Hemad Zareiforoush | Machine Learning | Best Academic Researcher Award

Dr. Hemad Zareiforoush | Machine Learning | Best Academic Researcher Award

Associate Professor at University of Guilan, Rasht, Iran

Dr. Hemad Zareiforoush is an Assistant Professor at the Department of Biosystems Engineering, University of Guilan, Rasht, Iran, where he has been contributing to both academic and practical advancements in biosystems engineering since 2015. With a focus on agricultural machinery, automation, and quality inspection systems, his work bridges engineering and food science, particularly in areas like computer vision, image processing, and renewable energy applications. His research is highly interdisciplinary, combining mechanical engineering principles with computational intelligence for improving the agricultural industry’s efficiency.

Profile

Google Scholar

Education

Dr. Zareiforoush’s educational background is robust, with a PhD in Mechanical and Biosystems Engineering from Tarbiat Modares University in Tehran, Iran, completed in 2014. His academic excellence is evident in his GPA of 17.84 out of 20. He earned his MSc in Mechanical Engineering of Agricultural Machinery at Urmia University in 2010, where he graduated with a remarkable GPA of 19.29 out of 20. Earlier, Dr. Zareiforoush obtained his BSc in the same field from Urmia University in 2007, graduating with a GPA of 15.75 out of 20. He also attended a specialized governmental high school for excellent pupils, where he focused on mathematics and physics, graduating with a GPA of 18.71 out of 20.

Experience

Since joining the University of Guilan in 2015, Dr. Zareiforoush has been teaching various courses, including Engineering Properties of Food and Agricultural Products, Renewable Energy, and Measurement and Instrumentation Principles. His practical experience spans various engineering disciplines, with a particular emphasis on instrumentation, automation in agriculture, and food quality monitoring. Notably, his research has led to the development of innovative systems for rice quality inspection using computer vision and fuzzy logic. Additionally, he has been involved in numerous projects related to agricultural machinery, renewable energy, and automation for optimizing food production processes.

Research Interests

Dr. Zareiforoush’s research interests lie at the intersection of biosystems engineering, computational intelligence, and food science. He is particularly interested in computer vision applications for food quality inspection, using advanced image processing techniques to enhance product quality and safety. His work also explores hyperspectral imaging and spectroscopy for monitoring the quality of food materials. Another key area of his research is the application of machine learning algorithms for modeling and classifying food products based on their quality attributes. Additionally, he is involved in renewable energy applications in agriculture, focusing on solar-assisted drying systems and energy-efficient food processing methods.

Awards

Dr. Zareiforoush has received several prestigious awards throughout his academic career. He was honored with the Iran Ministry of Science, Research, and Technology Scholarship in 2012 and the National Elite Scholarship by the Iran National Foundation for Elites (INFE) in 2011. His exceptional academic performance earned him the title of “Best Student” at Urmia University in 2009. Additionally, he has been recognized as a “Talented Student” at Tarbiat Modares University and ranked 1st among MSc students in his department.

Publications

Dr. Zareiforoush has published several influential papers in high-impact journals. Some of his notable publications include:

Bakhshipour, A., Zareiforoush, H., Bagheri, I. (2020). Application of decision trees and fuzzy inference system for quality classification and modeling of black and green tea based on visual features. Journal of Food Measurement and Characterization, 14: 1402–1416, Cited by: 43.

Bakhshipour, A., Zareiforoush, H., Bagheri, I. (2020). Development of a fuzzy model for differentiating peanut plant from broadleaf weeds using image features. Plant Methods, 16:153, Cited by: 25.

Bakhshipour, A., Zareiforoush, H., Bagheri, I. (2021). Mathematical and intelligent modeling of stevia (Stevia Rebaudiana) leaves drying in an infrared-assisted continuous hybrid solar dryer. Food Science & Nutrition (JCR), 9(1), 532-543, Cited by: 12.

Zareiforoush, H., Minaei, S., Alizadeh, M.R., Banakar, A. (2016). Design, Development, and Performance Evaluation of an Automatic Control System for Rice Whitening Machine Based on Computer Vision and Fuzzy Logic. Computers and Electronics in Agriculture, 124: 14-22, Cited by: 67.

Soodmand-Moghaddam, S., Sharifi, M., Zareiforoush, H. (2020). Mathematical modeling of lemon verbena leaves drying in a continuous flow dryer equipped with a solar pre-heating system. Quality Assurance and Safety of Crops & Foods, 12(1): 57-66, Cited by: 30.

Zareiforoush, H., Minaei, S., Alizadeh, M.R., Banakar, A. (2015). Qualitative Classification of Milled Rice Grains Using Computer Vision and Metaheuristic Techniques. Journal of Food Science and Technology (Springer), 53(1): 118-131, Cited by: 45.

Zareiforoush, H., Komarizadeh, M.H., Alizadeh, M.R. (2010). Effects of crop-screw parameters on rough rice grain damage in handling with a horizontal screw auger. Journal of Food, Agriculture and Environment, 8(3): 132-138, Cited by: 19.

Conclusion

Dr. Hemad Zareiforoush’s academic and professional contributions significantly impact the fields of biosystems engineering, food science, and agricultural machinery. His work in developing intelligent systems for quality inspection and automation has improved agricultural productivity and food safety. His expertise in computational techniques, including fuzzy logic and machine learning, continues to shape the future of smart farming and food processing. With numerous awards, highly cited publications, and a track record of excellence, Dr. Zareiforoush is a leading figure in his field.

Mohitkumar Bhadla | Computer Science & Engineering | Best Researcher Award

Assoc. Prof. Dr. Mohitkumar Bhadla | Computer Science & Engineering | Best Researcher Award

Associate Professor & HOD at Gandhinagar University, Gujarat, India

Dr. Mohit Bhadla is a dedicated academician and researcher with over 16 years of experience in the field of Computer Engineering and Information Technology. He currently serves as the Head of the Department and Professor at Gandhinagar University, Gandhinagar. Throughout his career, Dr. Bhadla has contributed significantly to research and education, focusing on emerging technologies, software development, and network security. His expertise extends to mentoring students, developing innovative research methodologies, and enhancing academic curricula. Passionate about advancing technological education, he actively participates in conferences, workshops, and international collaborations to further his knowledge and contribute to the global research community.

Profile

Orcid

Education

Dr. Mohit Bhadla earned his Ph.D. in Computer Engineering from Rai University, Ahmedabad, in 2019. Prior to that, he completed his Master of Engineering (M.E.) in Computer Engineering from Noble Group of Institutions, Junagadh, affiliated with Gujarat Technological University in 2013. He holds a Bachelor of Engineering (B.E.) degree in Computer Science and Engineering from Anuradha Engineering College, Chikhali, Maharashtra, which he obtained in 2009. His strong academic foundation has equipped him with the necessary skills to excel in both research and teaching domains.

Professional Experience

Dr. Bhadla has held several prestigious academic positions throughout his career. Since July 2024, he has been serving as the Head of the Department and Professor at Gandhinagar University, where he oversees research initiatives and academic programs. Prior to this, he was the Associate Professor and Dean of Research Cell at Swarnim Startup & Innovation University from August 2023 to July 2024, where he played a crucial role in research-led teaching and curriculum development. From September 2019 to August 2023, he worked as an Associate Professor and Head of the IT Department at Ahmedabad Institute of Technology. His earlier academic roles include serving as an Assistant Professor at Gandhinagar Institute of Technology and Noble Group of Institutions. In addition to his academic career, he has industry experience as a Support Engineer at Mindarray Systems Ltd from 2016 to 2017 and as a Programme Assistant at RTO Junagadh from 2009 to 2012.

Research Interests

Dr. Bhadla’s research focuses on artificial intelligence, machine learning, Internet of Things (IoT), network security, and biomedical applications. His work involves developing efficient algorithms for intrusion detection, biomedical imaging, data security, and optimizing power consumption in wireless sensor networks. He has also explored applications of deep learning in healthcare and social network analysis. His contributions to research have been recognized through various publications in reputed journals and conference proceedings. He is an active member of professional organizations such as IEEE, ACM, and IFERP, contributing to research discussions and technological advancements.

Awards and Achievements

Dr. Mohit Bhadla has received numerous accolades for his outstanding contributions to research and academia. In 2022, he was honored with the Best Researcher Award by INSO Bangalore. He was also recognized with the Best Young Researcher Award in the International Research Awards on New Science Invention in Fiber Optics & Communication in 2022. His innovative work in IoT and networking has led to multiple patents, including a patent for “An IoT-Based Sensor Network for Smart City Implementations” granted by the Government of Australia. Additionally, he has received invitations as a featured speaker at international conferences, including the Peers Alley Conference in London. His contributions to software malware detection and wireless sensor networks have been widely acknowledged in the research community.

Selected Publications

An Intelligent IoT Intrusion Detection System using HeInit-WGAN and SSO-BNM CNN-Based Multivariate Feature Analysis (2023) – Published in Elsevier: Engineering Application of Artificial Intelligence.

Enhanced Ubiquitous System Architecture for Securing Healthcare IoT using Efficient Authentication and Encryption (2023) – Published in International Journal of Data Science and Analytics.

Multi-Stage Biomedical Feature Selection Extraction Algorithm for Cancer Detection (2023) – Published in Springer Nature: Applied Science.

Semantic Analysis for Image Distribution of Various Edge Detection Techniques (2022) – Published in IJRAR (UGC Approved).

Deep Learning-Based Dynamic User Alignment in Social Networks (2023) – Published in ACM JDIQ (Scopus Indexed).

Execution of Hard C-Means Clustering Algorithm for Medical Image Separation (2022) – Published in IJRAR (UGC Approved).

A Survey of Intrusion and Detection Models on Network and Communication Topologies (2023) – Published in UGC Approved Journal.

Conclusion

Dr. Mohit Bhadla is a distinguished academician, researcher, and mentor in the field of Computer Engineering. His extensive contributions to research, innovative curriculum development, and passion for teaching have significantly impacted students and fellow researchers. With multiple patents, high-impact publications, and international recognition, he continues to drive advancements in artificial intelligence, IoT, and network security. His commitment to excellence and knowledge dissemination makes him a valuable asset to the academic and research community, inspiring future generations of scholars and professionals.

Ali Mehrizi | Machine Learning | Best Paper Award

Dr. Ali Mehrizi | Machine Learning | Best Paper Award

Lecturer at Ferdowsi University of Mashhad, Iran.

Ali Mehrizi is a distinguished researcher and lecturer in Artificial Intelligence (AI) and Machine Learning at Ferdowsi University of Mashhad (FUM), Iran. With a wealth of experience exceeding a decade, his expertise spans adaptive probabilistic models, distributed learning, multi-target tracking, time series forecasting, and Gaussian Mixture Probability Hypothesis Density (GMPHD) methods. Dr. Mehrizi has published multiple impactful articles in renowned journals such as Expert Systems with Applications and Fuzzy Sets and Systems. He is deeply committed to advancing the understanding and application of AI techniques and has successfully mentored numerous students in areas ranging from Data Mining to Advanced Operating Systems.

Profile

Google Scholar

Education

Dr. Mehrizi educational background is rooted in Artificial Intelligence. He is currently pursuing a Ph.D. in AI at Ferdowsi University of Mashhad (2017–2024), under the supervision of Professor H. Sadoghi Yazdi. His dissertation focuses on financial time series forecasting using experience-based adaptive learning, a project that has already produced several publications in top-tier journals. Previously, he earned an M.Sc. in AI from Azad University of Mashhad (2011–2013), where he worked on adaptive semi-supervised learning, optimizing self-organizing map models. His early academic journey began with a B.Sc. in Computer Engineering from the University of Birjand, later transferring to Azad University of Mashhad.

Experience

Dr. Mehrizi professional career spans various roles, beginning in 2001 when he became the IT & Network Manager at the Faculty of Engineering. In this capacity, he significantly improved the system performance and network management. Since 2011, he has been involved in research in AI and Machine Learning, contributing to the development of machine learning models and publishing his findings in high-impact journals. He has also served as a lecturer since 2013, teaching a variety of undergraduate and graduate courses, including Data Mining, Operating Systems, and Advanced Operating Systems. As a researcher, he has mentored students in their theses, particularly in machine learning and pattern recognition, fostering the next generation of AI experts.

Research Interests

Dr. Mehrizi  research interests are broad, focusing on several key areas within the domain of AI. His work on distributed adaptive learning, particularly through Diffusion LMS and Diffusion RLS, aims to optimize decentralized data processing for dynamic systems. In addition, he has contributed to probabilistic and hypothesis-based learning, exploring the use of Gaussian Mixture Probability Hypothesis Density (GMPHD) models for uncertainty-based learning and tracking. His research also delves into time series analysis and forecasting, with a particular focus on financial markets. Dr. Mehrizi’s interest in multi-target tracking extends to real-time tracking algorithms, emphasizing performance in noisy and incomplete data environments. He is also committed to semi-supervised learning, exploring hybrid methods that bridge supervised and unsupervised learning approaches in scenarios with limited labeled data.

Awards

Dr. Mehrizi contributions to the fields of AI and machine learning have earned him recognition in various academic and professional circles. He has been nominated for multiple awards for his research, particularly in adaptive learning and time series forecasting. His work is highly regarded in the academic community, and he continues to push the boundaries of AI research, especially in the areas of distributed learning and multi-target tracking.

Publications

Dr. Mehrizi has authored several articles in well-respected journals in AI and machine learning. His key publications include:

Mehrizi, A., & Yazdi, H. S. (2019). “Adaptive probabilistic methods for long-term financial time series forecasting.” Expert Systems with Applications.

Mehrizi, A., & Yazdi, H. S. (2020). “Semi-supervised learning using GSOM for adaptive classification.” Fuzzy Sets and Systems.

Mehrizi, A. (2022). “Distributed adaptive learning for dynamic systems using Diffusion LMS and RLS.” Emerging Markets Finance and Trade.

Mehrizi, A., & Yazdi, H. S. (2021). “Gaussian Mixture Probability Hypothesis Density for multi-target tracking.” Journal of Machine Learning Research.

These publications have been cited extensively by various researchers in the fields of machine learning, AI, and financial forecasting, underscoring Dr. Mehrizi’s significant impact on the academic community.

Conclusion

Dr. Ali Mehrizi is a leading researcher and educator in the field of Artificial Intelligence and Machine Learning, with a deep commitment to advancing these fields through his innovative research. His extensive academic background and his practical experience in both teaching and real-world applications have made him an invaluable asset to Ferdowsi University of Mashhad. With a strong focus on adaptive learning, probabilistic models, and time series forecasting, Dr. Mehrizi continues to contribute to the evolution of AI. His work not only shapes academic research but also provides vital insights into practical AI solutions for industries like finance and engineering. As a mentor and educator, he remains dedicated to shaping the future of AI professionals and researchers.

Fatih Kalemkuş | Artificial Intelligence | Best Researcher Award

Assist. Prof. Dr. Fatih Kalemkuş | Artificial Intelligence | Best Researcher Award

Assistant Professor at Kafkas University, Turkey

Dr. Fatih Kalemkuş is an Assistant Professor at Kafkas University, where he specializes in Electronic Commerce and Technology Management. With a rich academic and professional background, Dr. Kalemkuş embarked on his career in education after completing his undergraduate degree in Computer Education & Instructional Technologies at Atatürk University. He has taught various subjects related to information technology, first as an Informatics Technologies Teacher at the Turkish Ministry of National Education and later as a lecturer at Kafkas University’s Distance Education Application and Research Center. His journey culminated in earning a doctoral degree from Fırat University in Computer Education & Instructional Technologies, where he was honored with the “Most Successful Doctoral Thesis” award in 2024.

Profile

Orcid

Education

Dr. Kalemkuş’s educational journey began at Erzincan Fatih Industrial Vocational High School, where he pursued studies in the Computer Department. He continued to develop his academic career by earning his bachelor’s degree in 2006 from Atatürk University in the field of Computer Education & Instructional Technologies. He then completed a Master’s degree in Internet and Informatics Technologies Management from Afyon Kocatepe University between 2014 and 2016. His dedication to advancing his knowledge in the field led him to pursue a Ph.D. at Fırat University, graduating in 2023 with a focus on Computer Education & Instructional Technologies. His research has been instrumental in advancing educational practices in the digital age, with a specific focus on artificial intelligence and emerging technologies.

Experience

Dr. Kalemkuş has had diverse professional experiences. From 2007 to 2021, he served as an Informatics Technologies Teacher under the Turkish Ministry of National Education, shaping the next generation’s skills in information technology. In 2021, he joined Kafkas University as a lecturer at the Distance Education Application and Research Center, where he taught courses related to digital learning tools. His commitment to academic excellence and innovation in education led to his promotion to Assistant Professor in 2024 at Kafkas University’s Electronic Commerce and Technology Management Department, where he continues to make impactful contributions to research and education.

Research Interests

Dr. Kalemkuş’s research focuses on key areas of educational technology and digital transformation. He is particularly interested in 21st-century skills, metacognitive awareness, online project-based learning, digital technologies, artificial intelligence (AI), augmented reality, and cloud computing. He also explores the intersection of education and emerging technologies, such as natural language processing (NLP) and the integration of AI in educational contexts. His work aims to improve learning outcomes and foster innovation in teaching methodologies. His ongoing research projects delve into the development of AI-driven educational materials and interactive learning environments that enhance students’ academic engagement.

Awards

Dr. Kalemkuş has received recognition for his outstanding academic contributions. In 2024, he was honored with the prestigious “Most Successful Doctoral Thesis” award from Fırat University for his exceptional research and academic achievements. This award highlights his dedication to advancing the field of educational technologies and his commitment to excellence in research. His work, particularly on the use of AI in education, has positioned him as a leading researcher in his field.

Publications

Dr. Kalemkuş has authored several influential publications in well-regarded journals and books. His research has been featured in leading SSCI and ESCI journals, including the European Journal of Education, Interactive Learning Environments, Science & Education, and Journal of Research in Special Educational Needs. His recent publications include:

Kalemkuş, F., & Kalemkuş, J. (2025). “Primary School Students’ Perceptions of Artificial Intelligence: Metaphor and Drawing Analysis”, European Journal of Education, 60(1), 1-23.

Kalemkuş, F., & Bulut-Özek, M. (2024). “The Effect of Online Project-based Learning on Metacognitive Awareness of Middle School Students”, Interactive Learning Environments, 32(4), 1533-1551.

Kalemkuş, F., & Kalemkuş, J. (2024). “The Effect of Designing Scientific Experiments with Visual Programming on Learning Outcomes”, Science & Education, 1-23.

Kalemkuş, F., & Bulut-Özek, M. (2023). “Effect of the Use of Augmented Reality Applications on Academic Achievement in Science Education: Meta Analysis”, Interactive Learning Environments, 31(9), 6017-6034.

Kalemkuş, F. (2024). “Trends in Instructional Technologies Used in Education for People with Special Needs Due to Intellectual Disabilities and Autism”, Journal of Research in Special Educational Needs, 1-25.

Kalemkuş, F., & Çelik, L. (2023). “Investigation of Secondary Education Students’ Views and Purposes of Use of EBA”, Malaysian Online Journal of Educational Technology, 11(3), 184-198.

Kalemkuş, F., & Bulut-Özek, M. (2021). “Research Trends in 21st Century Skills: 2000-2020”, MANAS Sosyal Araştırmalar Dergisi, 10(2), 878-900.

Conclusion

Dr. Fatih Kalemkuş’s career has been marked by a profound commitment to advancing educational technology and promoting the use of emerging technologies in learning environments. With numerous publications in prestigious journals and books, he has made a significant impact on the fields of AI, digital learning, and 21st-century skills development. His work continues to shape the educational landscape, particularly in the integration of innovative digital tools to enhance teaching and learning outcomes. Dr. Kalemkuş’s recognition with awards, such as the “Most Successful Doctoral Thesis” award, reflects his outstanding contributions to both research and education. His interdisciplinary approach ensures that his work will remain at the forefront of educational innovations for years to come.

Syed Saad Azhar Ali | Artificial Intelligence | Excellence in Scientific Innovation Award

Assoc. Prof. Dr. Syed Saad Azhar Ali | Artificial Intelligence | Excellence in Scientific Innovation Award

Assoc. Prof. Dr. Syed Saad Azhar Ali, Associate Professor, Saudi Arabia.

Dr. Syed Saad Azhar Ali seems highly suitable for the Research for Excellence in Scientific Innovation Award based on his extensive contributions to both academia and industry. Here are several key reasons why he qualifies:

Profile

Orcid

🎓 Education

PhD in Electrical Engineering (2007) – King Fahd University of Petroleum & Minerals (Specialization in Multivariable Nonlinear Adaptive Control)

MS in Electrical Engineering (2001) – King Fahd University of Petroleum & Minerals (Specialization in Controls and System Identification)

BE in Electrical Engineering (1999) – NED University of Engineering, Pakistan

👨‍🏫 Academic and Research Leadership

Currently a Co-Chair for SMILE’s Sustainable Cognitive Cities initiative and Team Advisor for the KFUPM SUAS 2024 team

Former Vice Chair and Treasurer for IEEE Robotics & Automation Society, Malaysia Chapter

Coordinator for the MX Program in Unmanned Aircraft Systems at KFUPM

Extensive work in areas of machine/computer vision, real-time systems, and smart health technologies

🏆 Awards and Recognition

Team Advisor for the SUAS 2024 championship-winning team, KFUPM

Multiple medals from ITEX, MTE, and SEDEX

Recognized by IEEE RAS, Malaysia, with Service and Excellence Awards

💼 Professional Affiliations

Senior Member of IEEE

Member of various IEEE societies, including Robotics & Automation and Oceanic Engineering

Affiliated with the Pakistan Engineering Council and Board of Engineers Malaysia

🌍 International Collaborations

Established MoUs with institutions such as King Abdulaziz University, Iqra University, and Universitat de Girona, Spain

📚 Publications 

Machine Learning Aided Channel Equalization in Filter Bank Multi‐Carrier Communications for 5G
Authors: UM Al-Saggaf, M Moinuddin, SSA Ali, SSH Rizvi, M Faisal
Published in: Wearable and Neuronic Antennas for Medical and Wireless Applications, Pages 1-9

A Comparative Study on Particle Swarm Optimization and Genetic Algorithms for Fixed Order Controller Design
Published in: Communications in Computer and Information Science, Volume 128, Springer

Block-Oriented Identification of Nonlinear Systems: Neural Network Approach towards Identification of Hammerstein and Wiener Models
Author: Syed Saad Azhar Ali
Published by: LAP Lambert Academic Publishing, ISBN: 978-3838335575, February 2010

U-model Based Control: Adaptive Control Approach for Multivariable Nonlinear Systems
Author: Syed Saad Azhar Ali
Published by: LAP Lambert Academic Publishing, ISBN: 978-3838323299, November 2009

Intelligent Iris Recognition Using Neural Networks
Authors: Muhammad Sarfraz, Mohamed Deriche, Muhammad Moinuddin, Syed Saad Azhar Ali
Published in: Computer-Aided Intelligent Recognition Techniques and Applications, John-Wiley, May 2005 (Editor: Muhammad Sarfraz)