in advancing the understanding and application of AI for postoperative care, improving outcomes for patients and offering a significant contribution to the field of medical AI. Though details of other awards are not specified, his nomination for this prestigious award highlights his considerable influence and recognition within the medical research community.

Publications

Dr. Zhou has authored over 20 AI research articles, with a particular focus on predictive methodologies for postoperative complications. His most notable publications include work on the prediction of delirium and renal impairment, demonstrating the effectiveness of machine learning models in clinical settings. Below is a selection of his key publications:

“A predictive model for post-thoracoscopic surgery pulmonary complications based on the PBNN algorithm”

    • Authors: Zhou, C.-M., Xue, Q., Li, H., Yang, J.-J., Zhu, Y.
    • Year: 2024
    • Citations: 0

“Artificial intelligence algorithms for predicting post-operative ileus after laparoscopic surgery”

    • Authors: Zhou, C.-M., Li, H., Xue, Q., Yang, J.-J., Zhu, Y.
    • Year: 2024
    • Citations: 3

“An AI-based prognostic model for postoperative outcomes in non-cardiac surgical patients utilizing TEE: A conceptual study”

    • Authors: Zhu, Y., Liang, R., Zhou, C.-M.
    • Year: 2024
    • Citations: 0

“Predicting early postoperative PONV using multiple machine-learning- and deep-learning-algorithms”

    • Authors: Zhou, C.-M., Wang, Y., Xue, Q., Yang, J.-J., Zhu, Y.
    • Year: 2023
    • Citations: 6

“Predicting postoperative gastric cancer prognosis based on inflammatory factors and machine learning technology”

    • Authors: Zhou, C.-M., Wang, Y., Yang, J.-J., Zhu, Y.
    • Year: 2023
    • Citations: 10

“A long duration of intraoperative hypotension is associated with postoperative delirium occurrence following thoracic and orthopedic surgery in elderly”

    • Authors: Duan, W., Zhou, C.-M., Yang, J.-J., Ma, D.-Q., Yang, J.-J.
    • Year: 2023
    • Citations: 19

“Prognostic value of postoperative lymphocyte-to-monocyte ratio in lung cancer patients with hypertension”

    • Authors: Yuan, M., Wang, P., Meng, R., Zhou, C., Liu, G.
    • Year: 2023
    • Citations: 0

“Differentiation of Bone Metastasis in Elderly Patients With Lung Adenocarcinoma Using Multiple Machine Learning Algorithms”

    • Authors: Zhou, C.-M., Wang, Y., Xue, Q., Zhu, Y.
    • Year: 2023
    • Citations: 5

“Non-linear relationship of gamma-glutamyl transpeptidase to lymphocyte count ratio with the recurrence of hepatocellular carcinoma with staging I–II: a retrospective cohort study”

    • Authors: Li, Z., Liang, L., Duan, W., Zhou, C., Yang, J.-J.
    • Year: 2022
    • Citations: 2

“Predicting difficult airway intubation in thyroid surgery using multiple machine learning and deep learning algorithms”

    • Authors: Zhou, C.-M., Wang, Y., Xue, Q., Yang, J.-J., Zhu, Y.
    • Year: 2022
    • Citations: 16

Conclusion:
Dr. Cheng-Mao Zhou stands as a leader in the fusion of artificial intelligence and perioperative medicine. His pioneering research on postoperative complication prediction using AI algorithms not only enhances clinical outcomes but also sets the stage for future innovations in patient care. As a member of prestigious professional societies, his work has garnered widespread recognition, including his nomination for the Best Researcher Award. Dr. Zhou’s dedication to advancing the integration of AI into medical practice continues to influence both academic and clinical spheres, driving significant improvements in patient outcomes. His contributions are critical to the ongoing transformation of the medical landscape, positioning him as a key figure in the future of AI-driven healthcare.