Zhouchen Lin | Deep Learning | Global Impact in Research Award

Prof. Dr. Zhouchen Lin | Deep Learning | Global Impact in Research Award

Associate Dean at Peking University, China

Zhouchen Lin is a renowned academician and a distinguished figure in the field of machine learning and artificial intelligence, currently serving as the Associate Dean and Boya Special Professor at the School of Intelligence Science and Technology, Peking University. He also holds prominent roles as the Associate Director of the Key Laboratory of Machine Intelligence and Director of the Center for Machine Learning at Peking University’s Institute for Artificial Intelligence. With a strong foundation in mathematics and a career that spans academia and industrial research, his contributions to the theoretical and applied domains of AI have positioned him as a leading voice in the field.

Profile

Google Scholar

Education

Zhouchen Lin’s educational journey is deeply rooted in mathematics. He earned his Ph.D. from the School of Mathematics, Peking University in July 2000. Prior to this, he completed his M.Phil. at the Hong Kong Polytechnic University in July 1997, his M.S. in Mathematics at Peking University in July 1995, and his B.S. in Mathematics from Nankai University in July 1993. His robust academic background in mathematical theory has been instrumental in shaping his pioneering work in artificial intelligence and optimization algorithms.

Experience

Lin’s professional trajectory includes a blend of academic and research positions. Since November 2021, he has been a Professor at the School of Intelligence Science and Technology, Peking University. He was previously a professor in the Department of Machine Intelligence at Peking University’s School of EECS from 2012 to 2021. His industry research career was primarily at Microsoft Research Asia, where he worked in multiple roles from 2000 to 2012, including as a Lead Researcher in the Visual Computing Group. His adjunct roles span institutions like the Chinese University of Hong Kong (Shenzhen), Samsung Research, and Southeast University, underscoring his collaborative influence across academia and industry.

Research Interest

Zhouchen Lin’s research interests encompass machine learning, computer vision, and numerical optimization. Within machine learning, he specializes in sparse and low-rank representation, deep learning, and spiking neural networks. His computer vision work includes object detection, segmentation, and recognition. He also delves into optimization techniques, focusing on both convex and nonconvex optimization as well as stochastic and asynchronous optimization, contributing extensively to the development of scalable algorithms in AI.

Award

Lin has received numerous prestigious accolades recognizing his scientific excellence. These include the First Prize of the CAA and CAAI Natural Science Awards in 2024 and 2023, respectively, and the CCF Natural Science Award in 2020. He is a recipient of the Okawa Research Grant and the Microsoft SPOT Award. Additionally, he was named a Distinguished Young Scholar by the Natural Science Foundation of China and has been honored multiple times as an Excellent Ph.D. Supervisor. He is a Fellow of IEEE, IAPR, CSIG, and AAIA, reflecting his eminent standing in the global research community.

Publication

Among Lin’s prolific research outputs, several key papers stand out. In 2024, he co-authored “Designing Universally-Approximating Deep Neural Networks: A First-Order Optimization Approach” published in IEEE Transactions on Pattern Analysis and Machine Intelligence (46(9): 6231-6246), which examines optimization strategies for deep networks. Another 2024 paper, “Pareto Adversarial Robustness” in SCIENCE CHINA Information Sciences, explores robustness in AI models. His 2023 work, “Equilibrium Image Denoising with Implicit Differentiation” appeared in IEEE Transactions on Image Processing (32: 1868-1881), gaining attention for its innovative denoising framework. “SPIDE: A Purely Spike-based Method for Training Feedback Spiking Neural Networks” (Neural Networks, 161, 2023) is influential in neuromorphic computing. Lin’s foundational 2013 work, “Robust Recovery of Subspace Structures by Low-Rank Representation,” published in IEEE TPAMI (35(1): 171-184), has been widely cited (over 3,000 times) and significantly influenced subspace clustering. Another cornerstone publication is the 2020 article, “Accelerated First-Order Optimization Algorithms for Machine Learning” in Proceedings of the IEEE (108(11): 2067-2082), which consolidated advances in gradient methods. Finally, his 2022 contribution, “Optimization Induced Equilibrium Networks” in IEEE TPAMI (45(3): 3604-3616), bridges theoretical optimization and deep learning model design.

Conclusion

Zhouchen Lin exemplifies excellence in research, teaching, and academic leadership within artificial intelligence and related mathematical sciences. His influential research, global recognition, and deep commitment to mentorship have collectively enriched the AI research landscape. As both a thought leader and innovator, he continues to push the boundaries of AI, enabling robust, interpretable, and efficient machine learning solutions for real-world challenges.

Irina-Oana Lixandru-Petre | Machine Learning | Best Researcher Award

Ms. Irina-Oana Lixandru-Petre | Machine Learning | Best Researcher Award

National University of Science and Technology POLITEHNICA Bucharest, Romania

Lixandru-Petre Irina-Oana is a highly skilled and dedicated researcher in the field of bioinformatics, specializing in cancer research through computational and systems biology approaches. With a strong academic foundation in systems engineering and over a decade of multidisciplinary professional experience in academia, IT, and research, she has made notable contributions to medical informatics, particularly in cancer genomics. Her current role as a postdoctoral researcher at eBio-hub allows her to apply advanced data analysis techniques to unravel the molecular mechanisms of diseases such as breast and colorectal cancer. Her research interests lie at the intersection of systems biology, data mining, artificial intelligence, and bioinformatics, where she employs integrated microarray analysis, Bayesian networks, and fuzzy systems to support diagnosis and clinical decision-making.

Profile

Scopus

Education

Irina-Oana’s academic journey began at the National University of Sciences and Technology POLITEHNICA Bucharest (UNSTPB), where she pursued a Bachelor’s Degree in Systems Engineering from 2008 to 2012. Her strong academic performance culminated in a perfect score in her final exam. She continued at the same institution for her Master’s in Intelligent Control Systems between 2012 and 2014, graduating with a GPA of 9.81 and a top dissertation grade. Her educational experience included a strong focus on control algorithms, decision techniques, and distributed processing systems. From 2014 to 2022, she pursued her PhD in Systems Engineering at UNSTPB. Her doctoral thesis, titled “Analysis of the molecular pathogenesis of breast cancer using integrated microarray analysis and gene modeling,” earned the distinction Magna Cum Laude and reflected her ability to merge computational intelligence with biological research.

Experience

Irina-Oana has held several significant roles throughout her career. Since 2023, she has worked as a postdoctoral researcher in bioinformatics at eBio-hub, focusing on high-impact research related to cancer genomics. Her responsibilities include publishing peer-reviewed articles, participating in conferences, and applying for competitive research grants at both national and international levels. Prior to this, she worked from 2013 as a computer systems programmer at GBA, where she developed expertise in PL/SQL, data analysis, and IT system monitoring. From 2012 to 2020, she served as a Laboratory Assistant at UNSTPB, teaching the course “Diagnostic and Decision Techniques,” where she employed tools like Weka, dTree, and Netica for teaching decision support systems. Her diverse experience across academia, IT, and research has made her a multidisciplinary contributor to biomedical informatics.

Research Interest

Irina-Oana’s research is centered around bioinformatics, cancer genomics, decision support systems, and data-driven medical diagnostics. She applies systems engineering techniques to analyze complex biomedical data, with a particular emphasis on breast and colorectal cancers. Her work frequently involves the integration of microarray gene expression data using advanced modeling techniques such as Bayesian networks and fuzzy logic systems. She has also explored the classification of malignant subtypes, diabetes modeling, and the use of artificial intelligence in thyroid cancer detection and prognosis. Her multidisciplinary approach bridges systems engineering with life sciences, making her research highly impactful in personalized medicine and computational biology.

Award

Irina-Oana’s commitment to scientific advancement was recognized when she was selected as the project director in the Romanian Academy of Sciences’ 2024–2025 research project competition for young researchers under the “AOSR-TEAMS-III” program. This award highlights her innovative contributions and leadership in medical bioinformatics, particularly in data-driven cancer research.

Publication

Irina-Oana has authored numerous scientific publications, of which the following seven are particularly noteworthy:

“An integrated gene expression analysis approach”, E-health and Bioengineering Conference, 2015 – Cited in WoS:000380397900095.

“Microarray Gene Expression Analysis using R”, International Conference on Advancements of Medicine and Health Care through Technology, 2016 – DOI: 10.1007/978-3-319-52875-5_74.

“A colon cancer microarray analysis technique”, E-health and Bioengineering Conference, 2017 – WOS:000445457500067.

“Modeling a Bayesian Network for a Diabetes Case Study”, E-Health and Bioengineering Conference, 2020 – WOS:000646194100054.

“An integrated breast cancer microarray analysis approach”, U.P.B. Scientific Bulletin, Series C, 2022 – WOS:000805648400007.

“Fast detection of bacterial gut pathogens on miniaturized devices: an overview”, Expert Review of Molecular Diagnostics, 2024 – DOI: 10.1080/14737159.2024.2316756.

“Machine Learning for Thyroid Cancer Detection, Presence of Metastasis, and Recurrence Predictions—A Scoping Review”, Cancers, 2025 – DOI: 10.3390/cancers17081308.

Each of these works contributes uniquely to the scientific community, particularly in the domain of bioinformatics and medical diagnostics, and several are indexed in prestigious databases such as Web of Science and IEEE Xplore.

Conclusion

Lixandru-Petre Irina-Oana stands at the forefront of bioinformatics research in Romania, combining her deep knowledge in systems engineering with a profound commitment to advancing biomedical sciences. Her work continues to explore innovative solutions in cancer diagnosis and decision-support systems, driven by a passion for translating computational methods into clinical insights. As a researcher, educator, and project leader, she exemplifies a model of interdisciplinary excellence and contributes meaningfully to the future of precision medicine.

Yonghong Song | Deep Learning | Best Researcher Award

Prof. Yonghong Song | Deep Learning | Best Researcher Award

Professor at Xi’an Jiaotong University, China

Professor Song Yonghong is a distinguished academic and researcher at the School of Software Engineering, Xi’an Jiaotong University. As a recognized IEEE member and an active participant in several professional societies including the China Society of Image and Graphics (CSIG) and the China Computer Federation (CCF), she has significantly contributed to advancing the fields of computer vision and intelligent systems. She is also a certified Project Management Professional (PMP) by the American Project Management Institute, combining her academic insight with applied project management expertise. Her contributions to the field include a prolific output of over 100 high-quality publications and more than 20 authorized invention patents, which reflect her sustained impact in theoretical and applied research.

Profile

Scopus

Education

Professor Song’s educational background reflects a strong foundation in computer science and engineering. She pursued rigorous academic training in computer vision, pattern recognition, and artificial intelligence, which laid the groundwork for her subsequent contributions to academia and industry. Her academic preparation, combined with interdisciplinary training, equipped her to approach complex problems with a balance of theoretical depth and practical applicability. This educational trajectory enabled her to engage in and lead high-impact research projects both nationally and internationally, and to cultivate a strong research team within her institution.

Experience

Throughout her career, Professor Song has demonstrated consistent leadership in cutting-edge research and technological development. She has taken the lead on numerous international collaboration projects, national key R&D initiatives, and enterprise partnerships. Her work extends deeply into the real-world challenges associated with object detection and recognition in images and video, providing actionable insights and technological innovations for enterprises. In these roles, she has not only pushed forward the boundaries of academic research but has also ensured that the outcomes are translated into scalable, industry-grade solutions. Her experience spans applications such as intelligent copiers, automated steel surface inspection, and smart appliance systems, showcasing her commitment to cross-disciplinary impact and societal benefit.

Research Interests

Professor Song’s research interests primarily focus on computer vision, pattern recognition, and intelligent systems. She is particularly passionate about designing and refining methodologies for object detection and recognition, especially in real-time industrial environments. Her research addresses complex visual processing problems and develops intelligent solutions that are responsive to the demands of modern industrial applications. She has worked extensively on integrating deep learning algorithms into visual systems for improved performance and automation. Her work is characterized by a high degree of innovation, especially in translating theoretical frameworks into deployable systems.

Awards

Professor Song has been recognized for her excellence through several prestigious awards and honors. While many of her accolades are project-specific and rooted in collaborative successes, her standout achievement includes the development of the “Hot High-Speed Wire Surface Defect Online Detection System,” which was successfully implemented at Baoshan Iron and Steel Co., LTD. This system has proven to be stable, efficient, and internationally competitive in automating quality inspections. The industrial relevance and global recognition of this project exemplify the strength of her applied research. She has also received commendations for leadership in engineering practice and for promoting the industrialization of academic research outputs.

Publications

Professor Song has published over 100 articles in high-impact journals and conferences, with a focus on visual computing and intelligent systems. Selected publications include:

Song Y. et al., “Multi-Scale Feature Fusion for Surface Defect Detection,” IEEE Transactions on Industrial Informatics, 2021 – cited by 56 articles.

Song Y. et al., “Real-Time Target Detection in Complex Industrial Environments,” Pattern Recognition Letters, 2020 – cited by 47 articles.

Song Y. et al., “Deep Learning-based Anomaly Detection in Steel Production,” Journal of Visual Communication and Image Representation, 2019 – cited by 62 articles.

Song Y. et al., “Intelligent Vision System for Smart Appliances,” Sensors, 2022 – cited by 33 articles.

Song Y. et al., “CNN Architectures for Surface Quality Analysis,” Computer Vision and Image Understanding, 2020 – cited by 45 articles.

Song Y. et al., “Efficient Video Object Recognition using Hybrid Networks,” Neurocomputing, 2018 – cited by 50 articles.

Song Y. et al., “Robust Industrial Vision with Deep Supervision,” Machine Vision and Applications, 2021 – cited by 38 articles.

Conclusion

In summary, Professor Song Yonghong exemplifies the integration of academic excellence with industrial relevance. Her work in computer vision and intelligent systems is not only scientifically rigorous but also deeply practical, influencing both research and real-world systems. Her leadership in national and international collaborations, along with her commitment to solving critical industrial challenges, places her at the forefront of applied visual computing research. With an extensive portfolio of publications, patents, and successful enterprise collaborations, Professor Song continues to push the envelope in making intelligent technologies smarter, more robust, and more responsive to contemporary demands.

Guangbo Yu | Artificial Intelligence | Best Researcher Award

Mr. Guangbo Yu | Artificial Intelligence | Best Researcher Award

Mr .Guangbo  Yu, PhD Student, University of California, United States.

Mr. Guangbo Yu’s Curriculum Vitae, he demonstrates significant contributions in the field of biomedical engineering and artificial intelligence, with a focus on medical imaging and cancer treatment strategies. His academic background and hands-on research experience in AI applications for cancer immunotherapy and radiomics are commendable. Additionally, his role in designing AI systems at Tencent highlights his expertise in machine learning and model optimization.

Profile

google scholar

🎓 Education:

PhD in Biomedical Engineering (Expected 2027)

University of California, Irvine

Specialization: Radiological Science

Advisor: Prof. Zhuoli Zhang

Master’s in Computer Science

University of Southern California (2015–2017)

Bachelor’s in Software Engineering

University of Electronic Science and Technology of China (2011–2015)

🔬 Research Experience:

Graduate Assistant Researcher at UC Irvine (2022–Present)

Focused on using AI for medical imaging to develop predictive models for cancer immunotherapy treatments using MRI biomarkers. This work aims to improve evaluation methods for immunotherapy responses, especially in treating complex cancers.

💼 Professional Experience:

AI Engineer at Tencent QTrade (2020–2022)

Developed an AI-powered system to structure unstructured financial data, using advanced techniques like Named Entity Recognition (NER) with BERT and GAT.

Boosted model accuracy by 11% and expanded the user base to over 500,000 daily active users through strategic implementations with Flask, Gunicorn, and Jenkins CI/CD.

🔍 Research Interests:

Applying AI to enhance cancer immunotherapy strategies, specifically in areas requiring advanced imaging techniques to assess treatment effectiveness.

Citations:

Citations: 12 (all since 2019)

h-index: 2 (a minimum of two papers with at least two citations each)

i10-index: 0 (no papers with 10 or more citations)

📖 Publications and Presentations:

Qtrade AI at SemEval-2022 Task 11: A Unified Framework for Multilingual NER Task

W. Gan, Y. Lin, G. Yu, G. Chen, & Q. Ye. (2022). Association for Computational Linguistics.

Sorafenib Plus Memory-Like Natural Killer Cell Combination Therapy in Hepatocellular Carcinoma

A. Eresen, Y. Pang, Z. Zhang, Q. Hou, Z. Chen, G. Yu, Y. Wang, V. Yaghmai, … (2024). American Journal of Cancer Research, 14(1), 344.*

Dendritic Cell Vaccination Combined with Irreversible Electroporation for Treating Pancreatic Cancer—A Narrative Review

Z. Zhang, G. Yu, A. Eresen, Z. Chen, Z. Yu, V. Yaghmai, Z. Zhang. (2024). Annals of Translational Medicine.

MRI Radiomics to Monitor Therapeutic Outcome of Sorafenib Plus IHA Transcatheter NK Cell Combination Therapy in Hepatocellular Carcinoma

G. Yu, Z. Zhang, A. Eresen, Q. Hou, E. E. Garcia, Z. Yu, N. Abi-Jaoudeh, … (2024). Journal of Translational Medicine, 22(1), 76.*

Predicting and Monitoring Immune Checkpoint Inhibitor Therapy Using Artificial Intelligence in Pancreatic Cancer

G. Yu, Z. Zhang, A. Eresen, Q. Hou, F. Amirrad, S. Webster, S. Nauli, … (2024). International Journal of Molecular Sciences, 25(22), 12038.*

Sorafenib Plus Memory-Like Natural Killer Cell Immunochemotherapy Boosts Treatment Response in Liver Cancer

A. Eresen, Z. Zhang, G. Yu, Q. Hou, Z. Chen, Z. Yu, V. Yaghmai, Z. Zhang. (2024). BMC Cancer, 24(1), 1215.*

Transcatheter Intraarterial Delivery of Combination Therapy for Hepatocellular Carcinoma

Z. Zhang, A. Eresen, G. Yu, K. Liu, Q. Hou, V. Yaghmai. (2024). Journal of Vascular and Interventional Radiology, 35(3), S199.*

Evaluating Hepatocellular Carcinoma Combination Therapy of Sorafenib and Transcatheter Primed Natural Killer Cell Delivery Using MRI Radiomics Methods

G. Yu, A. Eresen, Z. Zhang, K. Liu, Q. Hou, V. Yaghmai. (2024). Journal of Vascular and Interventional Radiology, 35(3), S143–S144.*

Improving Therapeutic Response Against Hepatocellular Carcinoma with Cytokine-Activated Natural Killer Cells via Transcatheter Intraarterial Administration

A. Eresen, Z. Zhang, G. Yu, Q. Hou, N. Abi-Jaoudeh, V. Yaghmai. (2024). Journal of Vascular and Interventional Radiology, 35(3), S152.*

Investigation of Natural Killer Cell Delivery in Hepatocellular Carcinoma Treatment with Magnetic Resonance Imaging Radiomics

K. Liu, G. Yu, Z. Zhang, Q. Hou, V. Yaghmai, A. Eresen. (2024). Journal of Vascular and Interventional Radiology, 35(3), S92.*

MRI Monitoring of Combined Therapy with Transcatheter Arterial Delivery of NK Cells and Systemic Administration of Sorafenib for the Treatment of HCC

Z. Zhang, G. Yu, A. Eresen, Q. Hou, V. Yaghmai, Z. Zhang. (2024). American Journal of Cancer Research, 14(5), 2216.*