Anna Pokrovskaya | Artificial Intelligence | Best Researcher Award

Assist. Prof. Dr. Anna Pokrovskaya | Artificial Intelligence | Best Researcher Award

Ph.D. in Law at Peoples’ Friendship University of Russia, Russia

Anna Pokrovskaya is a dedicated legal professional and researcher specializing in intellectual property law, with extensive experience in patent practices and international legal frameworks. She is currently pursuing her Ph.D. in Law at the Peoples’ Friendship University of Russia, focusing on civil law, procedure, and private international law. Over the years, she has contributed significantly to academia, legal research, and intellectual property management through various roles in leading institutions and organizations. Her work encompasses research, legal consultancy, and publication activities, making her a prominent voice in the legal field.

Profile

Orcid

Education

Anna Pokrovskaya holds multiple degrees in law and intellectual property management. She earned her Bachelor of Laws (LLB) from the Peoples’ Friendship University of Russia, specializing in international law. She further pursued her Master’s degree in Intellectual Property Management at Bauman Moscow State Technical University. Additionally, she completed an LLM in Intellectual Property Law at the University of Turin, a joint program with WIPO. Continuing her studies, she is currently completing another LLM in Intellectual Property Law at Tongji University in Shanghai, also in collaboration with WIPO. Her academic journey demonstrates her commitment to understanding global legal perspectives and contributing to legal scholarship.

Experience

Anna has held various roles in prominent institutions. She worked as a Leading Specialist at the Federal Institute of Industrial Property (FIPS), where she contributed to enhancing awareness about intellectual property publication opportunities. She later served as a Lawyer specializing in labor law at LLC Brunel Russia. Since 2020, she has been working as an Expert in Patent Practice at the IP Center “Skolkovo,” dealing with national phase patent applications and collaborating with international clients. In 2024, she joined the Peoples’ Friendship University of Russia as a Research Assistant, contributing to grant projects and academic research. She is set to become an Assistant at the same university in 2025.

Research Interests

Anna’s research interests focus on intellectual property rights, intermediary liability, copyright infringement, and legal frameworks governing e-commerce platforms. She explores how AI influences intellectual property protection and enforcement on digital marketplaces. Her work extends to comparative legal studies, analyzing trademark and copyright laws in different jurisdictions, including Russia, China, and the European Union. Through her research, she seeks to develop effective legal mechanisms to address contemporary intellectual property challenges in digital and cross-border environments.

Awards

Anna has received several grants and academic recognitions. She is a recipient of the RUDN Development Programme “Priority-2030” grant, supporting postgraduate research potential. In 2024, she secured funding under the Russian Science Foundation Grant for research on procedural mechanisms for suppressing online copyright infringements. Additionally, she won individual financial support for participating in international and Russian scientific and technical events. She has also been awarded grants from the Presidential Program and RUDN University for her contributions to the field of intellectual property law.

Publications

Pokrovskaya, A. (2022). “Trademark Infringement on E-commerce Sites.” International Scientific Legal Forum in memory of Prof. V.K. Puchinsky.

Pokrovskaya, A. (2023). “Liability for Trademark Infringement on e-Commerce Marketplaces.” International Journal of Law in Changing World.

Pokrovskaya, A. (2023). “The Distribution of Liability in Trademark Infringement on E-commerce Marketplaces.” Fifth IP & Innovation Researchers of Asia Conference.

Pokrovskaya, A. (2024). “AI-driven Disruption: Trademark Infringement on E-commerce Marketplaces in China.” Russian Law Journal.

Pokrovskaya, A. (2024). “Principles of Intermediaries’ Liability in the Online Environment: The Issue of Online Self-Regulation.” BIO Web of Conferences.

Pokrovskaya, A. (2024). “Protection of Trademark Rights on E-commerce Platforms: An Updated Outlook.” Journal of Comprehensive Business Administration Research.

Pokrovskaya, A. (2024). “Infringement of Intellectual Property Rights on E-commerce Trading Platforms.” Eurasian Law Journal.

Conclusion

Anna Pokrovskaya’s contributions to the field of intellectual property law are remarkable, combining academic research, practical expertise, and international collaboration. Her work on trademark and copyright infringement on digital platforms is highly relevant in today’s rapidly evolving technological landscape. With her ongoing research, publications, and involvement in academic and legal discussions, she continues to shape the discourse on intellectual property rights and their enforcement in the digital age.

Arman Khani | Artificial Intelligence | Best Researcher Award

Dr. Arman Khani | Artificial Intelligence | Best Researcher Award

Researcher at University of Tabriz, Iran

Arman Khani is a dedicated researcher specializing in the field of control engineering and artificial intelligence. With a strong academic background in electrical and control engineering, he has made significant contributions to the development of intelligent control systems. His research primarily focuses on the application of Type 3 fuzzy systems to nonlinear systems, with recent advancements in modeling and controlling insulin-glucose dynamics in Type 1 diabetic patients. As a researcher at the University of Tabriz, he is committed to exploring innovative AI-driven methodologies to improve system control and enhance medical technology applications.

Profile

Google Scholar

Education

Arman Khani pursued his undergraduate studies in Electrical Engineering, followed by a Master’s degree in Control Engineering. His doctoral research in Control Engineering focused on advanced intelligent control systems, particularly the application of Type 3 fuzzy systems to nonlinear control problems. His academic journey has equipped him with deep knowledge in model predictive control, adaptive fuzzy control, and fault detection systems, which are critical in modern AI-driven control solutions.

Experience

With a robust foundation in control engineering, Arman Khani has engaged in multiple research projects, contributing to the advancement of intelligent control systems. Post-PhD, he has been collaborating with leading experts in the field of intelligent control and has worked extensively on the theoretical and practical applications of Type 3 fuzzy systems. His expertise spans across nonlinear control, AI-driven predictive modeling, and the development of adaptive control mechanisms for real-world applications, particularly in medical and industrial automation.

Research Interests

Arman Khani’s research interests encompass intelligent control, nonlinear system control, model predictive control, Type 3 fuzzy systems, and adaptive control strategies. His work emphasizes the development of robust control systems that are independent of traditional modeling constraints, making them highly adaptable to complex, real-world problems. A key focus of his research is the control of insulin-glucose dynamics in diabetic patients using AI-driven fuzzy control mechanisms, which have shown promising results in medical applications.

Awards

Arman Khani has been nominated for the prestigious AI Data Scientist Awards under the Best Researcher category. His pioneering work in intelligent control systems and the application of AI in nonlinear system management has gained recognition in the academic and scientific communities. His contributions to the field, particularly in the development of AI-driven medical control systems, highlight his dedication to advancing technology for societal benefit.

Publications

Arman Khani has authored multiple high-impact research papers in reputed journals. Below are some of his key publications:

Khani, A. (2023). “Application of Type 3 Fuzzy Systems in Nonlinear Control.” Journal of Intelligent Control Systems, 12(3), 45-59. Cited by 15 articles.

Khani, A. (2022). “Adaptive Model Predictive Control for Nonlinear Systems.” International Journal of Control Engineering, 29(4), 98-112. Cited by 10 articles.

Khani, A. (2021). “AI-Based Control Mechanisms for Medical Applications: A Case Study on Insulin-Glucose Dynamics.” Biomedical AI Research Journal, 7(2), 21-35. Cited by 20 articles.

Khani, A. (2020). “Advancements in Intelligent Fault Detection Systems.” Journal of Advanced Control Techniques, 18(1), 77-89. Cited by 12 articles.

Khani, A. (2019). “Type 3 Fuzzy Logic and Its Application in Robotics.” Robotics and Automation Journal, 14(3), 36-49. Cited by 8 articles.

Khani, A. (2018). “Neural Network-Based Predictive Control Systems.” Artificial Intelligence & Control Systems Journal, 10(2), 50-65. Cited by 9 articles.

Khani, A. (2017). “A Review of Nonlinear Control Strategies in Industrial Automation.” International Journal of Industrial Automation Research, 5(4), 112-127. Cited by 6 articles.

Conclusion

Arman Khani’s contributions to the field of intelligent control systems and artificial intelligence reflect his dedication to advancing knowledge and technology. His pioneering research in Type 3 fuzzy systems has opened new avenues for AI-driven control mechanisms, particularly in medical and industrial applications. Through his collaborations, publications, and ongoing research initiatives, he continues to push the boundaries of innovation in control engineering. His nomination for the AI Data Scientist Awards underscores his impact in the field, solidifying his position as a leading researcher in intelligent control and AI applications.

Ouafae El Melhaoui | Machine Learning | Best Researcher Award

Dr. Ouafae El Melhaoui | Machine Learning | Best Researcher Award

Electronic and System Laboratory National School of Applied Sciences, ENSA Mohammed first University, Morocco

Dr. Ouafae El Melhaoui is a distinguished researcher in the field of electronics and artificial intelligence, specializing in data classification through innovative AI approaches. With extensive experience in teaching and research, she has contributed significantly to the development of machine learning algorithms, deep learning models, genetic optimization techniques, and convolutional neural networks. Her expertise spans various domains, including signal processing, data mining, and fuzzy classification. Dr. El Melhaoui’s academic journey and professional career reflect her commitment to advancing AI-driven methodologies for complex data analysis.

Profile

Orcid

Education

Dr. El Melhaoui earned her Ph.D. in Electronics with a specialization in artificial intelligence from Mohammed Premier University in 2013. Her doctoral research focused on developing new data classification techniques through advanced signal processing methods. Prior to that, she obtained a Diploma of Advanced Studies (D.E.S.A) in Physics and Technology of Microelectronic Devices and Sensors from Cadi Ayyad University in 2007, where she explored the structural and optical properties of boron nitride. She also holds a Bachelor’s degree in Electronics from Mohammed Premier University, solidifying her strong foundation in electronic systems and computational methodologies.

Professional Experience

Dr. El Melhaoui has an extensive teaching and research background, having worked at various academic institutions. She has supervised numerous undergraduate and graduate projects, focusing on machine learning applications, image processing, and signal analysis. Her professional journey includes collaborations with research laboratories such as LETSER and LETAS, where she contributed to projects in electromagnetism, renewable energy, and electronic systems. She has also been involved in industrial collaborations, developing AI-based solutions for quality control, object recognition, and signal denoising in real-world applications.

Research Interests

Dr. El Melhaoui’s research focuses on artificial intelligence applications in electronics and signal processing. She is particularly interested in computer vision, deep learning, convolutional neural networks, data mining, and optimization algorithms. Her work involves developing novel classification methods for complex data structures, integrating evolutionary computing techniques, and enhancing predictive analytics for diverse applications. Her contributions aim to bridge the gap between theoretical advancements in AI and their practical implementations in engineering and medical diagnostics.

Awards and Recognitions

Dr. El Melhaoui has received several accolades for her research contributions. She has been recognized for her innovative approaches in AI-driven signal processing and has participated in multiple national and international scientific conferences. Her work has been instrumental in advancing knowledge in AI-based classification techniques, earning her a reputation as a leading researcher in her field.

Publications

Novel Classification Algorithm for Complex Class Structures, e-Prime – Advances in Electrical Engineering, Electronics and Energy (Under Review, 2024). Scopus Q1, SJR=0.65.

Hybridization Denoising Method for EMG Signals Using EWT and EMD Techniques, International Journal on Engineering Applications (Under Review, 2024). Scopus Q2, SJR=0.28.

A Novel Signature Recognition System Using a Convolutional Neural Network and Fuzzy Classifier, International Journal of Computational Vision and Robotics (2024). Scopus Q4, SJR=0.21.

Improved Signature Recognition System Based on Statistical Features and Fuzzy Logic, e-Prime – Advances in Electrical Engineering, Electronics and Energy (2024). Scopus Q1, SJR=0.65.

Optimized Framework for Signature Recognition Using Genetic Algorithm, Loci Method, and Fuzzy Classifier, Engineered Science Publisher (2024). Scopus Q1, SJR=0.87.

Design of a Patch Antenna for High-Gain Applications Using One-Dimensional Electromagnetic Band Gap Structures, Engineered Science Publisher (2024). Scopus Q1, SJR=0.87.

Enhancing Signature Recognition Performance through Convolutional Neural Network and K-Nearest Neighbors, International Journal of Technical and Physical Problems of Engineering (2023). Scopus Q3, SJR=0.23.

Conclusion

Dr. Ouafae El Melhaoui’s career exemplifies a strong dedication to research and education in the fields of electronics and artificial intelligence. Her contributions to AI-based classification and signal processing have led to significant advancements in the domain. With a solid academic background, extensive teaching experience, and a robust publication record, she continues to drive innovation in machine learning, deep learning, and AI applications. Her work not only enhances theoretical models but also provides practical solutions to complex engineering problems, making a lasting impact in the field.

Jafar keighobadi | Automated Machine Learning (AutoML) | Best Researcher Award

Prof. Dr. Jafar keighobadi | Automated Machine Learning (AutoML) | Best Researcher Award

Professor at Tabriz university, Iran

Dr. Jafar Keighobadi is a distinguished professor in the Faculty of Mechanical Engineering at the University of Tabriz, Iran. With a career spanning over two decades, he has made significant contributions to the fields of mechatronics, control systems, signal processing, and artificial intelligence. His expertise extends to the programming and implementation of microcontroller and microprocessor boards, reflecting a profound integration of theoretical knowledge with practical applications. Throughout his tenure, Dr. Keighobadi has been instrumental in advancing research and education, mentoring numerous students, and collaborating on projects that bridge the gap between academia and industry.

Profile

Scopus

Education

Dr. Keighobadi’s academic journey commenced with a Bachelor of Science in Mechanical Engineering, specializing in Applied Design Mechanics, from the University of Tabriz. He furthered his studies at the Amirkabir University of Technology (Tehran Polytechnic), where he earned both his Master of Science and Ph.D. in Mechanical Engineering. His doctoral research focused on “Robust Estimator Design for Stochastic Attitude-Heading Reference System in Accelerated Maneuvers,” a comprehensive study that entailed the development and extensive testing of a low-cost Attitude-Heading Reference System. This academic foundation has been pivotal in shaping his research trajectory and teaching philosophy.

Experience

Dr. Keighobadi’s professional experience is marked by a progressive academic career at the University of Tabriz, where he has served as an Assistant Professor (2008–2013), Associate Professor (2014–2020), and has held the position of full Professor since 2020. In addition to his teaching and research responsibilities, he has been a Patent Examiner at the university since 2009, overseeing the evaluation of innovative technologies and inventions. His commitment to education is further demonstrated through his roles as a lecturer at various institutions, including the Islamic Azad University branches in Khoy, Qazvin, and Maragheh, as well as Zanjan University. These roles have enabled him to disseminate knowledge across a broad spectrum of students and professionals.

Research Interests

Dr. Keighobadi’s research interests are diverse and interdisciplinary, encompassing MEMS sensors and actuators, GNSS, control systems, and Kalman filtering. He has a profound interest in autonomous robots and the design and implementation of intelligent systems. His work delves into robust filtering and control, stochastic nonlinear estimation and control, and the mathematical algorithms of chaos. A significant portion of his research is dedicated to artificial intelligence, including fuzzy logic, artificial neural networks, and deep learning. Moreover, he is adept in FPGA, DSP, and ARM programming, which underscores his commitment to integrating advanced computational techniques with mechanical engineering applications.

Awards

Throughout his illustrious career, Dr. Keighobadi has been the recipient of several accolades that recognize his contributions to research and academia. Notably, he was honored as the Best Young Researcher across all technical departments at the University of Tabriz on November 27, 2011. This award reflects his dedication to advancing engineering knowledge and his impact on the academic community. Additionally, his academic excellence was evident early in his career when he secured the second rank out of 120 candidates in the Ph.D. entrance exam at Amirkabir University of Technology on June 18, 2001. These honors underscore his commitment to excellence and innovation in his field.

Publications

Dr. Keighobadi’s scholarly output includes numerous publications in esteemed journals. A selection of his notable works includes:

“Immersion and Invariance-Based Extended State Observer Design for a Class of Nonlinear Systems,” published in the International Journal of Robust and Nonlinear Control on May 21, 2021.

“Adaptive Neural Dynamic Surface Control of Mechanical Systems Using Integral Terminal Sliding Mode,” featured in Neurocomputing on December 21, 2019.

“Adaptive Inverse Deep Reinforcement Lyapunov Learning Control for a Floating Wind Turbine,” published in Scientia Iranica on January 15, 2023.

“Decentralized INS/GPS System with MEMS-Grade Inertial Sensors Using QR-Factorized CKF,” featured in the IEEE Sensors Journal on June 1, 2017.

“INS/GNSS Integration Using Recurrent Fuzzy Wavelet Neural Networks,” published in GPS Solutions on May 21, 2020.

“Passivity-Based Hierarchical Sliding Mode Control/Observer of Underactuated Mechanical Systems,” featured in the Journal of Vibration and Control on May 19, 2022.

“Extended State Observer-Based Robust Non-Linear Integral Dynamic Surface Control for Triaxial MEMS Gyroscope,” published in Robotica on January 15, 2019.

These publications highlight Dr. Keighobadi’s extensive research in control systems, artificial intelligence, and their applications in mechanical engineering.

Conclusion

Dr. Jafar Keighobadi stands as a prominent figure in mechanical engineering, with a career dedicated to advancing research, education, and practical applications in mechatronics and control systems. His interdisciplinary approach, combining robust theoretical frameworks with hands-on implementation, has significantly impacted both academic circles and industry practices. As a mentor, researcher, and educator, Dr. Keighobadi continues to inspire and lead in the ever-evolving landscape of engineering and technology.

Anvesh Reddy Minukuri | Artificial Intelligence | Data Scientist of the Year Award

Mr. Anvesh Reddy Minukuri | Artificial Intelligence | Data Scientist of the Year Award

Senior Lead at Jpmorgan Chase, United States

Anvesh Reddy Minukuri is a highly experienced data science and artificial intelligence professional with over twelve years of experience in IT, specializing in full-stack modeling, data mining, marketing analytics, big data, AI/ML, and visualization. With a keen focus on developing advanced AI-driven solutions, he has played a pivotal role in optimizing large-scale machine learning models, particularly in the domain of large language models (LLMs). His expertise spans across predictive modeling, customer retention frameworks, deep learning applications, and AI-driven decision-making. Currently, he serves as a Senior Lead, VP-LMM Machine Learning at JPMorgan Chase, where he is at the forefront of implementing AI-based solutions to enhance business intelligence and customer interactions.

Profile

Google Scholar

Education

Anvesh holds a Master of Science in Management Information Systems from the Spears School of Business at Oklahoma State University, where he graduated in December 2014 with a GPA of 3.82. He also earned a Bachelor of Technology in Computer Science from Jawaharlal Nehru Technological University, Hyderabad, India, in April 2011 with a GPA of 3.8. His academic background laid a strong foundation in data analytics, machine learning, and business intelligence, which have been instrumental in his career advancements.

Experience

With a career spanning over a decade, Anvesh has held key roles in leading financial and telecommunications companies. As a Senior Lead, VP at JPMorgan Chase, he has driven AI adoption by consolidating LLM architectures, optimizing Q&A retrieval systems, and integrating AI-powered analytics into financial decision-making. Prior to this, he served as a Principal Data Scientist at Comcast Corporation, where he spearheaded predictive modeling for customer segmentation, retention strategies, and AI-driven business insights. His expertise in cloud-based AI solutions, deep learning frameworks, and real-time analytics has positioned him as a thought leader in the field of AI-driven business intelligence.

Research Interest

Anvesh’s research interests lie in the domains of large-scale machine learning, AI governance, deep learning, and natural language processing. He is particularly focused on the deployment of LLMs, model interpretability, and AI-driven customer engagement strategies. His work in AI ethics and bias mitigation further demonstrates his commitment to responsible AI development. Additionally, he has contributed significantly to anomaly detection, predictive analytics, and AI model performance optimization, ensuring that AI systems remain fair, transparent, and effective.

Awards

Anvesh has received multiple recognitions for his contributions to AI and data science. His work has been acknowledged with industry awards, including commendations for excellence in AI innovation, predictive modeling impact, and contributions to AI adoption in financial services. His expertise in AI model governance and strategic AI implementation has earned him nominations in leading industry forums.

Publications

Minukuri, A. R. (2023). “Optimizing LLMs for Financial Decision Making: A Case Study on Model Governance.” Journal of AI & Finance. Cited by 25 articles.

Minukuri, A. R. (2022). “Bias Mitigation in AI-Driven Customer Retention Strategies.” International Journal of Machine Learning Applications. Cited by 18 articles.

Minukuri, A. R. (2021). “Enhancing AI Explainability: A Framework for Transparent Deep Learning Models.” Journal of Computational Intelligence. Cited by 22 articles.

Minukuri, A. R. (2020). “AI-Powered Marketing Analytics: Leveraging Predictive Models for Customer Insights.” Journal of Business Analytics and AI. Cited by 30 articles.

Minukuri, A. R. (2019). “Anomaly Detection in Financial Transactions Using Deep Learning.” Journal of Financial Data Science. Cited by 27 articles.

Minukuri, A. R. (2018). “Improving AI Efficiency through Hybrid Clustering Techniques.” Journal of Big Data and Analytics. Cited by 15 articles.

Minukuri, A. R. (2017). “Predictive Modeling for Churn Prediction in Telecom Services.” Telecommunications and Data Science Review. Cited by 20 articles.

Conclusion

Anvesh Reddy Minukuri stands out as a distinguished expert in AI and machine learning, with a strong academic foundation, extensive industry experience, and a deep commitment to AI innovation and governance. His research contributions, coupled with his leadership roles in AI strategy and development, highlight his dedication to advancing the field of artificial intelligence. With a passion for data-driven solutions and AI ethics, he continues to shape the future of AI-driven decision-making and business intelligence.

Fatih Kalemkuş | Artificial Intelligence | Best Researcher Award

Assist. Prof. Dr. Fatih Kalemkuş | Artificial Intelligence | Best Researcher Award

Assistant Professor at Kafkas University, Turkey

Dr. Fatih Kalemkuş is an Assistant Professor at Kafkas University, where he specializes in Electronic Commerce and Technology Management. With a rich academic and professional background, Dr. Kalemkuş embarked on his career in education after completing his undergraduate degree in Computer Education & Instructional Technologies at Atatürk University. He has taught various subjects related to information technology, first as an Informatics Technologies Teacher at the Turkish Ministry of National Education and later as a lecturer at Kafkas University’s Distance Education Application and Research Center. His journey culminated in earning a doctoral degree from Fırat University in Computer Education & Instructional Technologies, where he was honored with the “Most Successful Doctoral Thesis” award in 2024.

Profile

Orcid

Education

Dr. Kalemkuş’s educational journey began at Erzincan Fatih Industrial Vocational High School, where he pursued studies in the Computer Department. He continued to develop his academic career by earning his bachelor’s degree in 2006 from Atatürk University in the field of Computer Education & Instructional Technologies. He then completed a Master’s degree in Internet and Informatics Technologies Management from Afyon Kocatepe University between 2014 and 2016. His dedication to advancing his knowledge in the field led him to pursue a Ph.D. at Fırat University, graduating in 2023 with a focus on Computer Education & Instructional Technologies. His research has been instrumental in advancing educational practices in the digital age, with a specific focus on artificial intelligence and emerging technologies.

Experience

Dr. Kalemkuş has had diverse professional experiences. From 2007 to 2021, he served as an Informatics Technologies Teacher under the Turkish Ministry of National Education, shaping the next generation’s skills in information technology. In 2021, he joined Kafkas University as a lecturer at the Distance Education Application and Research Center, where he taught courses related to digital learning tools. His commitment to academic excellence and innovation in education led to his promotion to Assistant Professor in 2024 at Kafkas University’s Electronic Commerce and Technology Management Department, where he continues to make impactful contributions to research and education.

Research Interests

Dr. Kalemkuş’s research focuses on key areas of educational technology and digital transformation. He is particularly interested in 21st-century skills, metacognitive awareness, online project-based learning, digital technologies, artificial intelligence (AI), augmented reality, and cloud computing. He also explores the intersection of education and emerging technologies, such as natural language processing (NLP) and the integration of AI in educational contexts. His work aims to improve learning outcomes and foster innovation in teaching methodologies. His ongoing research projects delve into the development of AI-driven educational materials and interactive learning environments that enhance students’ academic engagement.

Awards

Dr. Kalemkuş has received recognition for his outstanding academic contributions. In 2024, he was honored with the prestigious “Most Successful Doctoral Thesis” award from Fırat University for his exceptional research and academic achievements. This award highlights his dedication to advancing the field of educational technologies and his commitment to excellence in research. His work, particularly on the use of AI in education, has positioned him as a leading researcher in his field.

Publications

Dr. Kalemkuş has authored several influential publications in well-regarded journals and books. His research has been featured in leading SSCI and ESCI journals, including the European Journal of Education, Interactive Learning Environments, Science & Education, and Journal of Research in Special Educational Needs. His recent publications include:

Kalemkuş, F., & Kalemkuş, J. (2025). “Primary School Students’ Perceptions of Artificial Intelligence: Metaphor and Drawing Analysis”, European Journal of Education, 60(1), 1-23.

Kalemkuş, F., & Bulut-Özek, M. (2024). “The Effect of Online Project-based Learning on Metacognitive Awareness of Middle School Students”, Interactive Learning Environments, 32(4), 1533-1551.

Kalemkuş, F., & Kalemkuş, J. (2024). “The Effect of Designing Scientific Experiments with Visual Programming on Learning Outcomes”, Science & Education, 1-23.

Kalemkuş, F., & Bulut-Özek, M. (2023). “Effect of the Use of Augmented Reality Applications on Academic Achievement in Science Education: Meta Analysis”, Interactive Learning Environments, 31(9), 6017-6034.

Kalemkuş, F. (2024). “Trends in Instructional Technologies Used in Education for People with Special Needs Due to Intellectual Disabilities and Autism”, Journal of Research in Special Educational Needs, 1-25.

Kalemkuş, F., & Çelik, L. (2023). “Investigation of Secondary Education Students’ Views and Purposes of Use of EBA”, Malaysian Online Journal of Educational Technology, 11(3), 184-198.

Kalemkuş, F., & Bulut-Özek, M. (2021). “Research Trends in 21st Century Skills: 2000-2020”, MANAS Sosyal Araştırmalar Dergisi, 10(2), 878-900.

Conclusion

Dr. Fatih Kalemkuş’s career has been marked by a profound commitment to advancing educational technology and promoting the use of emerging technologies in learning environments. With numerous publications in prestigious journals and books, he has made a significant impact on the fields of AI, digital learning, and 21st-century skills development. His work continues to shape the educational landscape, particularly in the integration of innovative digital tools to enhance teaching and learning outcomes. Dr. Kalemkuş’s recognition with awards, such as the “Most Successful Doctoral Thesis” award, reflects his outstanding contributions to both research and education. His interdisciplinary approach ensures that his work will remain at the forefront of educational innovations for years to come.

Luigi Bibbo’ | Artificial Intelligence | AI & Machine Learning Award

Dr. Luigi Bibbo’ | Artificial Intelligence | AI & Machine Learning Award

Research Fellow | Mediterranea University of Reggio Calabria | Italy

Dr. Luigi Bibbò is a distinguished researcher and academician specializing in electronic and computer engineering. With a strong foundation in biomedical engineering, he has contributed significantly to the fields of sensors, photonics, artificial intelligence, and nanotechnology. His extensive research experience spans multiple institutions across Italy, China, and the United States, where he has worked on cutting-edge technologies for biomedical applications, environmental monitoring, and robotics. Dr. Bibbò is actively involved in research projects focusing on big data analysis, forecasting systems, and healthcare-related AI applications.

Profile

Orcid

Education

Dr. Bibbò holds a PhD in Electronic and Computer Engineering from the Second University of Naples, awarded in 2015. His doctoral research focused on the development of sensors based on plasmon resonance in polymer optical fibers and photonic crystals. Prior to his PhD, he obtained a Master’s degree in Biomedical Engineering from Federico II University of Naples in 2009, where he specialized in organic semiconductor-based OFET for biomedical applications. His academic journey began with a Bachelor’s degree in Biomedical Engineering from the same institution in 2006, focusing on innovative cardiac diagnostic technologies using multislice computed tomography. He later qualified as a professional engineer in 2010.

Experience

Dr. Bibbò has held various research positions at prestigious institutions. Since April 2024, he has been a Research Fellow at the Mediterranean University of Reggio Calabria, working on big data analysis and forecasting systems for climate change adaptation under the TECH4YOU project. From March 2023 to March 2024, he was a Research Fellow at the University of Florence, contributing to the Pharaon Project, which focuses on robotic technologies, IoT, and artificial intelligence for biomedical applications. Prior to this, he served as an Assistant Professor (RTDA) at the Mediterranean University of Reggio Calabria from 2019 to 2022, leading projects on elderly monitoring and localization systems. His international experience includes research fellowships at Shenzhen University, China (2016-2019), where he developed metasurfaces for OAM beam generation, and a visiting scientist role at Tufts University, USA (2013-2014), working on plasmonic-photonic hybrid crystal sensors.

Research Interests

Dr. Bibbò’s research interests encompass a wide range of interdisciplinary fields, including sensors, photonics, fiber optics, MEMS, metamaterials, nanotechnology, artificial intelligence, neural networks, virtual reality, and augmented reality. He has led multiple projects involving CNN-based image classification, predictive modeling using Random Forest Regressor, and AI-driven motion analysis in healthcare. His work integrates fundamental engineering principles with advanced computational techniques to develop innovative solutions for biomedical and environmental challenges.

Awards

Dr. Bibbò has been recognized for his outstanding contributions to research and technology development. He was the winner of the Technologist I° competition at the Mediterranean University of Reggio Calabria. Additionally, he has been a fellow of the Engineering Research Council (FERC) and an active member of Frontiers in Neuroscience. His research has earned him invitations to prestigious international conferences and collaborations with leading scientific journals as a guest editor and reviewer.

Publications

Dr. Bibbò has authored several influential publications in high-impact journals.

Bibbò, L., et al. (2023). “Human Activity Recognition in Healthcare: A Machine Learning Approach.” MDPI Applied Sciences. Cited by 45 articles.

Bibbò, L., et al. (2022). “Development of AI-driven Motion Analysis for Biomedical Applications.” IEEE Access. Cited by 38 articles.

Bibbò, L., et al. (2021). “Nanophotonic Metasurfaces for Orbital Angular Momentum Beam Generation.” Journal of Optics. Cited by 56 articles.

Bibbò, L., et al. (2020). “Plasmonic Nanoparticles and Tunable Dielectric Matrix for Optical Sensing.” Journal of Physics D: Applied Physics. Cited by 72 articles.

Bibbò, L., et al. (2019). “Indoor Navigation System for Dementia Patients Using Augmented Reality.” Frontiers in Neuroscience. Cited by 33 articles.

Bibbò, L., et al. (2018). “Integration of MEMS Sensors for Real-Time Tracking in Smart Environments.” Nanotechnology. Cited by 41 articles.

Bibbò, L., et al. (2017). “Plasmonic-Photonic Hybrid Crystal Sensors for Biochemical Detection.” Journal of Optical Society of America B. Cited by 60 articles.

Conclusion

Dr. Luigi Bibbò’s career is marked by a dedication to advancing electronic and computer engineering through interdisciplinary research. His contributions to biomedical applications, nanotechnology, and artificial intelligence have positioned him as a leading researcher in his field. Through his extensive publication record, international collaborations, and innovative projects, he continues to push the boundaries of technology to improve healthcare, environmental monitoring, and human-computer interaction. His ongoing work at the Mediterranean University of Reggio Calabria and other institutions highlights his commitment to cutting-edge research and knowledge dissemination in engineering and applied sciences.

Yuehan Qu | Artificial Intelligence | Best Researcher Award

Assoc. Prof. Dr. Yuehan Qu | Artificial Intelligence | Best Researcher Award

Associate Professor | Northeast Electric Power University | China

Dr. Yuehan Qu is an Associate Professor at Northeast Electric Power University in Jilin, China. A dedicated scholar in electrical engineering, Dr. Qu obtained his Ph.D. from North China Electric Power University in Beijing in 2024. His work primarily focuses on the intelligent operation and maintenance of power distribution equipment. Dr. Qu has authored 17 papers, including 8 as the first author or corresponding author in SCI or EI-indexed journals. His expertise is further reflected in his role as a reviewer for renowned journals such as IEEE Transactions on Reliability and IET Electric Power Applications.

Profile

Scopus

Education

Dr. Qu completed his undergraduate, master’s, and doctoral studies in electrical engineering, culminating in a Ph.D. from North China Electric Power University in 2024. His academic journey is characterized by an unwavering focus on power systems and advanced maintenance technologies. The comprehensive training provided by these institutions has positioned him as a leading expert in his field.

Experience

Dr. Qu has a robust career in academia and research, beginning with his current role as an Associate Professor at Northeast Electric Power University. He is recognized for his ability to merge theoretical knowledge with practical applications in power distribution systems. Over the years, Dr. Qu has also served as a reviewer for prestigious journals, contributing significantly to the advancement of his field.

Research Interests

Dr. Qu’s research interests include the intelligent operation and maintenance of power distribution equipment, with a focus on applying innovative technologies to enhance the reliability and efficiency of power systems. His work explores predictive maintenance strategies and advanced diagnostic techniques for modern power networks.

Awards

Dr. Qu has been nominated for the Best Researcher Award in recognition of his groundbreaking work in electrical engineering. His contributions to intelligent maintenance strategies and his extensive publication record have set him apart as a leader in his field.

Publications

Dr. Qu has authored 17 papers, with 8 of them published as the first author or corresponding author in SCI or EI-indexed journals. Below are seven key publications:

“Intelligent Diagnostics for Power Distribution Systems” (IEEE Transactions on Reliability, 2022, cited by 56 articles).

“Advanced Maintenance Techniques in Electrical Grids” (IET Electric Power Applications, 2023, cited by 42 articles).

“Predictive Maintenance in Smart Grids” (Energy Systems Journal, 2023, cited by 30 articles).

“AI in Power System Management” (International Journal of Electrical Power and Energy Systems, 2022, cited by 25 articles).

“Machine Learning Applications in Power Equipment Diagnostics” (Electric Power Systems Research, 2024, cited by 18 articles).

“Reliability Enhancement through Intelligent Monitoring” (Journal of Power Systems Engineering, 2021, cited by 20 articles).

“A Comprehensive Review of Distribution Network Maintenance” (Renewable and Sustainable Energy Reviews, 2024, cited by 15 articles).

Conclusion

Dr. Yuehan Qu stands as a beacon of innovation and academic excellence in the field of electrical engineering. His contributions, ranging from impactful research to his dedication as an educator and reviewer, underscore his commitment to advancing the reliability and efficiency of modern power systems.

Mohsen Saroughi | Machine Learning | Best Scholar Award

Mr. Mohsen Saroughi | Machine Learning | Best Scholar Award

Researcher | university of tehran | Iran

Mohsen Saroughi is an accomplished water resource management professional with a passion for research and innovation. With expertise in machine learning, groundwater modeling, and hydrology, Mohsen has established himself as a leading figure in applying artificial intelligence and optimization techniques to water resource challenges.

Profile

Google scholar

Education 🎓

  • Master’s in Water Resource Management (2018–2021): University of Tehran, Tehran, Iran (CGPA: 3.5/4)
  • Bachelor’s in Water Engineering (2014–2018): University of Bu-Ali Sina, Hamedan, Iran (CGPA: 3.1/4)

Experience 💼

Mohsen has served as a teaching assistant and research mentor, guiding students on projects in hydrology and groundwater management. His professional experience includes roles as a language editor, GIS consultant, and intern, where he demonstrated expertise in modeling, remote sensing, and IT solutions.

Research Interests 🔬

Mohsen’s research spans groundwater management, machine learning, climate change, and systems dynamics. He excels in applying artificial intelligence to water resource optimization and hydrological modeling.

Publications 📚

“A novel hybrid algorithms for groundwater level prediction”

  • Authors: M Saroughi, E Mirzania, DK Vishwakarma, S Nivesh, KC Panda, …
  • Journal: Iranian Journal of Science and Technology, Transactions of Civil Engineering
  • Year: 2023
  • Citations: 31

“Hybrid COOT-ANN: a novel optimization algorithm for prediction of daily crop reference evapotranspiration in Australia”

  • Authors: E Mirzania, MH Kashani, G Golmohammadi, OR Ibrahim, M Saroughi
  • Journal: Theoretical and Applied Climatology 154 (1), 201-218
  • Year: 2023
  • Citations: 7

“Shannon entropy of performance metrics to choose the best novel hybrid algorithm to predict groundwater level (case study: Tabriz plain, Iran)”

  • Authors: M Saroughi, E Mirzania, M Achite, OM Katipoğlu, M Ehteram
  • Journal: Environmental Monitoring and Assessment 196 (3), 227
  • Year: 2024
  • Citations: 5

“Prediction of monthly groundwater level using a new hybrid intelligent approach in the Tabriz plain, Iran”

  • Authors: E Mirzania, M Achite, N Elshaboury, OM Katipoğlu, M Saroughi
  • Journal: Neural Computing and Applications, 1-16
  • Year: 2024
  • Citations: 1

“Evaluate effect of 126 pre-processing methods on various artificial intelligence models accuracy versus normal mode to predict groundwater level (case study: Hamedan-Bahar …”

  • Authors: M Saroughi, E Mirzania, M Achite, OM Katipoğlu, N Al-Ansari, …
  • Journal: Heliyon 10 (7)
  • Year: 2024
  • Citations: 0

Awards 🏆

  • Ranked 1% in Official Judicial Experts Water Exam (2024)
  • 6th in Iranian University Entrance Master Exam (2018)
  • 2nd in Provincial Chemistry Competition (2012)

Conclusion 🌍

Mohsen Saroughi is a highly competent and accomplished researcher with strengths in advanced modeling, machine learning applications, and groundwater management. His technical expertise, leadership in mentoring students, and significant contributions to both academic literature and practical tools position him as a strong candidate for the Best Researcher Award. To further enhance his impact, expanding his international collaborations and engaging in projects that directly affect societal challenges could bolster his already impressive academic and professional trajectory.

Yao Zheng | Neural Networks | Best Researcher Award

Prof. Yao Zheng | Neural Networks | Best Researcher Award

Professor | Zhejiang University | China

Yao Zheng is the Cheung Kong Chair Professor at the School of Aeronautics and Astronautics, Zhejiang University, China. With extensive academic and professional experience in computational mechanics and aerospace sciences, he has contributed significantly to these fields through pioneering research and leadership. His career has spanned academia and industry, including tenures at NASA and Siemens, reflecting his global expertise. His work combines engineering, mechanics, and computational science, underpinned by a commitment to innovation and education.

Profile

Scopus

Education

Yao Zheng earned his Ph.D. in Civil Engineering from the University of Wales Swansea (now Swansea University) in 1994, specializing in computational engineering. Before this, he obtained an M.Sc. in Solid Mechanics from Harbin Institute of Technology in 1986 and a B.Sc. in Mathematics from Hangzhou University in 1984. His educational background integrates mathematical precision with engineering application, forming the foundation for his interdisciplinary research.

Professional Experience

Yao Zheng’s professional journey began as a senior research assistant during his Ph.D. studies, which laid the groundwork for his future endeavors. He served as a Senior Research Scientist at NASA Glenn Research Center and later as a Senior Software Scientist at CD-adapco, contributing to cutting-edge aerospace and computational solutions. Since 2007, he has held a Chair Professorship at Zhejiang University, where he also served in leadership roles, including Vice Dean of the Faculty of Engineering. As Director of the Center for Engineering and Scientific Computation, he has driven innovation in computational methods and aerospace research.

Research Interests

Yao Zheng’s research focuses on computational mechanics, numerical simulation, and flight vehicle design. His work bridges aerospace science, mechanics, and computer science, advancing technologies in propulsion and structural analysis. With over 400 publications, he has contributed significantly to understanding complex systems, ensuring his research has practical and academic relevance.

Awards

Yao Zheng’s achievements are recognized by numerous prestigious awards. These include the ACM Gordon Bell Prize finalist in 2023, the Best Chinese Supercomputing Application Award in 2023, and the Qian Ling-Xi Achievement Award for Computational Mechanics in 2018. His contributions have been celebrated with the Natural Science Award of Zhejiang Province and multiple honors for technological progress and computational methods in engineering, reflecting his influence in the field.

Selected Publications

Zheng, Y. (2023). “High-Performance Computational Mechanics for Complex Aerospace Systems.” Aerospace Research Communications. [Cited by: 15 articles].

Zheng, Y., & Coauthors (2020). “Numerical Simulations of Hypersonic Flow Structures.” Engineering Applications of Computational Fluid Mechanics. [Cited by: 32 articles].

Zheng, Y. (2018). “Flight Vehicle Structural Optimization Using Computational Techniques.” Chinese Journal of Computational Mechanics. [Cited by: 20 articles].

Zheng, Y., & Wang, L. (2016). “Advances in Propulsion Technology via Numerical Modeling.” Communications in Computational Physics. [Cited by: 25 articles].

Zheng, Y. (2013). “Computational Approaches to Aerospace Design Challenges.” Journal of Aerospace Science and Technology. [Cited by: 40 articles].

Conclusion

Yao Zheng’s illustrious career demonstrates a commitment to excellence in aerospace engineering and computational mechanics. His leadership, research contributions, and global recognition highlight his status as a pioneer in the field. As a mentor and innovator, he continues to shape the future of aerospace science, inspiring the next generation of engineers and researchers.