Mr. Sonjoy Ranjon Das | Computer Vision | AI & Machine Learning Award

Mr. Sonjoy Ranjon Das | Computer Vision | AI & Machine Learning Award

Lecturer,  Global Banking School, United Kingdom

Mr. Sonjoy Ranjon Das (FHEA, MIEEE, MBCS) is a Lecturer in Computing at the Global Banking School, UK, PhD Candidate in Computer Science at London Metropolitan University, and an affiliated researcher with the AI & Data Science Research Group at London Metropolitan University. He is an emerging academic with expertise in artificial intelligence, soft biometrics, cybersecurity, and privacy-preserving surveillance frameworks aligned with ethical AI deployment and GDPR compliance. Mr. Sonjoy Ranjon Das earned his MSc in Cyber Security Technology with Distinction from Northumbria University, UK, following an MBA in Management Information Systems and a BSc (Hons) in Computer Science from Leading University, Bangladesh, which provided him with an integrated background in computing, management information systems, and advanced security practices. Professionally, he has served in diverse higher-education lecturing roles across the UK including Elizabeth School of London, New City College, Shipley College, and other institutions, as well as holding the position of Research Associate on the SoftMatrix and Surveillance (SMS) Project at Northumbria University, contributing to cross-disciplinary and international research. Mr. Sonjoy Ranjon Das’s research interests include privacy-preserving multimodal soft biometrics for identity verification, AI-driven covert surveillance, ethical and GDPR-compliant surveillance technologies, and the fusion of biometrics for crowd analytics in public safety and border security. His research skills encompass advanced machine learning and computer vision techniques, data analytics, Python and Java programming, cloud-IoT integration, and full-stack development, supported by proficiency in data visualization tools such as Power BI, Tableau, and MATLAB.

Profile GOOGLE SCHOLAR

Featured Publications

  • Das, S. R., Kruti, A., Devkota, R., & Sulaiman, R. B. (2023). Evaluation of machine learning models for credit card fraud detection: A comparative analysis of algorithmic performance and their efficacy. FMDB Transactions on Sustainable Technoprise Letters. 12 citations.

  • Thinesh, M. A., Varmann, S. S., Sharmila, S. L., & Das, S. R. (2023). Detection of credit card fraud using random forest classification model. FMDB Transactions on Sustainable Technologies Letters. 9 citations.

  • Pranav, R. P., Prawin, R. P., Subhashni, R., & Das, S. R. (2023). Enhancing remote sensing with advanced convolutional neural networks: A comprehensive study on advanced sensor design for image analysis and object detection. FMDB Transactions on Sustainable Computer Letters. 8 citations.

  • Das, S. R., Hassan, B., Patel, P., & Yasin, A. (2024). Global soft biometrics in surveillance: Benchmark analysis, open challenges, and recommendations. Multimedia Tools and Applications. 6 citations.

Assoc. Prof. Dr. Nana Yaw Asabere | Big Data | Best Researcher Award

Assoc. Prof. Dr. Nana Yaw Asabere | Big Data | Best Researcher Award 

Assoc. Prof. Dr. Nana Yaw Asabere | Accra Technical University | Ghana

Assoc. Prof. Dr. Nana Yaw Asabere is a distinguished Associate Professor of Computer Science and currently serves as the Dean of the Faculty of Applied Sciences at Accra Technical University, Ghana. With a career spanning nearly two decades, he has established himself as a leading scholar, researcher, and academic leader in the fields of computer science, information and communication technology, and artificial intelligence. His expertise lies in teaching, supervising research, advancing innovative methodologies, and contributing impactful scholarship to the global academic community. Recognized both locally and internationally, Prof. Asabere has played a pivotal role in shaping academic excellence, research visibility, and technological advancement in Ghana and beyond.

Professional Profile

SCOPUS

GOOGLESCHOLAR

ORCID

Summary of Suitability

Assoc. Prof. Dr. Nana Yaw Asabere  is a highly accomplished researcher and academic leader in the field of Computer Science, ICT, and IT, with significant contributions to teaching, research, innovation, and academic leadership. His strong academic background (B.Sc., M.Sc., Ph.D.) is complemented by international training and recognition, including a Chinese Government Scholarship for his Ph.D., where he developed and evaluated novel algorithms to address complex challenges in socially-aware recommendation systems.

Education

Assoc. Prof. Dr. Nana Yaw Asabere educational journey demonstrates a solid foundation and progressive specialization in computer science and ICT. He completed a Bachelor of Science in Computer Science at the Kwame Nkrumah University of Science and Technology in Ghana, followed by a Master of Science in Information and Communication Technologies at Aalborg University, Denmark. He was later awarded a prestigious scholarship from the Chinese Government through the Chinese Scholarship Council to pursue his Doctor of Philosophy in Computer Science at Dalian University of Technology, China. His doctoral work significantly advanced socially-aware recommendation systems for smart conferences, where he designed and evaluated multiple algorithms addressing complex computational challenges. This robust academic training has underpinned his innovative contributions to teaching and research.

Experience

With more than eighteen years of teaching and research experience, Assoc. Prof. Dr. Nana Yaw Asabere has contributed substantially to both undergraduate and postgraduate education. He has held several leadership positions at Accra Technical University, including Head of the Department of Computer Science, Director of the Directorate of Research, Innovation, Publication and Technology Transfer, and Coordinator for Non-Tertiary and Professional Programmes. His academic leadership spans over six years, during which he has fostered innovation, research visibility, and institutional development. Beyond administration, he remains actively engaged in curriculum design, research mentorship, and the dissemination of knowledge through lectures, conferences, and international collaborations.

Research Interests

Assoc. Prof. Dr. Nana Yaw Asabere research focuses on cutting-edge areas in computer science, including software engineering, artificial intelligence, big data analytics, social recommender systems, data science, and ICT integration in education. His scholarly work has combined theoretical depth with practical applications, particularly in advancing recommendation systems for smart environments and applying AI in educational technologies such as e-learning and m-learning. He has authored and co-authored numerous high-impact journal articles and conference papers, many of which have been indexed in globally recognized databases such as Web of Science and Scopus. His contributions continue to shape emerging discussions in intelligent systems and their applications in education and society.

Awards

Assoc. Prof. Dr. Nana Yaw Asabere has received multiple recognitions for his innovative research and impactful contributions. His work on socially-aware recommendation algorithms earned him a Best Paper Award at a leading IEEE international conference on ubiquitous intelligence and computing. He has also received another Best Paper Award at a major IEEE international conference on adaptive science and technology. In addition to these honors, his research visibility, editorial contributions, and active involvement as a peer reviewer for top-tier journals and conferences reflect his standing as an influential researcher within the global academic community.

Publication Top Notes

An integrated multi-scale context-aware network for efficient desnowing

Improving Counseling Sessions Through an Interactive Web-Based Application in the Context of Higher Education

Acceptability and Feasibility of a Pilot Multifamily Group Intervention for Fostering Positive Racial Identity

Nighttime Object Detection with Denoising Diffusion-Probabilistic Models

Conclusion

Assoc. Prof. Dr. Nana Yaw Asabere embodies the qualities of an outstanding researcher, educator, and leader in computer science and ICT. His contributions extend beyond academic publications to institutional leadership, mentoring, and advancing technological innovation in education. With significant citations, impactful research, international recognition, and demonstrated excellence in teaching and leadership, he is a strong candidate for recognition through a Best Researcher Award. His work continues to inspire young scholars, advance computational sciences, and promote the integration of technology for societal benefit.

 

Gabriel Osei Forkuo | Machine Learning | Best Researcher Award

Mr. Gabriel Osei Forkuo | Machine Learning | Best Researcher Award

Doctoral Researcher/ Research Assistant at Transilvania University of Brasov, Romania

Gabriel Osei Forkuo is a dedicated forestry specialist and researcher with an extensive background in forest operations engineering, postural ergonomics, and machine learning applications. He has built a career that merges practical field experience with academic research, contributing significantly to the development of innovative and cost-effective technologies in forest monitoring and conservation. Currently pursuing a Ph.D. in Forest Operations Engineering at Transilvania University of Brasov, Romania, Gabriel has emerged as a leading figure in the exploration of low-cost LiDAR technologies and smart solutions for ergonomic assessments in forestry. His multifaceted expertise is grounded in over two decades of professional service in teaching, field operations, and advanced scientific investigations.

Profile

Orcid

Education

Gabriel’s educational journey is marked by academic excellence and a continuous drive for specialized knowledge. He is currently enrolled in a Ph.D. program in Forest Operations Engineering at Transilvania University of Brasov, where his research focuses on integrating machine learning and computer vision for ergonomic assessments in forest operations. He previously earned a Master’s degree in Multiple Purpose Forestry from the same university, achieving excellent grades and a cumulative ECTS average of 9.76. His foundational studies include a Bachelor of Science degree in Natural Resources Management from Kwame Nkrumah University of Science and Technology, Kumasi, Ghana, where he graduated with First Class Honours. Earlier academic milestones include completing his GCE A-Level in science subjects and his GCE O-Level in science, supported by performance scholarships recognizing his consistent academic distinction.

Experience

Gabriel’s professional experience spans across teaching, research, and forest management. Between 2002 and 2011, he worked as a Forest Range Manager and Supervisor at the Forestry Commission Ghana, where he was instrumental in nursery planning, restoration of degraded forests, and report writing. From 1999 to 2001, he served as a Science and Maths Teacher at Maria Montessori School in Kumasi, followed by a role as a Teaching Assistant at his alma mater, Kwame Nkrumah University of Science and Technology. In this capacity, he conducted laboratory classes, supervised research data collection, and participated in academic presentations, establishing a strong foundation in both pedagogical and research methodologies. His leadership in afforestation programs and practical forest management further reflects his field-based competency and organizational capability.

Research Interest

Gabriel’s research interests are centered on forest operations engineering, with a special focus on postural ergonomics, machine learning applications, and smart technologies for environmental monitoring. He is passionate about developing affordable and efficient technological solutions, particularly the use of mobile LiDAR and AI-driven tools for soil disturbance estimation and posture evaluation in forest labor. His interdisciplinary approach merges forestry, computer science, and ergonomics, contributing to sustainable and safe forestry practices. Through these interests, he aims to bridge the gap between traditional forestry operations and modern intelligent systems.

Award

Gabriel’s academic and professional contributions have been recognized through several prestigious scholarships and awards. He has twice secured first place in the “My Bachelor/Dissertation Project” competitions held in 2022 and 2023, scoring nearly perfect marks. In 2022, he received the “Premiul special pentru studenti straini” award at the Premiul AFCO. He has also been a recipient of multiple scholarships, including the Transilvania Academica Scholarship, UNITBV Ph.D. Scholarship for International Graduates, and funding from “Proiectul Meu de Diploma” programs. Earlier in his career, he was awarded performance scholarships by the Government of Ghana and Poku Transport Ghana for his outstanding performance in forest sciences.

Publication

Gabriel has authored several notable publications that demonstrate his expertise in forest operations and technological innovation. His key works include:

Forkuo, G.O., & Borz, S.A. (2023). Accuracy and inter-cloud precision of low-cost mobile LiDAR technology in estimating soil disturbance in forest operations. Frontiers in Forests and Global Change, 6. Cited in multiple studies on forest soil impact monitoring.

Forkuo, G.O. (2023). A systematic survey of conventional and new postural assessment methods. Revista Padurilor, 138(3), 1-34.

Borz, S.A., Morocho Toaza, J.M., Forkuo, G.O., Marcu, M.V. (2022). Potential of measure app in estimating log biometrics: a comparison with conventional log measurement. Forests, 13(7), 1028.

Borz, S.A., Forkuo, G.O., Oprea-Sorescu, O., & Proto, A.R. (2022). Development of a robust machine learning model to monitor the operational performance of sawing machines. Forests, 13(7), 1115.

Forkuo, G.O., Proto, A.R., & Borz, S.A. (2024). Feasibility of low-cost mobile LiDAR technology in estimating soil disturbance in forest operations. SSRN.

Forkuo, G.O. (1999). Post-fire tree regeneration studies in the Kumawu Water Supply Forest Reserve. B.Sc. Thesis, KNUST-Kumasi.

Presented paper at FORMEC 2023 in Florence, Italy, highlighting applications of mobile LiDAR in operational environments.

Conclusion

Gabriel Osei Forkuo exemplifies the intersection of academic rigor, practical expertise, and technological innovation in the field of forest operations. His work continues to advance the integration of smart technologies into sustainable forestry, driven by a deep commitment to both ecological preservation and worker safety. Through his research, publications, and leadership roles, Gabriel has built a profile of excellence, contributing significantly to forestry engineering and shaping the next generation of sustainable forest management solutions.

Yonghong Song | Deep Learning | Best Researcher Award

Prof. Yonghong Song | Deep Learning | Best Researcher Award

Professor at Xi’an Jiaotong University, China

Professor Song Yonghong is a distinguished academic and researcher at the School of Software Engineering, Xi’an Jiaotong University. As a recognized IEEE member and an active participant in several professional societies including the China Society of Image and Graphics (CSIG) and the China Computer Federation (CCF), she has significantly contributed to advancing the fields of computer vision and intelligent systems. She is also a certified Project Management Professional (PMP) by the American Project Management Institute, combining her academic insight with applied project management expertise. Her contributions to the field include a prolific output of over 100 high-quality publications and more than 20 authorized invention patents, which reflect her sustained impact in theoretical and applied research.

Profile

Scopus

Education

Professor Song’s educational background reflects a strong foundation in computer science and engineering. She pursued rigorous academic training in computer vision, pattern recognition, and artificial intelligence, which laid the groundwork for her subsequent contributions to academia and industry. Her academic preparation, combined with interdisciplinary training, equipped her to approach complex problems with a balance of theoretical depth and practical applicability. This educational trajectory enabled her to engage in and lead high-impact research projects both nationally and internationally, and to cultivate a strong research team within her institution.

Experience

Throughout her career, Professor Song has demonstrated consistent leadership in cutting-edge research and technological development. She has taken the lead on numerous international collaboration projects, national key R&D initiatives, and enterprise partnerships. Her work extends deeply into the real-world challenges associated with object detection and recognition in images and video, providing actionable insights and technological innovations for enterprises. In these roles, she has not only pushed forward the boundaries of academic research but has also ensured that the outcomes are translated into scalable, industry-grade solutions. Her experience spans applications such as intelligent copiers, automated steel surface inspection, and smart appliance systems, showcasing her commitment to cross-disciplinary impact and societal benefit.

Research Interests

Professor Song’s research interests primarily focus on computer vision, pattern recognition, and intelligent systems. She is particularly passionate about designing and refining methodologies for object detection and recognition, especially in real-time industrial environments. Her research addresses complex visual processing problems and develops intelligent solutions that are responsive to the demands of modern industrial applications. She has worked extensively on integrating deep learning algorithms into visual systems for improved performance and automation. Her work is characterized by a high degree of innovation, especially in translating theoretical frameworks into deployable systems.

Awards

Professor Song has been recognized for her excellence through several prestigious awards and honors. While many of her accolades are project-specific and rooted in collaborative successes, her standout achievement includes the development of the “Hot High-Speed Wire Surface Defect Online Detection System,” which was successfully implemented at Baoshan Iron and Steel Co., LTD. This system has proven to be stable, efficient, and internationally competitive in automating quality inspections. The industrial relevance and global recognition of this project exemplify the strength of her applied research. She has also received commendations for leadership in engineering practice and for promoting the industrialization of academic research outputs.

Publications

Professor Song has published over 100 articles in high-impact journals and conferences, with a focus on visual computing and intelligent systems. Selected publications include:

Song Y. et al., “Multi-Scale Feature Fusion for Surface Defect Detection,” IEEE Transactions on Industrial Informatics, 2021 – cited by 56 articles.

Song Y. et al., “Real-Time Target Detection in Complex Industrial Environments,” Pattern Recognition Letters, 2020 – cited by 47 articles.

Song Y. et al., “Deep Learning-based Anomaly Detection in Steel Production,” Journal of Visual Communication and Image Representation, 2019 – cited by 62 articles.

Song Y. et al., “Intelligent Vision System for Smart Appliances,” Sensors, 2022 – cited by 33 articles.

Song Y. et al., “CNN Architectures for Surface Quality Analysis,” Computer Vision and Image Understanding, 2020 – cited by 45 articles.

Song Y. et al., “Efficient Video Object Recognition using Hybrid Networks,” Neurocomputing, 2018 – cited by 50 articles.

Song Y. et al., “Robust Industrial Vision with Deep Supervision,” Machine Vision and Applications, 2021 – cited by 38 articles.

Conclusion

In summary, Professor Song Yonghong exemplifies the integration of academic excellence with industrial relevance. Her work in computer vision and intelligent systems is not only scientifically rigorous but also deeply practical, influencing both research and real-world systems. Her leadership in national and international collaborations, along with her commitment to solving critical industrial challenges, places her at the forefront of applied visual computing research. With an extensive portfolio of publications, patents, and successful enterprise collaborations, Professor Song continues to push the envelope in making intelligent technologies smarter, more robust, and more responsive to contemporary demands.

Farhat Nasim | Artificial Intelligence | Best Researcher Award

Ms. Farhat Nasim | Artificial Intelligence | Best Researcher Award

ASSISTANT PROFESSOR GUEST at Jamia Millia Islamia, India

Ms. Farhat Nasim is a dedicated academician and researcher in the field of Control Systems and Instrumentation. With a keen interest in power system optimization and intelligent control methodologies, she has made significant contributions to the development of control strategies for wind power systems. Currently pursuing her Ph.D. at Jamia Millia Islamia, she focuses on designing and implementing intelligent controllers for wind power applications. Her research is driven by a commitment to advancing sustainable energy solutions through novel control techniques. Alongside her research, she serves as an Assistant Professor (Guest Basis) at Jamia Millia Islamia, where she teaches various electrical engineering subjects and undertakes additional academic responsibilities.

Profile

Scopus

Education

Ms. Farhat Nasim’s academic journey is marked by excellence in the field of electrical engineering and control systems. She is currently a Ph.D. candidate in Control Systems and Instrumentation at Jamia Millia Islamia, Central University, Delhi, with a dissertation titled “Design and Implementations of Intelligent Controllers for Wind Power System.” Prior to her doctoral studies, she earned her Master of Technology (M.Tech) in Control and Instrumentation from the same institution, further strengthening her expertise in control methodologies. She also holds a Bachelor of Technology (B.Tech) in Electrical Engineering from Jamia Millia Islamia, where she built a strong foundation in electrical power systems and control engineering.

Professional Experience

Ms. Nasim is currently an Assistant Professor (Guest Basis) at Jamia Millia Islamia, where she teaches a range of subjects, including Electrical Power Generation, Basics of Electrical Engineering, DC and Synchronous Machines, Control Systems, and Advanced Control Systems. Her commitment to academic excellence extends beyond teaching, as she actively engages in administrative and organizational responsibilities. She has served as the Coordinator for the 6th Semester B.Tech students’ Industrial Visit at Losung Automation Pvt. Ltd., Associate Editor for the Departmental Magazine, Co-convener for the Workshop on Syllabus Revision of the B.Tech (EE) program, and Attendance Compiling In-Charge for all B.Tech semesters. Additionally, she has contributed significantly to laboratory coordination, including managing the Control System Lab and Project Lab for NBA accreditation.

Research Interests

Ms. Nasim’s research interests lie at the intersection of power system optimization, intelligent control, and renewable energy integration. Her primary focus is on the design and implementation of advanced control strategies for wind energy systems, particularly Double-Fed Induction Generators (DFIG). She has worked extensively on hybrid ANFIS-PI-based optimization techniques to enhance power conversion efficiency in wind turbines. Her research also explores Ziegler-Nichols-based controller optimization and crowbar protection mechanisms for DFIG systems. Through her work, she aims to develop more efficient and robust control solutions that contribute to the reliability and sustainability of renewable energy sources.

Awards and Achievements

Ms. Nasim has received recognition for her contributions to research and academia. She has successfully published her work in high-impact journals and presented her findings at reputed international conferences. Her role in academic coordination and syllabus revision has been instrumental in improving the curriculum for electrical engineering students at Jamia Millia Islamia. Her dedication to mentoring students and enhancing laboratory infrastructure has further solidified her reputation as a committed educator and researcher.

Publications

Nasim, F., Khatoon, S., Ibraheem, Urooj, S., Shahid, M., Ali, A., & Nasser, N. (2025). Hybrid ANFIS-PI-Based Optimization for Improved Power Conversion in DFIG Wind Turbine. Sustainability, 17(6), 2454. https://doi.org/10.3390/su17062454 (SCI)

Nasim, F., Khatoon, S., Shahid, M., Baranwal, S., & Ahmad Wani, S. (2024). Ziegler-Nichols Based Controller Optimization for DFIG Wind Turbines. Tuijin Jishu/Journal of Propulsion Technology, 45(2). https://doi.org/10.52783/tjjpt.v45.i02.6966 (SCOPUS)

Nasim, F., et al. (2022). Effect of PI Controller on Power Generation in Double-Fed Induction Machine. 4th International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), IEEE. doi: 10.1109/ICAC3N56670.2022.10074573.

Nasim, F., et al. (2024). Implementation of Crowbar Protection in DFIG. Advances in AI for Biomedical Instrumentation, Electronics and Computing, CRC Press. (Taylor and Francis Conference)

Nasim, F., et al. (2023). Field Control Grid Connected DFIG Turbine System. International Conference on Power, Instrumentation, Energy and Control (PIECON), IEEE. doi: 10.1109/PIECON56912.2023.10085726.

Conclusion

Ms. Farhat Nasim’s dedication to research and education reflects her commitment to advancing knowledge in control systems and renewable energy. Her work in optimizing wind power systems through intelligent control strategies has significant implications for sustainable energy solutions. As an educator, she continues to inspire and mentor students, ensuring that future engineers are equipped with the skills and knowledge necessary to address contemporary challenges in electrical engineering. With her strong academic background, research contributions, and teaching excellence, Ms. Nasim remains a key contributor to the field of control systems and instrumentation.

Tushar Kafare | Artificial Intelligence | Best Researcher Award

Dr. Tushar Kafare | Artificial Intelligence | Best Researcher Award

Assistant Professor at Sinhgad College of Engineering, India

Dr. Tushar Vaman Kafare is an Assistant Professor in the Department of Electronics and Telecommunication (E&TC) at the Sinhgad Technical Education Society (STES). With over 14 years of experience in teaching, he has made a significant impact in the field of Electronics and Telecommunication. His research and expertise span across machine learning, deep learning, computer vision, embedded systems, and various programming languages like Python, MATLAB, C, and Embedded C. Dr. Kafare is known for his dedication to teaching and research, having guided numerous student projects and published research work, focusing particularly on machine learning applications in plant disease analysis.

Profile

Google Scholar

Education

Dr. Kafare holds an M.E. degree in Electronics and Telecommunication, as well as a B.E. in Electronics. His strong academic background has been further reinforced by his ranking 6th in his graduation. His academic qualifications, combined with extensive practical and theoretical knowledge, make him a highly skilled educator and researcher. His ongoing Ph.D. research focuses on plant disease analysis using machine learning models, showcasing his commitment to advancing technological applications in agriculture.

Experience

Having joined STES on September 7, 2022, Dr. Kafare brings with him a wealth of experience in academia and industry. His teaching career spans over 14 years, during which he has mentored undergraduate and postgraduate students. He has contributed significantly to course development and the enhancement of educational experiences for students, incorporating advanced techniques in machine learning and embedded systems. Additionally, Dr. Kafare has served as a resource person for numerous workshops and faculty development programs, further demonstrating his expertise and commitment to professional growth.

Research Interests

Dr. Kafare’s primary research interest lies in the application of machine learning and image processing for agricultural advancements. His Ph.D. research focuses on using machine learning models to analyze plant diseases, particularly in grape and apple plants, through advanced image processing techniques. He is also interested in deep learning, computer vision, and embedded systems, areas that allow for the development of innovative solutions for real-world problems. Through his research, he aims to contribute to the growing field of agri-tech by leveraging modern computational techniques to assist in plant disease diagnostics and management.

Awards

Dr. Kafare has been recognized for his outstanding contributions in teaching and research. He received the prestigious Digital Teacher Award from ICT Academy, highlighting his exceptional use of technology in education. Additionally, his academic excellence is reflected in his university ranking, securing 6th place in his graduation. In 2024, he was honored with the Best Paper Award at the International Conference on Machine Learning in Jaipur, India, acknowledging the high impact and relevance of his research in the machine learning community.

Publications

Dr. Kafare has made significant contributions to the field of machine learning and telecommunication through his publications. His work has been widely cited, demonstrating the importance of his research. Below is a list of selected publications:

Kafare, T.V. et al., “Analysis on Plant Disease Diagnosis Using Convolution Neural Networks,” International Journal of Machine Learning, 2023, Scopus/SCI.

Kafare, T.V. et al., “Segmentation Techniques for Plant Disease Detection,” Journal of Image Processing, 2022, Scopus.

Kafare, T.V., “Double Convolution in CNN for Improved Plant Disease Classification,” International Conference on Machine Learning, 2024, Conference paper.

Kafare, T.V., et al., “Fungal Disease Detection in Grapes Using Machine Learning,” Journal of Agricultural Technology, 2021, Scopus.

Conclusion

Dr. Tushar Vaman Kafare’s career is marked by his dedication to both teaching and research, with a clear focus on applying machine learning and image processing to solve practical problems in agriculture. With over 14 years of teaching experience, he has proven himself as a skilled educator and researcher. His ongoing Ph.D. research, along with his numerous publications and awards, highlights his expertise in his field. As an active participant in academic and professional activities, he continues to contribute to the development of students and the academic community at large, particularly in the domains of machine learning and embedded systems.

Ali Mehrizi | Machine Learning | Best Paper Award

Dr. Ali Mehrizi | Machine Learning | Best Paper Award

Lecturer at Ferdowsi University of Mashhad, Iran.

Ali Mehrizi is a distinguished researcher and lecturer in Artificial Intelligence (AI) and Machine Learning at Ferdowsi University of Mashhad (FUM), Iran. With a wealth of experience exceeding a decade, his expertise spans adaptive probabilistic models, distributed learning, multi-target tracking, time series forecasting, and Gaussian Mixture Probability Hypothesis Density (GMPHD) methods. Dr. Mehrizi has published multiple impactful articles in renowned journals such as Expert Systems with Applications and Fuzzy Sets and Systems. He is deeply committed to advancing the understanding and application of AI techniques and has successfully mentored numerous students in areas ranging from Data Mining to Advanced Operating Systems.

Profile

Google Scholar

Education

Dr. Mehrizi educational background is rooted in Artificial Intelligence. He is currently pursuing a Ph.D. in AI at Ferdowsi University of Mashhad (2017–2024), under the supervision of Professor H. Sadoghi Yazdi. His dissertation focuses on financial time series forecasting using experience-based adaptive learning, a project that has already produced several publications in top-tier journals. Previously, he earned an M.Sc. in AI from Azad University of Mashhad (2011–2013), where he worked on adaptive semi-supervised learning, optimizing self-organizing map models. His early academic journey began with a B.Sc. in Computer Engineering from the University of Birjand, later transferring to Azad University of Mashhad.

Experience

Dr. Mehrizi professional career spans various roles, beginning in 2001 when he became the IT & Network Manager at the Faculty of Engineering. In this capacity, he significantly improved the system performance and network management. Since 2011, he has been involved in research in AI and Machine Learning, contributing to the development of machine learning models and publishing his findings in high-impact journals. He has also served as a lecturer since 2013, teaching a variety of undergraduate and graduate courses, including Data Mining, Operating Systems, and Advanced Operating Systems. As a researcher, he has mentored students in their theses, particularly in machine learning and pattern recognition, fostering the next generation of AI experts.

Research Interests

Dr. Mehrizi  research interests are broad, focusing on several key areas within the domain of AI. His work on distributed adaptive learning, particularly through Diffusion LMS and Diffusion RLS, aims to optimize decentralized data processing for dynamic systems. In addition, he has contributed to probabilistic and hypothesis-based learning, exploring the use of Gaussian Mixture Probability Hypothesis Density (GMPHD) models for uncertainty-based learning and tracking. His research also delves into time series analysis and forecasting, with a particular focus on financial markets. Dr. Mehrizi’s interest in multi-target tracking extends to real-time tracking algorithms, emphasizing performance in noisy and incomplete data environments. He is also committed to semi-supervised learning, exploring hybrid methods that bridge supervised and unsupervised learning approaches in scenarios with limited labeled data.

Awards

Dr. Mehrizi contributions to the fields of AI and machine learning have earned him recognition in various academic and professional circles. He has been nominated for multiple awards for his research, particularly in adaptive learning and time series forecasting. His work is highly regarded in the academic community, and he continues to push the boundaries of AI research, especially in the areas of distributed learning and multi-target tracking.

Publications

Dr. Mehrizi has authored several articles in well-respected journals in AI and machine learning. His key publications include:

Mehrizi, A., & Yazdi, H. S. (2019). “Adaptive probabilistic methods for long-term financial time series forecasting.” Expert Systems with Applications.

Mehrizi, A., & Yazdi, H. S. (2020). “Semi-supervised learning using GSOM for adaptive classification.” Fuzzy Sets and Systems.

Mehrizi, A. (2022). “Distributed adaptive learning for dynamic systems using Diffusion LMS and RLS.” Emerging Markets Finance and Trade.

Mehrizi, A., & Yazdi, H. S. (2021). “Gaussian Mixture Probability Hypothesis Density for multi-target tracking.” Journal of Machine Learning Research.

These publications have been cited extensively by various researchers in the fields of machine learning, AI, and financial forecasting, underscoring Dr. Mehrizi’s significant impact on the academic community.

Conclusion

Dr. Ali Mehrizi is a leading researcher and educator in the field of Artificial Intelligence and Machine Learning, with a deep commitment to advancing these fields through his innovative research. His extensive academic background and his practical experience in both teaching and real-world applications have made him an invaluable asset to Ferdowsi University of Mashhad. With a strong focus on adaptive learning, probabilistic models, and time series forecasting, Dr. Mehrizi continues to contribute to the evolution of AI. His work not only shapes academic research but also provides vital insights into practical AI solutions for industries like finance and engineering. As a mentor and educator, he remains dedicated to shaping the future of AI professionals and researchers.

Jafar keighobadi | Automated Machine Learning (AutoML) | Best Researcher Award

Prof. Dr. Jafar keighobadi | Automated Machine Learning (AutoML) | Best Researcher Award

Professor at Tabriz university, Iran

Dr. Jafar Keighobadi is a distinguished professor in the Faculty of Mechanical Engineering at the University of Tabriz, Iran. With a career spanning over two decades, he has made significant contributions to the fields of mechatronics, control systems, signal processing, and artificial intelligence. His expertise extends to the programming and implementation of microcontroller and microprocessor boards, reflecting a profound integration of theoretical knowledge with practical applications. Throughout his tenure, Dr. Keighobadi has been instrumental in advancing research and education, mentoring numerous students, and collaborating on projects that bridge the gap between academia and industry.

Profile

Scopus

Education

Dr. Keighobadi’s academic journey commenced with a Bachelor of Science in Mechanical Engineering, specializing in Applied Design Mechanics, from the University of Tabriz. He furthered his studies at the Amirkabir University of Technology (Tehran Polytechnic), where he earned both his Master of Science and Ph.D. in Mechanical Engineering. His doctoral research focused on “Robust Estimator Design for Stochastic Attitude-Heading Reference System in Accelerated Maneuvers,” a comprehensive study that entailed the development and extensive testing of a low-cost Attitude-Heading Reference System. This academic foundation has been pivotal in shaping his research trajectory and teaching philosophy.

Experience

Dr. Keighobadi’s professional experience is marked by a progressive academic career at the University of Tabriz, where he has served as an Assistant Professor (2008–2013), Associate Professor (2014–2020), and has held the position of full Professor since 2020. In addition to his teaching and research responsibilities, he has been a Patent Examiner at the university since 2009, overseeing the evaluation of innovative technologies and inventions. His commitment to education is further demonstrated through his roles as a lecturer at various institutions, including the Islamic Azad University branches in Khoy, Qazvin, and Maragheh, as well as Zanjan University. These roles have enabled him to disseminate knowledge across a broad spectrum of students and professionals.

Research Interests

Dr. Keighobadi’s research interests are diverse and interdisciplinary, encompassing MEMS sensors and actuators, GNSS, control systems, and Kalman filtering. He has a profound interest in autonomous robots and the design and implementation of intelligent systems. His work delves into robust filtering and control, stochastic nonlinear estimation and control, and the mathematical algorithms of chaos. A significant portion of his research is dedicated to artificial intelligence, including fuzzy logic, artificial neural networks, and deep learning. Moreover, he is adept in FPGA, DSP, and ARM programming, which underscores his commitment to integrating advanced computational techniques with mechanical engineering applications.

Awards

Throughout his illustrious career, Dr. Keighobadi has been the recipient of several accolades that recognize his contributions to research and academia. Notably, he was honored as the Best Young Researcher across all technical departments at the University of Tabriz on November 27, 2011. This award reflects his dedication to advancing engineering knowledge and his impact on the academic community. Additionally, his academic excellence was evident early in his career when he secured the second rank out of 120 candidates in the Ph.D. entrance exam at Amirkabir University of Technology on June 18, 2001. These honors underscore his commitment to excellence and innovation in his field.

Publications

Dr. Keighobadi’s scholarly output includes numerous publications in esteemed journals. A selection of his notable works includes:

“Immersion and Invariance-Based Extended State Observer Design for a Class of Nonlinear Systems,” published in the International Journal of Robust and Nonlinear Control on May 21, 2021.

“Adaptive Neural Dynamic Surface Control of Mechanical Systems Using Integral Terminal Sliding Mode,” featured in Neurocomputing on December 21, 2019.

“Adaptive Inverse Deep Reinforcement Lyapunov Learning Control for a Floating Wind Turbine,” published in Scientia Iranica on January 15, 2023.

“Decentralized INS/GPS System with MEMS-Grade Inertial Sensors Using QR-Factorized CKF,” featured in the IEEE Sensors Journal on June 1, 2017.

“INS/GNSS Integration Using Recurrent Fuzzy Wavelet Neural Networks,” published in GPS Solutions on May 21, 2020.

“Passivity-Based Hierarchical Sliding Mode Control/Observer of Underactuated Mechanical Systems,” featured in the Journal of Vibration and Control on May 19, 2022.

“Extended State Observer-Based Robust Non-Linear Integral Dynamic Surface Control for Triaxial MEMS Gyroscope,” published in Robotica on January 15, 2019.

These publications highlight Dr. Keighobadi’s extensive research in control systems, artificial intelligence, and their applications in mechanical engineering.

Conclusion

Dr. Jafar Keighobadi stands as a prominent figure in mechanical engineering, with a career dedicated to advancing research, education, and practical applications in mechatronics and control systems. His interdisciplinary approach, combining robust theoretical frameworks with hands-on implementation, has significantly impacted both academic circles and industry practices. As a mentor, researcher, and educator, Dr. Keighobadi continues to inspire and lead in the ever-evolving landscape of engineering and technology.

Busuyi Akeredolu | Machine Learning | Best Researcher Award

Busuyi Akeredolu | Machine Learning | Best Researcher Award

Lecturer at Lagos State University of Education, Nigeria

Busuyi E. Akeredolu is an accomplished Earth Scientist and Geospatial Data Analyst with over ten years of experience. His expertise spans mineral exploration, environmental assessments, electrification planning, and groundwater investigation. Akeredolu’s experience encompasses both office and field operations, where he has been instrumental in satellite image analysis, geophysical data processing, and spatial decision support. His professional background also includes providing technical support for various multidisciplinary projects, blending his scientific skills with real-world applications in resource management and environmental sustainability.

Profile

Orcid

Education

Akeredolu’s academic journey is marked by a solid foundation in geophysics. He is currently pursuing a Ph.D. in Exploration Geophysics at the Federal University of Technology, Akure (FUTA), expected in 2024. He holds an M.Tech. in Exploration Geophysics, also from FUTA (2017), and a B.Sc. in Applied Geophysics from Obafemi Awolowo University (OAU), Ile-Ife (2012). Additionally, he has enhanced his technical skills through certifications such as a Post Graduate Diploma in Project Management and a Certificate in Remote Sensing and GIS, further expanding his interdisciplinary knowledge and capabilities.

Experience

Akeredolu has accumulated extensive professional experience in the geophysical field, including his current role as a Field Geophysicist at Mukolak Geoconsult Nigeria Ltd. Since June 2023, he has conducted magnetic and resistivity data acquisition, processing, and interpretation for mineral exploration projects, contributing to mapping and identifying mineralized zones. His previous roles include serving as a Project Planning Specialist at Protergia Energy Nigeria Ltd. (2022-2023), where he supported off-grid mini-grid electrification projects. Earlier, Akeredolu worked as a Technical Assistant at Bluesquare Belgium (2019-2020), aiding in data management and training for health sector projects. His experience in environmental and geospatial analysis has also been instrumental in environmental assessments and community consultations at Sahel Consult, Nigeria.

Research Interest

Akeredolu’s research interests focus on geophysical methods for groundwater exploration and environmental impact assessments. His work includes applying geophysical data to understand groundwater systems, vulnerability, and aquifer characteristics, as well as studying the impact of environmental factors on mineralization and resource potential. Akeredolu has also delved into the integration of geophysical data with remote sensing techniques to enhance the prediction and management of groundwater resources, particularly in mining areas. His current research aims to develop advanced models for groundwater prediction and resource management using clustering and regression techniques.

Awards

Akeredolu has been recognized for his contributions to geophysics and the environment. His award nominations include the prestigious “Geophysicist of the Year” award by the Society of Exploration Geophysicists (SEG), reflecting his consistent excellence and innovative work in the field. He has also been nominated for awards related to his contributions to sustainable development in environmental science, particularly his work in groundwater resource management and environmental impact assessments.

Publications

Akeredolu, B. E., Adiat, K. A. N., Akinlalu, A. A., Olayanju, G. M., & Afolabi, D.O. (2024). Spatial characterisation of groundwater systems using fuzzy c-mean clustering: A multiparameter approach in crystalline aquifers. Resources, Conservation and Recycling, 100051, ISSN 2211-148, https://doi.org/10.1016/j.rines.2024.100051.

Adegbola, R.B., Whetode, J., Adeogun, O., Akeredolu, B., & Lateef, O. (2023). Geophysical Characterization of the subsurface using Electrical Resistivity Method. Journal of Research and Review in Science, 10, 14-20, DOI: 10.36108/jrrslasu/2202.90.0250.

Akeredolu, B. E., Adiat, K. A. N., Akinlalu, A. A., & Olayanju, G. M. (2022). The Relationship Between Morpho-Structural Features and Borehole Yield in Ilesha Schist Belt, Southwestern Nigeria: Results from Geophysical Studies. Earth Sciences, 11(1), 16-28, doi: 10.11648/j.earth.20221101.13.

Adiat, K. A. N., Akeredolu, B. E., Akinlalu, A. A., & Olayanju, G. M. (2020). Application of logistic regression analysis in prediction of groundwater vulnerability in gold mining environment: a case of Ilesa gold mining area, southwestern, Nigeria. Environmental Monitoring and Assessment, 192(9), doi:10.1007/s10661-020-08532-7.

Adiat, K. A. N., Adegoroye, A. A., Akeredolu, B. E., & Akinlalu, A. A. (2019). Comparative assessment of aquifer susceptibilities to contaminant from dumpsites in different geological locations. Heliyon, 5(5), e01499.

Bawallah, M. A., Akeredolu, B. E., et al. (2019). Integrated Geophysical Investigation of Aquifer and its Groundwater Potential in Camic Garden Estate, Ilorin Metropolis North-Central Basement Complex of Nigeria. IOSR Journal of Applied Geology and Geophysics, 7(2), 01-08.

Akinlalu, A. A., Akeredolu, B. E., & Olayanju, G. M. (2018). Aeromagnetic mapping of basement structures and mineralisation characterisation of Ilesa Schist Belt, Southwestern Nigeria. Journal of African Earth Sciences, 138, 383-389.

Conclusion

Busuyi E. Akeredolu stands as a highly skilled and experienced Earth scientist whose expertise spans geophysical data analysis, mineral exploration, and environmental management. His work has not only contributed to the academic field but has also had a direct impact on practical applications in resource management and environmental sustainability. Akeredolu’s research continues to provide valuable insights into groundwater systems, mineral exploration, and environmental impact assessments, marking him as a leader in his field. His continued commitment to scientific innovation and practical applications will undoubtedly shape the future of Earth sciences and geospatial data analysis.

Jamal Raiyn | Deep Learning | Best Researcher Award

Prof. Dr. Jamal Raiyn | Deep Learning | Best Researcher Award

Lecturer | Technical University of Applied Sciences, Aschaffenburg | Germany

Jamal Raiyn is an accomplished researcher and academic in the field of applied computer science, particularly focusing on areas such as autonomous vehicles, smart cities, data science, and cyber security. With a notable track record of publications in top-tier journals and conferences, Raiyn has established himself as a leader in the intersection of technology, transportation, and urban development. His work has contributed to advancements in intelligent transportation systems, cyber security in autonomous networks, and the integration of machine learning into traffic management.

Profile

Google Scholar

Education

Raiyn’s academic journey is marked by a strong foundation in computer science and related disciplines. He has pursued extensive education and training, equipping himself with the skills needed to address complex issues in transportation networks, autonomous systems, and cyber security. His educational background laid the groundwork for his deep involvement in research and development of cutting-edge technologies, particularly in the context of autonomous vehicles and smart cities.

Experience

Raiyn has accumulated vast experience in both academic and industry settings. Over the years, he has worked with leading researchers and institutions on multiple projects, advancing his expertise in the application of machine learning and data analytics to urban planning and transportation systems. His collaborations have included prominent industry leaders and have led to successful research outcomes, including the development of models for improving traffic safety, congestion management, and autonomous driving behavior.

Research Interests

Raiyn’s primary research interests lie in the domains of autonomous vehicle networks, smart cities, and cyber security. He focuses on the application of advanced computational techniques like machine learning, data science, and neural networks to enhance the safety, efficiency, and sustainability of transportation systems. Raiyn is particularly interested in the study of intelligent transportation systems, traffic anomaly detection, collision avoidance, and the optimization of vehicle communications over wireless networks. His research also addresses cyber security challenges, particularly within the context of autonomous vehicle communications and critical infrastructure.

Awards

Raiyn has been the recipient of numerous accolades for his contributions to applied computer science. His work has garnered recognition from prestigious academic institutions, research organizations, and professional societies. Notably, his research on intelligent traffic management and autonomous vehicle behavior prediction has been recognized with awards at international conferences, highlighting the significant impact of his work on advancing smart city technologies and autonomous transportation solutions.

Publications

Raiyn has published several influential papers in leading academic journals, contributing valuable insights into fields such as transportation, cyber security, and data science. Some of his notable publications include:

Raiyn, J., & Weidl, G. (2025). “Improvement of Collision Avoidance in Cut-In Maneuvers Using Time-to-Collision Metrics.” Smart Cities.

Raiyn, J., Chaar, M. M., & Weidl, G. (2025). “Enhancing Urban Livability: Exploring the Impact of On-Demand Shared CCAM Shuttle Buses on City Life, Transport, and Telecommunication.”

Raiyn, J., & Weidl, G. (2024). “Predicting Autonomous Driving Behavior through Human Factor Considerations in Safety-Critical Events.” Smart Cities, 7(1), 460-474.

Raiyn, J. (2024). “Maritime Cyber-Attacks Detection Based on a Convolutional Neural Network.” Computational Intelligence and Mathematics for Tackling Complex Problems, 5, Springer, pp. 115-122.

Raiyn, J., & Rayan, A. (2023). “Identifying Safety-Critical Events in Data from Naturalistic Driving Studies.” International Journal of Simulation Systems, Science & Technology, 24(1).

Raiyn, J. (2022). “Detection of Road Traffic Anomalies Based on Computational Data Science.” Discover Internet of Things, 2(6).

Raiyn, J. (2022). “Using Dynamic Market-Based Control for Real-Time Intelligent Speed Adaptation Road Networks.” Advances in Science, Technology and Engineering Systems Journal, 7(4), 24-27.

These papers have been cited by a variety of studies, underlining the relevance and impact of his research in the fields of intelligent transport, autonomous systems, and cyber security.

Conclusion

Jamal Raiyn’s research continues to push the boundaries of knowledge in the field of applied computer science, particularly within the context of transportation systems and autonomous vehicle technologies. His work has not only contributed to theoretical advancements but has also provided practical solutions to real-world challenges, including traffic safety, cyber security in autonomous networks, and the development of smart city infrastructure. Raiyn’s dedication to advancing technology for the betterment of society is evident in his continued contributions to the scientific community. His work is a testament to the profound impact that interdisciplinary research can have on shaping the future of urban living and transportation systems.