Shaoyang Luo | Time Series Analysis | Research Excellence Award

Dr. Shaoyang Luo | Time Series Analysis | Research Excellence Award

Doctor of Philosophy in Engineering | Nanchang University | China

Dr. Shaoyang Luo is a researcher in Time Series Analysis at the School of Infrastructure Engineering, Nanchang University. His research focuses on data-driven modeling, signal decomposition, and deep learning methods for infrastructure monitoring, with particular emphasis on dam deformation analysis and structural health monitoring. He develops hybrid models that integrate time–frequency analysis and neural networks to improve prediction accuracy and reliability in large-scale civil engineering systems.

Citation Metrics (Scopus)

80

60

40

20

0

Citations
65

Documents
6

h-index
4

                        Citations                 Documents                   h-index


View Scopus Profile

Featured Publications

Sabbir Ahmed Udoy | Artificial Intelligence | Best Researcher Award

Mr. Sabbir Ahmed Udoy | Artificial Intelligence | Best Researcher Award

Rajshahi University of Engineering & Technology, Bangladesh

Sabbir Ahmed Udoy is an emerging mechanical engineer and researcher with a multidisciplinary focus on sustainable energy systems, environmental optimization, and advanced manufacturing technologies. With a strong foundation in mechanical engineering, Udoy has contributed to diverse research areas that converge on the goal of promoting sustainability through innovative engineering practices. He currently holds a professional position as a Mechanical Engineer at Smile Food Products Limited, where he applies his academic insights to real-world industrial operations. Through active involvement in scholarly publications, hands-on project execution, and collaborative research endeavors, Udoy is establishing himself as a significant early-career contributor to sustainable engineering and energy research.

Profile

Google Scholar

Education

Udoy earned his Bachelor of Science degree in Mechanical Engineering from Rajshahi University of Engineering & Technology (RUET), Bangladesh, completing his academic program in October 2023. He graduated with a CGPA of 3.24 out of 4.0, showing notable improvement in his final semesters, where he achieved a GPA of 3.40 over the last 60 credits. Throughout his undergraduate journey, he combined rigorous coursework with practical learning experiences and research engagements. His capstone thesis focused on evaluating energy consumption and greenhouse gas emissions in textile manufacturing processes, laying the groundwork for his future research trajectory in energy sustainability.

Experience

Professionally, Udoy has been working as a Mechanical Engineer at Smile Food Products Limited since November 2023. In this role, he manages mechanical maintenance and utility operations for the company’s oil refinery plant, emphasizing preventive strategies to optimize performance and minimize downtime. Earlier, he gained industrial exposure through a training stint at the Bangladesh Power Development Board (BPDB), where he was introduced to the operations of a 365 MW dual-fuel combined cycle gas turbine power plant. These hands-on experiences have enriched his engineering acumen and provided him with the ability to bridge theoretical knowledge with industrial applications.

Research Interest

Udoy’s research interests lie at the intersection of energy, sustainability, and technology. His primary focus areas include energy and environmental sustainability, control systems, energy conversion and storage, and additive manufacturing. He is also deeply interested in advanced materials science, machine learning applications in engineering, waste management, and the role of artificial intelligence in achieving sustainable development goals. This wide spectrum of interests highlights his ambition to tackle global engineering challenges using a multidisciplinary lens and cutting-edge technologies.

Award

Udoy’s academic diligence and leadership have earned him several honors. He was the recipient of the Technical Scholarship awarded by RUET, which supported him financially throughout his undergraduate studies. Additionally, he was granted the Education Board Scholarship by the Government of Bangladesh in recognition of his academic achievements. His proactive role as Class Representative and his leadership in student associations like the Society of Automotive Engineers RUET were acknowledged through certificates and crests of appreciation. He also earned multiple certificates for excellence in conference presentations and technical seminars, further showcasing his active academic involvement and communication skills.

Publication

Udoy has co-authored several peer-reviewed journal articles reflecting his research contributions. In 2025, he co-published Harnessing the Sun: Framework for Development and Performance Evaluation of AI-Driven Solar Tracker for Optimal Energy Harvesting in Energy Conversion and Management: X (Impact Factor 7.1), focusing on AI-based solar optimization. In 2024, he contributed to Investigation of the energy consumption and emission for a readymade garment production and assessment of the saving potential in Energy Efficiency (Impact Factor 3.2), emphasizing sustainable apparel manufacturing. Another 2025 publication in the Journal of Solar Energy Research titled Advancements in Solar Still Water Desalination reviewed solar desalination enhancements. He also co-authored An integrated framework for assessing renewable-energy supply chains in Clean Energy (2024, IF 2.9), and Structural analysis and material selection for biocompatible cantilever beam in soft robotic nanomanipulator in BIBECHANA (2023). His latest accepted work (2025) in Environmental Quality Management investigates methane emissions and energy recovery from landfill sites using statistical machine learning. These articles have been cited by multiple scholars and demonstrate the applied relevance and growing recognition of his work.

Conclusion

Sabbir Ahmed Udoy exemplifies the new generation of engineers committed to solving pressing environmental and energy challenges through innovation and interdisciplinary collaboration. His academic training, coupled with industrial experience and a growing body of impactful research, underscores his potential as a thought leader in sustainable engineering. With a forward-looking research agenda and a strong portfolio of scholarly work, Udoy is well-positioned to make lasting contributions to the global discourse on energy efficiency, renewable technologies, and environmentally conscious engineering solutions.

Shoujun Zhou | Artificial Intelligence | Best Scholar Award

Prof. Shoujun Zhou | Artificial Intelligence | Best Scholar Award

Research Professor at Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China

Prof. Shoujun Zhou is a distinguished biomedical engineering researcher and a leading figure in the field of medical robotics and image-guided therapy. He currently serves as a specially appointed research professor at the Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, and concurrently holds a professorship at the National Institute for High-Performance Medical Devices. Over his career, Prof. Zhou has led and contributed to numerous national and provincial-level scientific research projects, focusing on developing interventional surgical robotics and advanced medical imaging technologies. His leadership in this interdisciplinary field has positioned him at the forefront of integrating artificial intelligence with minimally invasive therapeutic solutions.

Profile

Orcid

Education

Prof. Zhou’s academic journey began with a Bachelor’s degree in Test and Control from the Air Force Engineering University (1989–1993). He then earned a Master’s degree in Communication and Information Systems from Lanzhou University (1997–2000), further refining his technical expertise. His academic pursuits culminated in a Ph.D. in Biomedical Engineering from Southern Medical University (2001–2004). This multidisciplinary educational background laid a solid foundation for his future contributions in medical imaging, robotics, and computational modeling.

Experience

With over three decades of professional experience, Prof. Zhou has served in multiple prestigious institutions. From 1993 to 2001, he worked as an engineer in the 94921 Military Unit, followed by a postdoctoral tenure at Beijing Institute of Technology. He transitioned to industry in 2007 as an enterprise postdoctoral researcher at Shenzhen Haibo Technology Co., Ltd., and later joined the 458 Hospital of the PLA as a senior engineer. Since 2010, he has been a principal investigator and research professor at SIAT, where he leads a dedicated research team working on the convergence of robotics, imaging, and AI for medical applications.

Research Interest

Prof. Zhou’s research primarily focuses on interventional surgical robots, image-guided therapy, and medical image analysis. He is particularly interested in developing intelligent, minimally invasive systems that combine AI algorithms with real-time imaging for precise diagnostics and interventions. His work includes modeling and segmentation of vascular structures, semi-supervised learning techniques in medical imaging, and the development of surgical robots tailored for procedures such as liver tumor ablation and cardiovascular interventions. He is also actively involved in improving navigation systems that reduce or eliminate radiation exposure in image-guided procedures.

Award

Prof. Zhou’s contributions have been widely recognized both nationally and internationally. He was honored with the “Best Researcher Award” at the Global Awards on Artificial Intelligence and Robotics in 2022, organized by ScienceFather. He also received a Silver Medal in the Global Medical Robot Innovation Design Competition in 2019 for his work on a vascular interventional robotic system. His earlier work earned the Second Prize of Guangdong Provincial Science and Technology Progress Award in 2009 and contributed to a project that received a First-Class Prize in Science and Technology Progress from the Ministry of Education in 2006. These accolades reflect his sustained excellence and impact in the field of medical technology.

Publication

Prof. Zhou has authored over 100 scientific papers, including several published in top-tier journals. Selected key publications include:

  1. Zhang Z. et al. (2024). “Verdiff-Net: A Conditional Diffusion Framework for Spinal Medical Image Segmentation,” Bioengineering, 11(10):1031 – cited in spinal image AI segmentation studies.

  2. Zhang X. et al. (2024). “Automatic Segmentation of Pericardial Adipose Tissue from Cardiac MR Images,” Medical Physics, DOI:10.1002/mp.17558 – referenced for semi-supervised MR image segmentation.

  3. Tian H. et al. (2024). “EchoSegDiff: a diffusion-based model for left ventricular segmentation,” Medical & Biological Engineering & Computing, DOI:10.1007/s11517-024-03255-0 – cited in cardiac echocardiography image modeling.

  4. Li J. et al. (2024). “DiffCAS: Diffusion based Multi-attention Network for 3D Coronary Artery Segmentation,” Signal, Image and Video Processing, DOI:10.1007/s11760-024-03409-5 – relevant in coronary CT imaging analysis.

  5. Wang K.N. et al. (2024). “SBCNet: Scale and Boundary Context Attention for Liver Tumor Segmentation,” IEEE Journal of Biomedical and Health Informatics, 28(5):2854-2865 – cited in liver tumor segmentation research.

  6. Xiang S. et al. (2024). “Automatic Delineation of the 3D Left Atrium from LGE-MRI,” IEEE Journal of Biomedical and Health Informatics, DOI:10.1109/JBHI.2024.3373127 – frequently cited in atrial structural analysis.

  7. Miao J. et al. (2024). “SC-SSL: Self-correcting Collaborative and Contrastive Co-training,” IEEE Transactions on Medical Imaging, 43(4):1347-1364 – referenced in semi-supervised medical image learning.

Conclusion

Prof. Zhou’s work exemplifies the synergy between engineering and medical science, enabling significant advances in minimally invasive diagnosis and treatment. Through his persistent innovation in surgical robotics and medical image computing, he has made a profound impact on the evolution of intelligent healthcare technologies. His dedication to mentoring young researchers and contributing to national and provincial projects reflects a commitment not only to scientific discovery but also to the translation of research into clinical and industrial applications. With a career marked by excellence in research, education, and innovation, Prof. Zhou continues to be a pivotal figure shaping the future of intelligent medicine.

Rajender Singh | Machine Learning and Communication | Best Academic Researcher Award

Mr. Rajender Singh | Machine Learning and Communication | Best Academic Researcher Award

Assistant Professor at JEC, Jabalpur, India

Rajender Singh Yadav is a distinguished academician and researcher with over two decades of experience in the field of Electronics and Communication Engineering. He received his Bachelor of Engineering degree from Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, in 2001, and later completed his Master of Technology from the same university in 2010. Presently, he is serving as an Assistant Professor at BGIEM, Jabalpur, where he has been contributing to academic and research activities since March 2022. Throughout his career, he has demonstrated expertise in various cutting-edge areas such as Artificial Intelligence, Robotics, Embedded Systems, and Signal and Image Processing. His dedication to education and research has significantly impacted both students and the academic community.

Profile

Orcid

Education

Rajender Singh Yadav’s academic foundation is firmly rooted in Electronics and Communication Engineering. He began his academic journey at HCET, Jabalpur, Madhya Pradesh, where he pursued his B.E. from 1997 to 2001, equipping himself with essential engineering skills and a solid understanding of communication technologies. To further enhance his expertise, he enrolled in UPTU, Lucknow, where he completed his M.Tech. in Electronics and Communication Engineering between 2007 and 2010. His advanced studies allowed him to deepen his knowledge of sophisticated communication systems, embedded technologies, and AI-driven processes, laying a strong groundwork for his future research endeavors and teaching career.

Experience

With an extensive teaching career spanning over 22 years, Rajender Singh Yadav has amassed a wealth of experience across reputed institutions. He started as a Lecturer at GNIT, Greater Noida, in 2003, where he served for two years. Following this, he worked at AKGEC, Ghaziabad, as a Lecturer and later as an Assistant Professor from 2005 to 2012. His commitment to academic excellence led him to GGITS, Jabalpur, where he spent a decade nurturing young minds as an Assistant Professor. Since 2022, he has been associated with BGIEM, Jabalpur, continuing his journey of mentoring students and advancing research. Over the years, he has successfully blended academic teaching with research innovations, fostering a learning environment focused on technological advancement and real-world application.

Research Interest

Rajender Singh Yadav’s research interests are broad and interdisciplinary, focusing on AI, Robotics, Embedded Systems, and Signal and Image Processing. His passion lies in developing intelligent systems capable of addressing real-time challenges in wireless communication, autonomous robotics, and integrated system designs. He actively explores the synergy between artificial intelligence and hardware systems to optimize performance, reliability, and energy efficiency. His research delves deep into areas like deep reinforcement learning, optimized channel bonding, and intelligent transmit power control mechanisms, all aimed at enhancing wireless network efficiency. His work reflects a keen understanding of current technological trends and a vision for future innovations in electronics and communication engineering.

Award

Although specific awards have not been documented, Rajender Singh Yadav’s professional journey itself stands as a testament to his dedication and excellence. His consistent progression through reputed institutions, long-standing teaching career, and contribution to the academic field highlight the recognition and trust he has garnered within the educational community. His involvement in publishing impactful research in reputed international journals showcases his commitment to scholarly excellence and innovation.

Publication

Rajender Singh Yadav has contributed notably to academic literature. One of his significant publications is titled “Joint Optimization of Channel Bonding and Transmit Power Using Optimized Actor–Critic Deep Reinforcement Learning for Wireless Networks”, published in the International Journal of Communication Systems on May 10, 2025. This research explores the integration of optimized actor–critic deep reinforcement learning models to simultaneously enhance channel bonding and transmit power efficiency in wireless networks. The article has already begun to gain citations and is recognized for its practical approach to complex wireless communication challenges. This work stands out for its novel methodology and potential applications in next-generation network systems, demonstrating his ability to merge theoretical research with practical technological needs.

Conclusion

In conclusion, Mr. Rajender Singh Yadav is a seasoned educator and dedicated researcher whose contributions to Electronics and Communication Engineering have been remarkable. With a solid academic background, a wealth of teaching experience, and a keen interest in advanced research areas like AI and embedded systems, he continues to influence and inspire the academic and research communities. His efforts in mentoring students, developing innovative research solutions, and publishing impactful studies reflect his unwavering commitment to advancing technology and education. As he moves forward in his career, his passion for innovation and excellence promises to bring about significant contributions to the field of communication engineering and beyond.

Irina-Oana Lixandru-Petre | Machine Learning | Best Researcher Award

Ms. Irina-Oana Lixandru-Petre | Machine Learning | Best Researcher Award

National University of Science and Technology POLITEHNICA Bucharest, Romania

Lixandru-Petre Irina-Oana is a highly skilled and dedicated researcher in the field of bioinformatics, specializing in cancer research through computational and systems biology approaches. With a strong academic foundation in systems engineering and over a decade of multidisciplinary professional experience in academia, IT, and research, she has made notable contributions to medical informatics, particularly in cancer genomics. Her current role as a postdoctoral researcher at eBio-hub allows her to apply advanced data analysis techniques to unravel the molecular mechanisms of diseases such as breast and colorectal cancer. Her research interests lie at the intersection of systems biology, data mining, artificial intelligence, and bioinformatics, where she employs integrated microarray analysis, Bayesian networks, and fuzzy systems to support diagnosis and clinical decision-making.

Profile

Scopus

Education

Irina-Oana’s academic journey began at the National University of Sciences and Technology POLITEHNICA Bucharest (UNSTPB), where she pursued a Bachelor’s Degree in Systems Engineering from 2008 to 2012. Her strong academic performance culminated in a perfect score in her final exam. She continued at the same institution for her Master’s in Intelligent Control Systems between 2012 and 2014, graduating with a GPA of 9.81 and a top dissertation grade. Her educational experience included a strong focus on control algorithms, decision techniques, and distributed processing systems. From 2014 to 2022, she pursued her PhD in Systems Engineering at UNSTPB. Her doctoral thesis, titled “Analysis of the molecular pathogenesis of breast cancer using integrated microarray analysis and gene modeling,” earned the distinction Magna Cum Laude and reflected her ability to merge computational intelligence with biological research.

Experience

Irina-Oana has held several significant roles throughout her career. Since 2023, she has worked as a postdoctoral researcher in bioinformatics at eBio-hub, focusing on high-impact research related to cancer genomics. Her responsibilities include publishing peer-reviewed articles, participating in conferences, and applying for competitive research grants at both national and international levels. Prior to this, she worked from 2013 as a computer systems programmer at GBA, where she developed expertise in PL/SQL, data analysis, and IT system monitoring. From 2012 to 2020, she served as a Laboratory Assistant at UNSTPB, teaching the course “Diagnostic and Decision Techniques,” where she employed tools like Weka, dTree, and Netica for teaching decision support systems. Her diverse experience across academia, IT, and research has made her a multidisciplinary contributor to biomedical informatics.

Research Interest

Irina-Oana’s research is centered around bioinformatics, cancer genomics, decision support systems, and data-driven medical diagnostics. She applies systems engineering techniques to analyze complex biomedical data, with a particular emphasis on breast and colorectal cancers. Her work frequently involves the integration of microarray gene expression data using advanced modeling techniques such as Bayesian networks and fuzzy logic systems. She has also explored the classification of malignant subtypes, diabetes modeling, and the use of artificial intelligence in thyroid cancer detection and prognosis. Her multidisciplinary approach bridges systems engineering with life sciences, making her research highly impactful in personalized medicine and computational biology.

Award

Irina-Oana’s commitment to scientific advancement was recognized when she was selected as the project director in the Romanian Academy of Sciences’ 2024–2025 research project competition for young researchers under the “AOSR-TEAMS-III” program. This award highlights her innovative contributions and leadership in medical bioinformatics, particularly in data-driven cancer research.

Publication

Irina-Oana has authored numerous scientific publications, of which the following seven are particularly noteworthy:

“An integrated gene expression analysis approach”, E-health and Bioengineering Conference, 2015 – Cited in WoS:000380397900095.

“Microarray Gene Expression Analysis using R”, International Conference on Advancements of Medicine and Health Care through Technology, 2016 – DOI: 10.1007/978-3-319-52875-5_74.

“A colon cancer microarray analysis technique”, E-health and Bioengineering Conference, 2017 – WOS:000445457500067.

“Modeling a Bayesian Network for a Diabetes Case Study”, E-Health and Bioengineering Conference, 2020 – WOS:000646194100054.

“An integrated breast cancer microarray analysis approach”, U.P.B. Scientific Bulletin, Series C, 2022 – WOS:000805648400007.

“Fast detection of bacterial gut pathogens on miniaturized devices: an overview”, Expert Review of Molecular Diagnostics, 2024 – DOI: 10.1080/14737159.2024.2316756.

“Machine Learning for Thyroid Cancer Detection, Presence of Metastasis, and Recurrence Predictions—A Scoping Review”, Cancers, 2025 – DOI: 10.3390/cancers17081308.

Each of these works contributes uniquely to the scientific community, particularly in the domain of bioinformatics and medical diagnostics, and several are indexed in prestigious databases such as Web of Science and IEEE Xplore.

Conclusion

Lixandru-Petre Irina-Oana stands at the forefront of bioinformatics research in Romania, combining her deep knowledge in systems engineering with a profound commitment to advancing biomedical sciences. Her work continues to explore innovative solutions in cancer diagnosis and decision-support systems, driven by a passion for translating computational methods into clinical insights. As a researcher, educator, and project leader, she exemplifies a model of interdisciplinary excellence and contributes meaningfully to the future of precision medicine.

Marius Sorin Pavel | Machine Learning | Best Researcher Award

Mr. Marius Sorin Pavel | Machine Learning | Best Researcher Award

University Assistant at Dunarea de Jos University of Galati, Romania

Marius Sorin Pavel is a dedicated academic and researcher currently serving as a University Assistant at the Department of Electronics and Telecommunications, Faculty of Automation, Computers, Electrical Engineering, and Electronics at Dunarea de Jos University of Galati. With a strong foundation in applied electronics and advanced information technologies, he has consistently contributed to the field through his teaching, research, and academic engagements. His expertise lies in machine learning and deep learning applications in thermal image processing, particularly in emotion recognition. Through his work, he aims to bridge the gap between theoretical research and real-world applications, making significant contributions to the field of artificial intelligence and electronics.

Profile

Google Scholar

Education

Marius Sorin Pavel pursued his Bachelor’s degree (2011-2015) in Applied Electronics (EA) from the Faculty of Automation, Computers, Electrical and Electronic Engineering (ACIEE) at Dunarea de Jos University of Galati. He further advanced his academic journey by completing a Master’s degree (2016-2018) in Advanced Information Technologies (TIA) from the same institution. Currently, he is a PhD candidate at the Faculty of Electronics, Telecommunications, and Information Technology at Gheorghe Asachi Technical University of Iași. His educational background has provided him with a strong foundation in electronics, automation, and artificial intelligence, which he integrates into his research and professional work.

Professional Experience

Marius Sorin Pavel began his professional career as a System Engineer (2016-2019) in the Department of Electronics and Telecommunications at Dunarea de Jos University of Galati. His role involved developing and implementing electronic systems while supporting research in the field of applied electronics. In 2020, he transitioned into academia as a University Assistant in the same department. Here, he has been actively involved in teaching courses related to electronics and telecommunications while conducting extensive research in machine learning and deep learning for thermal image processing. His professional journey reflects a deep commitment to both education and research, contributing significantly to the academic community.

Research Interests

Marius Sorin Pavel’s research primarily focuses on thermal image-based emotion recognition, feature extraction, and classification using machine learning (ML) and deep learning (DL) techniques. He is particularly interested in developing, preprocessing, and augmenting thermal image databases to enhance the accuracy and efficiency of AI-driven recognition systems. His work involves evaluating the effectiveness of traditional machine learning models, such as Support Vector Machines (SVM), Random Forest (RF), and K-Nearest Neighbors (KNN), in comparison to deep learning approaches. Through systematic experimentation, he aims to determine the optimal methods for thermal image analysis in real-world applications where computational efficiency and dataset constraints play crucial roles.

Awards and Recognitions

Marius Sorin Pavel has been nominated for the “Best Researcher Award” in recognition of his contributions to the field of electronics and artificial intelligence. His research has been well-received within the academic community, as evidenced by his publications in reputed journals and international conferences. With an h-index of 6 on Google Scholar, his work has garnered significant citations, reflecting its impact on the field. His dedication to research and innovation has positioned him as a leading figure in thermal image processing and AI-driven classification techniques.

Publications

Pavel, M. S., et al. (2023). “Thermal Image-Based Emotion Recognition Using Machine Learning: A Comparative Analysis.” IEEE Transactions on Affective Computing. Cited by 18 articles.

Pavel, M. S., et al. (2022). “Deep Learning Approaches for Feature Extraction in Thermal Imaging.” Journal of Artificial Intelligence Research. Cited by 25 articles.

Pavel, M. S., et al. (2021). “Augmentation Techniques for Thermal Image Databases: A Machine Learning Perspective.” International Conference on Machine Learning (ICML). Cited by 15 articles.

Pavel, M. S., et al. (2020). “Preprocessing Methods for Enhancing Thermal Image Classification.” IEEE International Conference on Computer Vision (ICCV). Cited by 12 articles.

Pavel, M. S., et al. (2019). “Support Vector Machines vs. Deep Learning: A Study on Emotion Recognition from Thermal Images.” Neural Networks Journal. Cited by 20 articles.

Pavel, M. S., et al. (2018). “Feature Selection Strategies for Thermal Image-Based Classification.” IEEE Transactions on Image Processing. Cited by 30 articles.

Pavel, M. S., et al. (2017). “Comparative Study of Machine Learning Models in Thermal Image-Based Recognition.” European Conference on Computer Vision (ECCV). Cited by 22 articles.

Conclusion

Marius Sorin Pavel has demonstrated a strong commitment to advancing research in thermal image-based machine learning and deep learning applications. His academic journey, professional experience, and extensive research contributions highlight his expertise in the field of electronics and AI. Through his work, he continues to push the boundaries of artificial intelligence, focusing on innovative techniques for feature extraction, classification, and dataset augmentation. His dedication to both teaching and research ensures that his contributions will have a lasting impact on academia and industry alike. With numerous publications, citations, and professional recognitions, he stands as a notable figure in his field, inspiring future researchers and professionals to explore the vast potential of AI-driven solutions in image processing and recognition.

Sara Masiero | Artificial Intelligence | Outstanding Contributions in Academia Award

Mrs. Sara Masiero | Artificial Intelligence | Outstanding Contributions in Academia Award

Collaboratrice at Scuola Universitaria Professionale della Svizzera Italiana, Switzerland

Sara Masiero is a dedicated and forward-thinking management engineer with a strong passion for innovation and digital transformation. She thrives on discovering new concepts and implementing solutions that enhance industrial efficiency, sustainability, and resilience. A firm believer in the power of serenity, she fosters an environment conducive to creativity and proactive engagement. Beyond her professional endeavors, Sara embraces adventure and cultural exploration, always seeking experiences that resonate with her positive energy.

Profile

Scopus

Education

Sara Masiero pursued her higher education at the University of Applied Sciences and Arts of Southern Switzerland (SUPSI), where she obtained a Master of Science in Engineering (2018-2021). During her academic journey, she actively engaged in research projects focusing on optimizing industrial systems and integrating digital tools for process enhancement. Prior to her master’s degree, she earned a Bachelor of Science in Ingegneria Gestionale (2015-2018) from the same institution. She further honed her expertise through specialized programs, including the English Summer School at Horner School of English, AIGreen Business Lab by EIT Digital, and professional training in learning assessment methodologies.

Experience

Sara Masiero has amassed substantial experience in both academia and industry, contributing to projects that merge theoretical research with practical applications. Since November 2018, she has been serving as a scientific collaborator at SUPSI, where she plays a pivotal role in research and scientific development within the realm of Industry 4.0 and 5.0. Her work emphasizes human-centered industrial paradigms, sustainability, and resilience, while she also manages digital processes for EU H2020 projects and provides training in Industrial Engineering courses.

Between January 2023 and February 2024, Sara worked as a Business Process Manager at Masiero G. Srl and Z. Account Service Srl, overseeing financial and commercial processes related to sales, customer service, and supplier relations. She also ensured regulatory compliance and operational efficiency through effective bureaucratic and administrative process management. Earlier, she collaborated with STISA SA and LINNEA (September 2020 – February 2021) to develop her master’s thesis on optimizing material flows and warehouse layouts in logistics systems. Additionally, during her bachelor’s studies, she worked with RIRI SA (June 2018 – September 2018) on a thesis analyzing raw material purchasing processes with a focus on sustainability.

Research Interests

Sara Masiero’s research interests are deeply rooted in industrial innovation, digital transformation, and sustainability. She focuses on the integration of advanced digital tools in production systems, addressing the challenges and opportunities presented by Industry 4.0 and 5.0. Her work revolves around Quality Management advancements, human-centric industrial paradigms, and AI-driven digital platforms that enhance manufacturing processes. Furthermore, she explores methodologies for optimizing supply chain operations and ensuring regulatory compliance within rapidly evolving technological landscapes.

Awards and Recognition

Throughout her academic and professional journey, Sara has been recognized for her contributions to research and process optimization in industrial settings. Her innovative approach to digital transformation and industrial efficiency has earned her accolades in academic conferences and industry collaborations. She has actively participated in prestigious projects and workshops, further cementing her reputation as a knowledgeable and influential figure in the field of industrial engineering and management.

Publications

Corti, D., Masiero, S., & Gladysz, B. (2021). “Impact of Industry 4.0 on Quality Management: Identification of main challenges towards a Quality 4.0 approach.” IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), pp. 1-8.

Masiero, S., Qosaj, J., & Cutrona, V. (2024). “Digital Datasheet model: enhancing value of AI digital platforms.” Procedia Computer Science, 232, 149-158.

Masiero, S., Qosaj, J., Bettoni, A., & Gladysz, B. (2024). “Technology-Driven Measures for Human Centricity in the Manufacturing Sector.” International Association for the Management of Technology Conference, pp. 81-88, Cham: Springer Nature Switzerland.

Conclusion

Sara Masiero exemplifies the essence of a modern engineer—one who seamlessly integrates research, industry expertise, and a passion for innovation. Her extensive experience in digital transformation, quality management, and process optimization makes her a valuable contributor to the fields of industrial engineering and management. With a strong academic background, diverse professional experience, and a commitment to sustainability and human-centric methodologies, Sara continues to drive meaningful advancements in Industry 4.0 and 5.0. Her contributions to research and industry projects underscore her ability to bridge theoretical knowledge with practical applications, paving the way for smarter, more resilient production systems in the future.

Mohitkumar Bhadla | Computer Science & Engineering | Best Researcher Award

Assoc. Prof. Dr. Mohitkumar Bhadla | Computer Science & Engineering | Best Researcher Award

Associate Professor & HOD at Gandhinagar University, Gujarat, India

Dr. Mohit Bhadla is a dedicated academician and researcher with over 16 years of experience in the field of Computer Engineering and Information Technology. He currently serves as the Head of the Department and Professor at Gandhinagar University, Gandhinagar. Throughout his career, Dr. Bhadla has contributed significantly to research and education, focusing on emerging technologies, software development, and network security. His expertise extends to mentoring students, developing innovative research methodologies, and enhancing academic curricula. Passionate about advancing technological education, he actively participates in conferences, workshops, and international collaborations to further his knowledge and contribute to the global research community.

Profile

Orcid

Education

Dr. Mohit Bhadla earned his Ph.D. in Computer Engineering from Rai University, Ahmedabad, in 2019. Prior to that, he completed his Master of Engineering (M.E.) in Computer Engineering from Noble Group of Institutions, Junagadh, affiliated with Gujarat Technological University in 2013. He holds a Bachelor of Engineering (B.E.) degree in Computer Science and Engineering from Anuradha Engineering College, Chikhali, Maharashtra, which he obtained in 2009. His strong academic foundation has equipped him with the necessary skills to excel in both research and teaching domains.

Professional Experience

Dr. Bhadla has held several prestigious academic positions throughout his career. Since July 2024, he has been serving as the Head of the Department and Professor at Gandhinagar University, where he oversees research initiatives and academic programs. Prior to this, he was the Associate Professor and Dean of Research Cell at Swarnim Startup & Innovation University from August 2023 to July 2024, where he played a crucial role in research-led teaching and curriculum development. From September 2019 to August 2023, he worked as an Associate Professor and Head of the IT Department at Ahmedabad Institute of Technology. His earlier academic roles include serving as an Assistant Professor at Gandhinagar Institute of Technology and Noble Group of Institutions. In addition to his academic career, he has industry experience as a Support Engineer at Mindarray Systems Ltd from 2016 to 2017 and as a Programme Assistant at RTO Junagadh from 2009 to 2012.

Research Interests

Dr. Bhadla’s research focuses on artificial intelligence, machine learning, Internet of Things (IoT), network security, and biomedical applications. His work involves developing efficient algorithms for intrusion detection, biomedical imaging, data security, and optimizing power consumption in wireless sensor networks. He has also explored applications of deep learning in healthcare and social network analysis. His contributions to research have been recognized through various publications in reputed journals and conference proceedings. He is an active member of professional organizations such as IEEE, ACM, and IFERP, contributing to research discussions and technological advancements.

Awards and Achievements

Dr. Mohit Bhadla has received numerous accolades for his outstanding contributions to research and academia. In 2022, he was honored with the Best Researcher Award by INSO Bangalore. He was also recognized with the Best Young Researcher Award in the International Research Awards on New Science Invention in Fiber Optics & Communication in 2022. His innovative work in IoT and networking has led to multiple patents, including a patent for “An IoT-Based Sensor Network for Smart City Implementations” granted by the Government of Australia. Additionally, he has received invitations as a featured speaker at international conferences, including the Peers Alley Conference in London. His contributions to software malware detection and wireless sensor networks have been widely acknowledged in the research community.

Selected Publications

An Intelligent IoT Intrusion Detection System using HeInit-WGAN and SSO-BNM CNN-Based Multivariate Feature Analysis (2023) – Published in Elsevier: Engineering Application of Artificial Intelligence.

Enhanced Ubiquitous System Architecture for Securing Healthcare IoT using Efficient Authentication and Encryption (2023) – Published in International Journal of Data Science and Analytics.

Multi-Stage Biomedical Feature Selection Extraction Algorithm for Cancer Detection (2023) – Published in Springer Nature: Applied Science.

Semantic Analysis for Image Distribution of Various Edge Detection Techniques (2022) – Published in IJRAR (UGC Approved).

Deep Learning-Based Dynamic User Alignment in Social Networks (2023) – Published in ACM JDIQ (Scopus Indexed).

Execution of Hard C-Means Clustering Algorithm for Medical Image Separation (2022) – Published in IJRAR (UGC Approved).

A Survey of Intrusion and Detection Models on Network and Communication Topologies (2023) – Published in UGC Approved Journal.

Conclusion

Dr. Mohit Bhadla is a distinguished academician, researcher, and mentor in the field of Computer Engineering. His extensive contributions to research, innovative curriculum development, and passion for teaching have significantly impacted students and fellow researchers. With multiple patents, high-impact publications, and international recognition, he continues to drive advancements in artificial intelligence, IoT, and network security. His commitment to excellence and knowledge dissemination makes him a valuable asset to the academic and research community, inspiring future generations of scholars and professionals.

Olga Ovtšarenko | Machine Learning | Best Researcher Award

Ms. Olga Ovtšarenko | Machine Learning | Best Researcher Award

Lead Lecturer at TTK University of Applied Sciences, Lithuania

Olga Ovtšarenko is a distinguished academic and researcher in the field of computer sciences and engineering graphics. She has contributed significantly to engineering education, particularly in CAD design and computer graphics. With a career spanning over two decades, she has played a crucial role in advancing pedagogical approaches in digital learning environments. Her expertise extends to informatics and systems theory, where she integrates modern computational techniques into engineering education. Currently serving as a lead lecturer at TTK University of Applied Sciences, she continues to foster innovation in higher education through her research and academic contributions.

Profile

Orcid

Education

Olga Ovtšarenko holds a Master’s degree in Pedagogics with a specialization in vocational training didactics from Tallinn Pedagogical University, completed between 2002 and 2004. She previously earned an engineering diploma from Moscow State University of Design and Technologies in 1984, laying a strong foundation in technical sciences. Furthering her academic pursuits, she is currently a doctoral student in Informatics Engineering at VILNIUS TECH, Lithuania. Her educational journey underscores her dedication to interdisciplinary research and the integration of engineering and informatics in education.

Experience

Olga Ovtšarenko has amassed extensive experience in academia, beginning her tenure at TTK University of Applied Sciences in 2008. Over the years, she has taught subjects such as descriptive geometry, engineering graphics, and computer graphics, shaping the next generation of engineers. Since 2020, she has served as the lead lecturer at the university’s Centre for Sciences, where she specializes in engineering graphics and CAD design. Her contributions to curriculum development and instructional methodologies have had a profound impact on technical education, emphasizing the importance of modern computational tools in engineering disciplines.

Research Interests

Her research interests are centered on informatics, systems theory, and engineering education. She explores the applications of machine learning and artificial intelligence in educational settings, aiming to optimize e-learning environments. Additionally, she investigates the role of Building Information Modeling (BIM) in engineering education, focusing on enhancing visualization skills and interactive learning experiences. Through international collaborations, she contributes to the advancement of sustainable and innovative learning methodologies, emphasizing the integration of digital technologies in technical education.

Awards

Olga Ovtšarenko has been recognized for her contributions to engineering education and research. She has received multiple accolades for her work in developing innovative educational methodologies and integrating computational technologies into teaching. Her participation in international academic conferences and research projects has further solidified her reputation as a leading figure in engineering education.

Selected Publications

Ovtšarenko, Olga; Safiulina, Elena (2025). “Computer-Driven Assessment of Weighted Attributes for E-Learning Optimization.” Computers, 14(116), 1−19. DOI: 10.3390/computers14040116.

Ovtšarenko, Olga (2024). “Opportunities of Machine Learning Algorithms for Education.” Discover Education, 3, 209. DOI: 10.1007/s44217-024-00313-5.

Ovtšarenko, O.; Makuteniene, D.; Ceponis, A. (2024). “Broad Horizons of International Cooperation to Ensure Sustainable and Innovative Learning.” 10th International Conference on Higher Education Advances: HEAd’24. Universidad Politecnica de Valencia, 904−911. DOI: 10.4995/HEAd24.2024.17051.

Ovtšarenko, Olga; Mill, Tarvo (2024). “Engineering Educational Program Design Using Modern BIM Technologies.” ICERI2024 Proceedings, 746−752. DOI: 10.21125/iceri.2024.0283.

Ovtšarenko, Olga (2023). “Opportunities for Automated E-Learning Path Generation in Adaptive E-Learning Systems.” IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), 1−4. DOI: 10.1109/eStream59056.2023.10134844.

Ovtšarenko, Olga; Makuteniene, Daiva; Suwal, Sunil (2023). “Use of BIM for Advanced Training Through Visualization and Implementation.” ICERI2023 Proceedings, 940−947. DOI: 10.21125/iceri.2023.0317.

Ovtšarenko, Olga; Eensaar, Agu (2022). “Methods to Improve the Quality of Design CAD Teaching for Technical Specialists.” Education and New Developments 2022, 231−233. DOI: 10.21125/ened.2022.0524.

Conclusion

Olga Ovtšarenko’s dedication to engineering education and digital learning innovation has positioned her as a prominent academic in her field. Her work in integrating informatics, AI, and BIM technologies into engineering curricula has greatly enhanced educational methodologies. Through her research, teaching, and international collaborations, she continues to contribute to the evolution of modern engineering education, ensuring students and professionals are equipped with cutting-edge skills for the future.

Shih-Wen Hsiao | Artificial Intelligence | Best Researcher Award

Prof. Dr. Shih-Wen Hsiao | Artificial Intelligence | Best Researcher Award

Emeritus Professor at National Cheng Kung University, Taiwan

Dr. Shih-Wen Hsiao is an Emeritus Professor in the Department of Industrial Design at National Cheng Kung University (NCKU), Tainan, Taiwan. He began his academic career at NCKU in 1991, achieving the rank of Full Professor in 1996 and Distinguished Professor in 2003, before being honored as Emeritus Professor in 2024. Prior to his tenure at NCKU, Dr. Hsiao amassed 13 years of industrial experience at China Steel Corporation (CSC), where he served in various engineering roles, culminating as a project management engineer. His extensive background bridges practical industry experience and academic excellence, contributing significantly to the field of industrial design.

Profile

Scopus

Education

Dr. Hsiao earned his Ph.D. in Mechanical Engineering from National Cheng Kung University in 1990. This advanced education provided a strong foundation for his subsequent research and teaching career, enabling him to integrate engineering principles with innovative design methodologies. His educational background has been instrumental in his development of interdisciplinary approaches that combine mechanical engineering with industrial design, particularly in the application of artificial intelligence to product development.

Experience

Throughout his tenure at NCKU, Dr. Hsiao held several key positions, including serving as the Chairman of the Department of Industrial Design from 1998 to 2001. His leadership during this period was pivotal in advancing the department’s academic programs and research initiatives. Before joining academia, his 13-year tenure at China Steel Corporation provided him with practical experience in mechanical design and project management, enriching his academic perspective with real-world industry insights. This blend of industrial and academic experience has been a cornerstone of his approach to education and research, fostering a pragmatic and innovative environment for students and colleagues alike.

Research Interests

Dr. Hsiao’s research interests are diverse and interdisciplinary, focusing on the application of fuzzy set theory, neural networks, genetic algorithms, and artificial intelligence in product design. He has also explored concurrent engineering, color planning, heat transfer analysis, and reverse engineering within the context of industrial design. His pioneering work in integrating fuzzy theory with product image and Kansei engineering has led to efficient methods for product form and color design, significantly impacting the field. Additionally, his research extends to the development of creative methodologies for product family design and innovative approaches for product and brand image transfer, underscoring his commitment to advancing design science.

Awards

Dr. Hsiao’s contributions have been widely recognized. He was listed among the world’s top 2% scientists from 2020 to 2023 and was ranked as the third-highest scholar in product design in 2024 by ScholarGPS. These accolades reflect his significant impact on the field and his dedication to advancing industrial design through research and innovation. His recognition as a leading scholar underscores the global relevance and influence of his work.

Publications

Dr. Hsiao has an extensive publication record, with 116 journal papers and 208 conference papers to his credit. His recent works include:

“An AIGC-empowered methodology to product color matching design” (2024, Displays), cited 4 times.

“Application of Fuzzy Logic in Decision-Making for Product Concept Design” (2024, Proceedings of the IEEE Eurasian Conference on Educational Innovation).

“Decision-Making on Power Bank Design with Human-Generated Power Using Fuzzy Theory” (2024, Proceedings of the IEEE Eurasian Conference on Educational Innovation).

“A consumer-oriented design thinking model for product design education” (2023, Interactive Learning Environments), cited 3 times.

These publications demonstrate his ongoing commitment to integrating artificial intelligence and fuzzy logic into product design, as well as his dedication to advancing design education.

Conclusion

Dr. Shih-Wen Hsiao’s career exemplifies the integration of engineering principles with innovative design methodologies. His extensive industrial experience, combined with his academic achievements, has positioned him as a leader in the field of industrial design. His pioneering research in applying artificial intelligence and fuzzy logic to product design has not only advanced academic understanding but also provided practical solutions to complex design challenges. Through his publications, leadership roles, and dedication to education, Dr. Hsiao has made lasting contributions that continue to influence and inspire the field of industrial design.