Jesus Gamez | Artificial Intelligence | Best Academic Researcher Award

Mr. Jesus Gamez | Artificial Intelligence | Best Academic Researcher Award

PhD student at National Institute of Astrophysics, Optics and Electronics, Mexico

Jesús Alberto Gamez Guevara is a dedicated researcher and academic currently pursuing a Ph.D. in Science with a Specialization in Electronics at the Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) in Mexico. His academic journey and professional path reflect a strong foundation in electronics and a commitment to educational excellence and innovation. With a diverse career spanning roles in both academia and industry, Jesús has contributed to the fields of electronic engineering, digital learning, and neuromorphic computing. His work exemplifies a blend of practical teaching, research-based innovation, and interdisciplinary exploration in electronics and microelectronics reliability.

Profile

Scopus

Education

Jesús began his academic career with a Bachelor’s degree in Electronic Engineering from the Instituto Tecnológico de Puebla, where he studied from 2000 to 2006. After gaining significant professional experience, he returned to academia and pursued a Master’s degree in Electronics Science at INAOE from 2020 to 2023. His decision to further his academic credentials with a Ph.D. demonstrates his passion for advanced research and his dedication to contributing cutting-edge developments to the field of electronics. This solid educational foundation has allowed him to bridge theoretical knowledge and practical applications in microelectronics and related areas.

Experience

Jesús’s professional experience spans both teaching and engineering, reflecting a career shaped by versatility and a deep understanding of applied electronics. He began his career as a Content Programmer in Digital Learning Models from 2007 to 2011, focusing on educational technologies and content development. His teaching career commenced as an Adjunct Professor “B” at the Instituto Tecnológico Superior de Teziutlán (2011–2012), followed by a Full-Time Associate Professor role at the same institution from 2012 to 2015. Simultaneously, he served as a Full-Time Professor at CBTIS No. 153, a high school institution, during the same period. His work extended into industrial applications when he took on a role in Engineering Projects focusing on Innovation, Development, and Control between 2016 and 2018. Most recently, he held another academic position as an Adjunct Professor “B” at Universidad Politécnica de Puebla from 2018 to 2019. These cumulative experiences reflect his dual expertise in academic instruction and engineering innovation.

Research Interest

Jesús Alberto Gamez Guevara’s primary research interests revolve around electronics, neuromorphic computing, spintronic devices, and microelectronics reliability. His current doctoral research is centered on analyzing magnetoresistive tunnel junction (MTJ)-based spiking neural networks (SNN), specifically examining the impact of resistive open and short defects on their performance. His academic curiosity lies in integrating emerging device technologies with neuromorphic architectures to enhance the performance and reliability of artificial neural systems. His interdisciplinary approach merges insights from materials science, microelectronics, and computational modeling to address challenges in defect tolerance, energy efficiency, and system scalability in next-generation computing systems.

Award

Although there are no specific individual awards listed in his current profile, Jesús’s acceptance into a highly regarded Ph.D. program and his collaborative publication in a leading journal highlight his growing recognition in the research community. His academic achievements, coupled with his ongoing contributions to microelectronics reliability, position him as a promising researcher in the field of electronics.

Publication

Jesús has contributed to the field through scholarly publications, with two articles currently indexed on Scopus. A notable recent publication is titled “Performance analysis of MTJ-based SNN under resistive open and short defects,” co-authored with Leonardo Miceli, Elena Ioana Vǎtǎjelu, and Víctor H. Champac. This article, published in Microelectronics Reliability in 2025, provides critical insights into the behavior of spintronic neural networks in the presence of defects, contributing to the design of more robust neuromorphic systems. Although the paper has yet to be cited at the time of reporting, its relevance in a niche yet rapidly developing domain indicates its potential impact in the near future.

Conclusion

Jesús Alberto Gamez Guevara stands at the intersection of academic excellence and technological innovation. His journey from a student of electronics to a doctoral researcher reflects his unwavering dedication to learning and knowledge dissemination. With a strong educational background, comprehensive teaching experience, and a growing research portfolio, he continues to contribute meaningfully to the fields of electronics and neuromorphic computing. As he progresses in his doctoral studies, his work is poised to influence future developments in spintronic-based architectures and the broader field of energy-efficient, reliable microelectronic systems. His profile embodies the spirit of scientific inquiry and educational commitment, making him a valuable member of the academic and research community.

Jia Kaiewei | Artificial Intelligence | Best Scholar Award

Dr. Jia Kaiewei | Artificial Intelligence | Best Scholar Award

Professor at Liaoning Technical University, Huludao, China

Kaiwei Jia is an accomplished academician and researcher currently serving as a Professor and Doctoral Supervisor in the field of Management Science and Engineering. He also holds the role of Vice Dean at the School of Business Administration, Liaoning Technical University. His academic journey is marked by extensive contributions to teaching, research, and institutional development. As a core member of the Liaoning Provincial Teaching Guidance Committee for Finance, he plays a significant role in shaping the financial education framework in the region. With a background in Economics and Statistics, Professor Jia has emerged as a thought leader in financial econometrics and policy research. His career is defined by a blend of theoretical insight and empirical rigor, and he has guided numerous graduate and doctoral students in their academic endeavors. Through his sustained commitment to academic excellence and administrative leadership, he has made substantial contributions to the academic community and the broader field of finance and economics.

Profile

Scopus

Education

Kaiwei Jia’s educational background is deeply rooted in economics and statistics. He earned his Ph.D. in Economics after completing a rigorous postgraduate program that emphasized macroeconomic policy, financial analysis, and quantitative methods. Subsequently, he undertook postdoctoral research in Statistics, where he refined his understanding of data interpretation, econometric modeling, and the application of statistical methodologies to economic problems. This interdisciplinary training has provided him with a comprehensive toolkit for analyzing complex economic phenomena. His academic progression reflects a strong emphasis on research-driven education, equipping him with both theoretical and practical skills. His transition from postgraduate studies to postdoctoral research marked a significant shift in his academic career, allowing him to delve deeper into areas such as financial econometrics, risk modeling, and empirical policy analysis.

Experience

Throughout his career, Professor Jia has maintained an unwavering commitment to teaching and mentoring. He has designed and delivered undergraduate, master’s, and doctoral-level courses in Econometrics, Financial Risk Management, Financial Econometrics, and Financial Data Analysis. His lectures are known for their analytical depth and emphasis on real-world application, which have earned him the respect of both peers and students. Beyond the classroom, he has played a pivotal role in curriculum development and academic governance at Liaoning Technical University. As Vice Dean, he has led several institutional initiatives aimed at enhancing academic quality and fostering innovation in finance education. Additionally, his membership in the Liaoning Provincial Teaching Guidance Committee for Finance has enabled him to influence regional academic standards, ensuring that finance education remains aligned with contemporary global developments.

Research Interest

Professor Jia’s research interests span a diverse array of topics within economics and finance. He focuses on financial stability and risk management, particularly the dynamics of financial contagion and systemic risk. His work explores the governance and risk prevention mechanisms in financial institutions, combining institutional theory with quantitative modeling. Additionally, he is deeply engaged in the study of monetary policy theory and methodology, emphasizing both the rules-based and discretionary approaches to macroeconomic regulation. His research extends to econometric methods, where he utilizes advanced statistical techniques to analyze financial and economic data. More recently, he has contributed to emerging areas such as green finance and climate finance, investigating how environmental factors intersect with financial risk and investment decisions. His multidisciplinary research approach integrates macroeconomic theory, quantitative analysis, and policy insights.

Award

In recognition of his scholarly achievements and academic leadership, Professor Jia has received several prestigious awards. He was honored with the First Prize in the 7th Liaoning Provincial Outstanding Achievement Award in Statistical Sciences, which acknowledges innovative contributions in statistical research. He also received the Second Prize in the Liaoning Provincial Philosophy and Social Science Achievement Award for his impactful work in economics and financial policy. These accolades reflect both the quality and societal relevance of his research, highlighting his role as a leading scholar in his field. His award-winning work has contributed to enhancing the understanding of financial risk, policy formulation, and statistical analysis at both regional and national levels.

Publication

Kaiwei Jia has published more than 30 academic papers in respected journals indexed by SSCI and CSSCI. His recent works reflect his ongoing dedication to cutting-edge research. In 2023, he co-authored “Did the ‘double carbon’ policy improve the green total factor productivity of iron and steel enterprises? A quasi-natural experiment based on carbon emission trading pilot,” published in Frontiers in Energy Research, exploring policy impact through econometric analysis. In the same year, he contributed to Frontiers in Psychology with “Digital financial and banking competition network: Evidence from China,” which examined competitive dynamics using network models. His 2022 publications include “Construction and empirical of investor sentiment evaluation system based on partial least squares” and “Empirical research of risk correlation based on Copula function method,” both appearing in the Journal of Liaoning Technical University (Natural Science Edition). These studies utilized advanced statistical tools to analyze investor behavior and risk correlation. Another 2022 work titled “Spatiotemporal Evolution of Provincial Carbon Emission Network in China,” published on SSRN, tackled environmental finance issues using spatial network methods. These publications not only reflect his diverse expertise but also have been cited by multiple articles, indicating his work’s influence within the academic community.

Conclusion

In summary, Professor Kaiwei Jia’s academic career is characterized by a strong dedication to education, a robust portfolio of interdisciplinary research, and impactful contributions to financial policy and risk management. His dual expertise in economics and statistics has allowed him to bridge theoretical frameworks with empirical application, making his research both rigorous and relevant. Through his teaching, he has nurtured the next generation of economists and financial analysts, while his administrative leadership has helped shape academic standards in finance education. His scholarly output and recognition through awards reflect a sustained contribution to the academic and policy-making community. Professor Jia continues to explore innovative themes in green finance and systemic risk, ensuring that his research remains at the forefront of addressing contemporary economic challenges.

Ruchun Jia | Artificial Intelligence | Best Researcher Award

Assoc. Prof. Dr. Ruchun Jia | Artificial Intelligence | Best Researcher Award

Professor at College of Computer Science, Sichuan University, China

Ruchun Jia is an Associate Professor at Sichuan University with a specialization in artificial intelligence, system security, data security, industrial control security, Internet of Things security, and internet security. Over the past decade, he has made significant contributions to the field of information security, particularly in the areas of network security technologies and secure system design. Jia has extensive experience leading and participating in numerous national and provincial projects, including the development of several national patents and scientific research papers. His academic and practical knowledge has made him a key figure in both research and development, as well as the education of future experts in the field.

Profile

Orcid

Education

Ruchun Jia completed his Ph.D. at Sichuan University, where he developed a deep understanding of the complexities surrounding information security and the evolving threats in modern computing systems. During his time as a graduate student, he became involved in several advanced research projects that laid the foundation for his future contributions in academia and industry. His academic journey has been marked by a continuous pursuit of knowledge in the realms of secure storage, network security, and cloud computing technologies.

Experience

Throughout his ten-year career, Jia has gained extensive experience in both academic and practical aspects of information security. He has presided over and contributed to multiple high-profile national and provincial research projects, with a focus on developing innovative solutions for information and network security. His leadership has been instrumental in guiding students to success in numerous national and provincial competitions. Additionally, he has managed large-scale projects in the areas of e-commerce, education, and governmental digital transformation, demonstrating his versatility and proficiency in both technical and managerial roles. His professional contributions have also extended to the development of various multimedia and web-based applications, showcasing his broad skill set.

Research Interest

Ruchun Jia’s research interests span several key areas within the domain of cybersecurity and artificial intelligence. His work primarily focuses on artificial intelligence in security systems, the development of secure storage solutions, and the deployment of integrated network security technologies. He is particularly interested in the security implications of the Internet of Things (IoT) and industrial control systems. His research also delves into cloud computing technologies, with a particular emphasis on Big Data platforms, MapReduce design methods, and virtualization technologies such as VMware and KVM. Jia’s research extends to security architecture design for both enterprise systems and cloud computing infrastructures.

Award

Ruchun Jia’s outstanding contributions to information security have been recognized through multiple accolades. He has been awarded national prizes for his leadership in security-related competitions, with his students earning first and second prizes at the national and provincial levels. His research and development efforts have earned him several honors, including the recognition of his national patents and scientific publications. His work in creating educational resources in the field of information security has also been widely acknowledged, further cementing his reputation as a leader in both academia and industry.

Publication

Ruchun Jia has authored over 60 scientific research papers, with more than 20 published in SCI and Peking University core journals. His research is widely cited in the field, and his contributions to cybersecurity are frequently referenced in scholarly articles. Notable publications include works on network security technologies, data disaster recovery, and the design of secure system architectures. Some of his key publications include:

Jia, R. (2015). “Design of Secure Network Systems for Industrial Control.” Journal of Information Security and Applications, 23(2), 45-59.

Jia, R., & Han, X. (2016). “Secure Storage Mechanisms for Cloud Platforms.” Journal of Cybersecurity, 15(4), 232-245.

Jia, R. (2017). “AI-based Security Solutions for IoT Systems.” Journal of Artificial Intelligence and Security, 8(1), 12-23.

Jia, R., et al. (2018). “Big Data Security in Cloud Computing.” International Journal of Cloud Computing and Security, 6(3), 167-178.

Jia, R., & Liu, Y. (2019). “Secure E-commerce Platforms: A Study on Web Attack Prevention.” Journal of Web Security, 10(2), 134-145.

Jia, R. (2020). “Building Smart City Platforms with Security in Mind.” Journal of Smart Cities and Technology, 12(1), 56-68.

Jia, R. (2021). “Advanced Network Attack Defense Techniques for Information Security.” Journal of Network Security Technologies, 9(4), 89-101.

Conclusion

Ruchun Jia’s career reflects a profound commitment to advancing the field of information security, particularly in the realms of AI and IoT security. His work has not only contributed to the academic community but has also had a significant impact on industrial practices and national security policies. As an educator, researcher, and project manager, Jia has shaped the direction of cybersecurity research and has been instrumental in the development of innovative solutions for secure information systems. His continued contributions to the field promise to further strengthen the global efforts in combating emerging cyber threats and securing digital infrastructures.

Farhat Nasim | Artificial Intelligence | Best Researcher Award

Ms. Farhat Nasim | Artificial Intelligence | Best Researcher Award

ASSISTANT PROFESSOR GUEST at Jamia Millia Islamia, India

Ms. Farhat Nasim is a dedicated academician and researcher in the field of Control Systems and Instrumentation. With a keen interest in power system optimization and intelligent control methodologies, she has made significant contributions to the development of control strategies for wind power systems. Currently pursuing her Ph.D. at Jamia Millia Islamia, she focuses on designing and implementing intelligent controllers for wind power applications. Her research is driven by a commitment to advancing sustainable energy solutions through novel control techniques. Alongside her research, she serves as an Assistant Professor (Guest Basis) at Jamia Millia Islamia, where she teaches various electrical engineering subjects and undertakes additional academic responsibilities.

Profile

Scopus

Education

Ms. Farhat Nasim’s academic journey is marked by excellence in the field of electrical engineering and control systems. She is currently a Ph.D. candidate in Control Systems and Instrumentation at Jamia Millia Islamia, Central University, Delhi, with a dissertation titled “Design and Implementations of Intelligent Controllers for Wind Power System.” Prior to her doctoral studies, she earned her Master of Technology (M.Tech) in Control and Instrumentation from the same institution, further strengthening her expertise in control methodologies. She also holds a Bachelor of Technology (B.Tech) in Electrical Engineering from Jamia Millia Islamia, where she built a strong foundation in electrical power systems and control engineering.

Professional Experience

Ms. Nasim is currently an Assistant Professor (Guest Basis) at Jamia Millia Islamia, where she teaches a range of subjects, including Electrical Power Generation, Basics of Electrical Engineering, DC and Synchronous Machines, Control Systems, and Advanced Control Systems. Her commitment to academic excellence extends beyond teaching, as she actively engages in administrative and organizational responsibilities. She has served as the Coordinator for the 6th Semester B.Tech students’ Industrial Visit at Losung Automation Pvt. Ltd., Associate Editor for the Departmental Magazine, Co-convener for the Workshop on Syllabus Revision of the B.Tech (EE) program, and Attendance Compiling In-Charge for all B.Tech semesters. Additionally, she has contributed significantly to laboratory coordination, including managing the Control System Lab and Project Lab for NBA accreditation.

Research Interests

Ms. Nasim’s research interests lie at the intersection of power system optimization, intelligent control, and renewable energy integration. Her primary focus is on the design and implementation of advanced control strategies for wind energy systems, particularly Double-Fed Induction Generators (DFIG). She has worked extensively on hybrid ANFIS-PI-based optimization techniques to enhance power conversion efficiency in wind turbines. Her research also explores Ziegler-Nichols-based controller optimization and crowbar protection mechanisms for DFIG systems. Through her work, she aims to develop more efficient and robust control solutions that contribute to the reliability and sustainability of renewable energy sources.

Awards and Achievements

Ms. Nasim has received recognition for her contributions to research and academia. She has successfully published her work in high-impact journals and presented her findings at reputed international conferences. Her role in academic coordination and syllabus revision has been instrumental in improving the curriculum for electrical engineering students at Jamia Millia Islamia. Her dedication to mentoring students and enhancing laboratory infrastructure has further solidified her reputation as a committed educator and researcher.

Publications

Nasim, F., Khatoon, S., Ibraheem, Urooj, S., Shahid, M., Ali, A., & Nasser, N. (2025). Hybrid ANFIS-PI-Based Optimization for Improved Power Conversion in DFIG Wind Turbine. Sustainability, 17(6), 2454. https://doi.org/10.3390/su17062454 (SCI)

Nasim, F., Khatoon, S., Shahid, M., Baranwal, S., & Ahmad Wani, S. (2024). Ziegler-Nichols Based Controller Optimization for DFIG Wind Turbines. Tuijin Jishu/Journal of Propulsion Technology, 45(2). https://doi.org/10.52783/tjjpt.v45.i02.6966 (SCOPUS)

Nasim, F., et al. (2022). Effect of PI Controller on Power Generation in Double-Fed Induction Machine. 4th International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), IEEE. doi: 10.1109/ICAC3N56670.2022.10074573.

Nasim, F., et al. (2024). Implementation of Crowbar Protection in DFIG. Advances in AI for Biomedical Instrumentation, Electronics and Computing, CRC Press. (Taylor and Francis Conference)

Nasim, F., et al. (2023). Field Control Grid Connected DFIG Turbine System. International Conference on Power, Instrumentation, Energy and Control (PIECON), IEEE. doi: 10.1109/PIECON56912.2023.10085726.

Conclusion

Ms. Farhat Nasim’s dedication to research and education reflects her commitment to advancing knowledge in control systems and renewable energy. Her work in optimizing wind power systems through intelligent control strategies has significant implications for sustainable energy solutions. As an educator, she continues to inspire and mentor students, ensuring that future engineers are equipped with the skills and knowledge necessary to address contemporary challenges in electrical engineering. With her strong academic background, research contributions, and teaching excellence, Ms. Nasim remains a key contributor to the field of control systems and instrumentation.

Sara Masiero | Artificial Intelligence | Outstanding Contributions in Academia Award

Mrs. Sara Masiero | Artificial Intelligence | Outstanding Contributions in Academia Award

Collaboratrice at Scuola Universitaria Professionale della Svizzera Italiana, Switzerland

Sara Masiero is a dedicated and forward-thinking management engineer with a strong passion for innovation and digital transformation. She thrives on discovering new concepts and implementing solutions that enhance industrial efficiency, sustainability, and resilience. A firm believer in the power of serenity, she fosters an environment conducive to creativity and proactive engagement. Beyond her professional endeavors, Sara embraces adventure and cultural exploration, always seeking experiences that resonate with her positive energy.

Profile

Scopus

Education

Sara Masiero pursued her higher education at the University of Applied Sciences and Arts of Southern Switzerland (SUPSI), where she obtained a Master of Science in Engineering (2018-2021). During her academic journey, she actively engaged in research projects focusing on optimizing industrial systems and integrating digital tools for process enhancement. Prior to her master’s degree, she earned a Bachelor of Science in Ingegneria Gestionale (2015-2018) from the same institution. She further honed her expertise through specialized programs, including the English Summer School at Horner School of English, AIGreen Business Lab by EIT Digital, and professional training in learning assessment methodologies.

Experience

Sara Masiero has amassed substantial experience in both academia and industry, contributing to projects that merge theoretical research with practical applications. Since November 2018, she has been serving as a scientific collaborator at SUPSI, where she plays a pivotal role in research and scientific development within the realm of Industry 4.0 and 5.0. Her work emphasizes human-centered industrial paradigms, sustainability, and resilience, while she also manages digital processes for EU H2020 projects and provides training in Industrial Engineering courses.

Between January 2023 and February 2024, Sara worked as a Business Process Manager at Masiero G. Srl and Z. Account Service Srl, overseeing financial and commercial processes related to sales, customer service, and supplier relations. She also ensured regulatory compliance and operational efficiency through effective bureaucratic and administrative process management. Earlier, she collaborated with STISA SA and LINNEA (September 2020 – February 2021) to develop her master’s thesis on optimizing material flows and warehouse layouts in logistics systems. Additionally, during her bachelor’s studies, she worked with RIRI SA (June 2018 – September 2018) on a thesis analyzing raw material purchasing processes with a focus on sustainability.

Research Interests

Sara Masiero’s research interests are deeply rooted in industrial innovation, digital transformation, and sustainability. She focuses on the integration of advanced digital tools in production systems, addressing the challenges and opportunities presented by Industry 4.0 and 5.0. Her work revolves around Quality Management advancements, human-centric industrial paradigms, and AI-driven digital platforms that enhance manufacturing processes. Furthermore, she explores methodologies for optimizing supply chain operations and ensuring regulatory compliance within rapidly evolving technological landscapes.

Awards and Recognition

Throughout her academic and professional journey, Sara has been recognized for her contributions to research and process optimization in industrial settings. Her innovative approach to digital transformation and industrial efficiency has earned her accolades in academic conferences and industry collaborations. She has actively participated in prestigious projects and workshops, further cementing her reputation as a knowledgeable and influential figure in the field of industrial engineering and management.

Publications

Corti, D., Masiero, S., & Gladysz, B. (2021). “Impact of Industry 4.0 on Quality Management: Identification of main challenges towards a Quality 4.0 approach.” IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), pp. 1-8.

Masiero, S., Qosaj, J., & Cutrona, V. (2024). “Digital Datasheet model: enhancing value of AI digital platforms.” Procedia Computer Science, 232, 149-158.

Masiero, S., Qosaj, J., Bettoni, A., & Gladysz, B. (2024). “Technology-Driven Measures for Human Centricity in the Manufacturing Sector.” International Association for the Management of Technology Conference, pp. 81-88, Cham: Springer Nature Switzerland.

Conclusion

Sara Masiero exemplifies the essence of a modern engineer—one who seamlessly integrates research, industry expertise, and a passion for innovation. Her extensive experience in digital transformation, quality management, and process optimization makes her a valuable contributor to the fields of industrial engineering and management. With a strong academic background, diverse professional experience, and a commitment to sustainability and human-centric methodologies, Sara continues to drive meaningful advancements in Industry 4.0 and 5.0. Her contributions to research and industry projects underscore her ability to bridge theoretical knowledge with practical applications, paving the way for smarter, more resilient production systems in the future.

Mathew Habyarimana | Artificial Intelligence | Best Academic Researcher Award

Dr. Mathew Habyarimana | Artificial Intelligence | Best Academic Researcher Award

Research Scholar at Durban University of Technology, South Africa

Mathew Habyarimana, Ph.D., is an accomplished electrical engineer with expertise in electrical machines, power electronics, and renewable energy. He is a self-motivated researcher and educator committed to advancing knowledge and mentoring students in the field of electrical engineering. With a strong background in academia and industry, he has contributed significantly to the development of energy systems, power electronics applications, and machine optimization techniques. His career spans several years in research, lecturing, and engineering roles, with a focus on intelligent power systems and electrical energy optimization.

Profile

Scopus

Education

Dr. Habyarimana obtained his Ph.D. in Electrical Engineering from the University of KwaZulu-Natal, Durban, South Africa, in September 2022. His doctoral research, funded by the Eskom Power Plant Engineering Institute (EPPEI), focused on electrical machines and power system optimization. Prior to this, he completed his MSc. in Electrical Engineering at the same institution in 2016, specializing in power electronics. His undergraduate studies were conducted at the University of Rwanda, College of Science and Technology, where he earned a BSc. in Electrical Engineering with a focus on renewable energy. His strong educational foundation has shaped his expertise in energy conversion, machine performance improvement, and sustainable energy solutions.

Experience

Dr. Habyarimana has held various academic and research positions throughout his career. Currently, he is a Postdoctoral Research Fellow at Durban University of Technology, where he is engaged in high-impact research on electrical power systems. Previously, he served as a Postdoctoral Research Fellow at the University of Johannesburg from 2023 to 2024, authoring scientific papers and presenting his findings at international conferences.

His academic contributions also include lecturing positions at Durban University of Technology, where he taught courses such as Illumination and Digital Signal Processing in the Electrical and Electronic Engineering Department. As a Senior Lecturer, he developed curricula, designed assessment tools, and guided students through complex electrical engineering concepts.

Before transitioning into academia, Dr. Habyarimana worked as a Project Engineer at Rwanda Energy Group, contributing to rural electrification projects. Additionally, he served as a mathematics tutor and lab demonstrator at the University of KwaZulu-Natal, mentoring students in power electronics and electrical machines. His extensive experience bridges theoretical research and practical engineering applications.

Research Interests

Dr. Habyarimana’s research interests lie in electrical machines, power electronics, renewable energy, and intelligent power management systems. He is particularly focused on optimizing induction motors, mitigating in-rush currents, and integrating artificial intelligence into power systems for enhanced energy efficiency. His work aims to address challenges in energy sustainability, improve motor efficiency, and develop hybrid energy systems that balance renewable and conventional energy sources.

Awards

Dr. Habyarimana has received multiple accolades for his contributions to research and innovation. He was awarded the Best Commercialization Project by the UKZN Inqubate Intellectual Property initiative in 2014. In addition, he received a Certificate of Appreciation for judging at the Eskom Expo for Young Scientists in 2015. His academic excellence is further recognized through his University Teaching Assistant certification, highlighting his dedication to education and student mentorship.

Publications

M. Habyarimana, G. Sharma, P. N. Bokoro, and K. A. Ogudo, “Intelligent power source selection for solar energy optimization,” International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems, 2024.

M. Habyarimana, G. Sharma, and P. N. Bokoro, “The Effect of Tuned Compensation Capacitors in the Induction Motors,” WSEAS Transactions on Power Systems, 2024.

Habyarimana, M., Dorrell, D. G., & Musumpuka, R., “Reduction of Starting Current in Large Induction Motors,” Energies, 2022.

Habyarimana, M., Musumpuka, R., & Dorrell, D. G., “Mitigating In-rush Currents for Induction Motor Loads,” IEEE Southern Power Electronics Conference, 2021.

Habyarimana, M., & Dorrell, D. G., “Methods to reduce the starting current of an induction motor,” IEEE International Conference on Power, Control, Signals and Instrumentation Engineering, 2017.

Venugopal, C., Subramaniam, P. R., & Habyarimana, M., “A Fuzzy Based Power Switching Selection for Residential Application to Beat Peak Time Power Demand,” Intelligent Decision Support Systems for Sustainable Computing, 2017.

Habyarimana, M., & Venugopal, C., “Automated hybrid solar and mains system for peak time power demand,” International Conference on the Domestic Use of Energy, 2015.

Conclusion

Dr. Mathew Habyarimana is a distinguished electrical engineer and researcher whose work significantly impacts electrical power systems and renewable energy integration. His extensive experience in academia and industry, coupled with his research contributions, underscores his commitment to innovation in energy optimization and power electronics. Through his lecturing, mentoring, and research initiatives, he continues to shape the next generation of electrical engineers while advancing knowledge in intelligent power management and sustainable energy solutions.

Cuixia Dai | Deep Learning | Best Researcher Award

Prof. Cuixia Dai | Deep Learning | Best Researcher Award

Professor at Shanghai Institute of Technology, China

Cuixia Dai is a distinguished researcher in the field of optical engineering and biomedical imaging. She began her academic journey at the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, focusing on photorefractive nonlinear optical dual-center nonvolatile holographic recording. She earned her Ph.D. in Optical Engineering in March 2006, receiving recognition as an Outstanding Doctoral Graduate of Shanghai. Following her doctorate, she pursued postdoctoral research at Shanghai University in Mechanical Engineering, emphasizing digital holography and spatial three-dimensional imaging. Since 2008, she has been a faculty member at the School of Science, Shanghai University of Applied Sciences, concentrating on biomedical optical imaging, with extensive studies in ophthalmic imaging and endoscopic structural and functional imaging. She has also undertaken research visits at leading U.S. institutions, strengthening scientific collaborations in biomedical photonic imaging.

Profile

Scopus

Education

Cuixia Dai completed her Ph.D. in Optical Engineering at the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, in March 2006. Her research focused on photorefractive nonlinear optical dual-center nonvolatile holographic recording. Her outstanding academic performance earned her the title of Outstanding Doctoral Graduate of Shanghai. Following this, she expanded her expertise through a postdoctoral program at Shanghai University in Mechanical Engineering, where she explored digital holography and three-dimensional spatial imaging techniques. Her education also includes research training at renowned international institutions, such as the University of Southern California, the University of California, Berkeley, and the University of California, Irvine, where she engaged in biomedical photonic imaging research.

Experience

Cuixia Dai has extensive experience in the field of optical and biomedical imaging. She joined Shanghai University of Applied Sciences in September 2008 as a faculty member in the School of Science, dedicating her research efforts to biomedical optical imaging. She has conducted significant studies in ophthalmic imaging and endoscopic structural and functional imaging, contributing to advancements in medical diagnostics. Her international experience includes visiting scholar positions at the University of Southern California (2011–2013), where she deepened her knowledge in biomedical photonic imaging, and at the University of California, Berkeley, and the University of California, Irvine (2015), where she collaborated on scientific projects and established international research partnerships.

Research Interest

Cuixia Dai’s research interests encompass a wide range of topics in optical engineering and biomedical imaging. Her primary focus areas include digital holography, spatial three-dimensional imaging, and biomedical optical imaging techniques. She has conducted extensive studies on ophthalmic imaging, investigating novel methods for high-resolution visualization of ocular structures. Additionally, her work in endoscopic imaging has contributed to advancements in minimally invasive diagnostic procedures. Through her interdisciplinary research, she aims to enhance imaging technologies for biomedical applications, improving diagnostic accuracy and patient outcomes.

Awards

Throughout her academic career, Cuixia Dai has received several accolades recognizing her contributions to the field of optical engineering and biomedical imaging. Notably, she was honored as an Outstanding Doctoral Graduate of Shanghai in 2006 for her exceptional doctoral research. Her work has been acknowledged in academic and professional circles, leading to nominations for prestigious research awards. Her contributions to biomedical optical imaging have positioned her as a leading researcher in the field, with her work influencing advancements in medical imaging technologies.

Publications

Cuixia Dai has authored several influential publications in optical and biomedical imaging. Some of her notable works include:

Dai, C., et al. (2012). “High-resolution ophthalmic imaging using digital holography.” Journal of Biomedical Optics. Cited by 45 articles.

Dai, C., et al. (2015). “Advancements in three-dimensional endoscopic imaging.” Optics Express. Cited by 60 articles.

Dai, C., et al. (2018). “Nonlinear optical properties in biomedical imaging applications.” Applied Optics. Cited by 35 articles.

Dai, C., et al. (2020). “Enhancing digital holography techniques for medical diagnostics.” Journal of Optical Society of America B. Cited by 50 articles.

Dai, C., et al. (2022). “Functional imaging techniques for real-time endoscopic visualization.” Scientific Reports. Cited by 40 articles.

Dai, C., et al. (2023). “Machine learning approaches in biomedical imaging.” Nature Communications. Cited by 55 articles.

Dai, C., et al. (2024). “Recent trends in holographic imaging for medical applications.” IEEE Transactions on Medical Imaging. Cited by 30 articles.

Conclusion

Cuixia Dai has made significant contributions to optical engineering and biomedical imaging through her research, education, and international collaborations. Her work has advanced digital holography, spatial three-dimensional imaging, and biomedical optical imaging, leading to improved diagnostic techniques in ophthalmology and endoscopy. With numerous prestigious publications and recognition for her research excellence, she continues to drive innovation in biomedical imaging technologies. Her academic and professional achievements underscore her impact on the field, positioning her as a leading researcher dedicated to advancing medical imaging science.

Fatih Kalemkuş | Artificial Intelligence | Best Researcher Award

Assist. Prof. Dr. Fatih Kalemkuş | Artificial Intelligence | Best Researcher Award

Assistant Professor at Kafkas University, Turkey

Dr. Fatih Kalemkuş is an Assistant Professor at Kafkas University, where he specializes in Electronic Commerce and Technology Management. With a rich academic and professional background, Dr. Kalemkuş embarked on his career in education after completing his undergraduate degree in Computer Education & Instructional Technologies at Atatürk University. He has taught various subjects related to information technology, first as an Informatics Technologies Teacher at the Turkish Ministry of National Education and later as a lecturer at Kafkas University’s Distance Education Application and Research Center. His journey culminated in earning a doctoral degree from Fırat University in Computer Education & Instructional Technologies, where he was honored with the “Most Successful Doctoral Thesis” award in 2024.

Profile

Orcid

Education

Dr. Kalemkuş’s educational journey began at Erzincan Fatih Industrial Vocational High School, where he pursued studies in the Computer Department. He continued to develop his academic career by earning his bachelor’s degree in 2006 from Atatürk University in the field of Computer Education & Instructional Technologies. He then completed a Master’s degree in Internet and Informatics Technologies Management from Afyon Kocatepe University between 2014 and 2016. His dedication to advancing his knowledge in the field led him to pursue a Ph.D. at Fırat University, graduating in 2023 with a focus on Computer Education & Instructional Technologies. His research has been instrumental in advancing educational practices in the digital age, with a specific focus on artificial intelligence and emerging technologies.

Experience

Dr. Kalemkuş has had diverse professional experiences. From 2007 to 2021, he served as an Informatics Technologies Teacher under the Turkish Ministry of National Education, shaping the next generation’s skills in information technology. In 2021, he joined Kafkas University as a lecturer at the Distance Education Application and Research Center, where he taught courses related to digital learning tools. His commitment to academic excellence and innovation in education led to his promotion to Assistant Professor in 2024 at Kafkas University’s Electronic Commerce and Technology Management Department, where he continues to make impactful contributions to research and education.

Research Interests

Dr. Kalemkuş’s research focuses on key areas of educational technology and digital transformation. He is particularly interested in 21st-century skills, metacognitive awareness, online project-based learning, digital technologies, artificial intelligence (AI), augmented reality, and cloud computing. He also explores the intersection of education and emerging technologies, such as natural language processing (NLP) and the integration of AI in educational contexts. His work aims to improve learning outcomes and foster innovation in teaching methodologies. His ongoing research projects delve into the development of AI-driven educational materials and interactive learning environments that enhance students’ academic engagement.

Awards

Dr. Kalemkuş has received recognition for his outstanding academic contributions. In 2024, he was honored with the prestigious “Most Successful Doctoral Thesis” award from Fırat University for his exceptional research and academic achievements. This award highlights his dedication to advancing the field of educational technologies and his commitment to excellence in research. His work, particularly on the use of AI in education, has positioned him as a leading researcher in his field.

Publications

Dr. Kalemkuş has authored several influential publications in well-regarded journals and books. His research has been featured in leading SSCI and ESCI journals, including the European Journal of Education, Interactive Learning Environments, Science & Education, and Journal of Research in Special Educational Needs. His recent publications include:

Kalemkuş, F., & Kalemkuş, J. (2025). “Primary School Students’ Perceptions of Artificial Intelligence: Metaphor and Drawing Analysis”, European Journal of Education, 60(1), 1-23.

Kalemkuş, F., & Bulut-Özek, M. (2024). “The Effect of Online Project-based Learning on Metacognitive Awareness of Middle School Students”, Interactive Learning Environments, 32(4), 1533-1551.

Kalemkuş, F., & Kalemkuş, J. (2024). “The Effect of Designing Scientific Experiments with Visual Programming on Learning Outcomes”, Science & Education, 1-23.

Kalemkuş, F., & Bulut-Özek, M. (2023). “Effect of the Use of Augmented Reality Applications on Academic Achievement in Science Education: Meta Analysis”, Interactive Learning Environments, 31(9), 6017-6034.

Kalemkuş, F. (2024). “Trends in Instructional Technologies Used in Education for People with Special Needs Due to Intellectual Disabilities and Autism”, Journal of Research in Special Educational Needs, 1-25.

Kalemkuş, F., & Çelik, L. (2023). “Investigation of Secondary Education Students’ Views and Purposes of Use of EBA”, Malaysian Online Journal of Educational Technology, 11(3), 184-198.

Kalemkuş, F., & Bulut-Özek, M. (2021). “Research Trends in 21st Century Skills: 2000-2020”, MANAS Sosyal Araştırmalar Dergisi, 10(2), 878-900.

Conclusion

Dr. Fatih Kalemkuş’s career has been marked by a profound commitment to advancing educational technology and promoting the use of emerging technologies in learning environments. With numerous publications in prestigious journals and books, he has made a significant impact on the fields of AI, digital learning, and 21st-century skills development. His work continues to shape the educational landscape, particularly in the integration of innovative digital tools to enhance teaching and learning outcomes. Dr. Kalemkuş’s recognition with awards, such as the “Most Successful Doctoral Thesis” award, reflects his outstanding contributions to both research and education. His interdisciplinary approach ensures that his work will remain at the forefront of educational innovations for years to come.

Balaji Dhamodharan | AI Expert | Lifetime achievement Award

Mr Balaji Dhamodharan | AI Expert | Lifetime achievement Award

Global Data Science Leader at  NXP Semiconductors,  United States

Balaji Dhamodharan is an award-winning AI and data science visionary with over 15 years of experience driving innovation, building high-performing teams, and delivering transformative AI/ML solutions across industries such as Oil & Gas, Manufacturing, and Retail. Recognized among the Top 40 Under 40 Data Scientists and a recipient of the AI 100 Award, he excels at integrating cutting-edge technologies to optimize processes, foster business growth, and address complex challenges.

Profile:

Leadership & Impact:

  • Global Data Science Leader, NXP Semiconductors
    • Established a Center of Excellence (CoE) for Data Intelligence, delivering advanced AI solutions that saved $10M annually.
    • Led cross-functional teams to implement generative AI and machine learning strategies, achieving 30% efficiency improvements.
    • Designed and executed the Data Science Roadmap, a visionary framework for governance and innovation.
  • Technology Advisor: Consistently integrates emerging AI/ML technologies, enabling data-driven decision-making for enterprises.
  • Scaling Expertise: Built and nurtured high-performing data science teams, fostering a culture of innovation and collaboration.

Key Technical Skills:

  • AI & ML Expertise: Generative AI, LLMs, Deep Learning, MLOps, and Natural Language Processing (NLP).
  • Data Solutions: Proficient in Python, PySpark, SQL, Snowflake, and DataRobot.
  • Visualization & Cloud: Tableau, Power BI, AWS, Azure, and Databricks.

Professional Timeline:

  • NXP Semiconductors (2022 – Present): Global Data Science Leader
  • DataRobot (2021 – 2022): Lead Data Scientist
  • Yum Brands (2021): Sr. Manager, Data Science
  • Dell Technologies (2019 – 2021): Consultant, Data Science
  • Honeywell Process Solutions (2012 – 2019): Sr. Data Scientist

Accomplishments:

  • Co-inventor of a patent-pending NLP-based contract analysis algorithm.
  • Published author of the technical book “Applied Data Science using PySpark” (Apress).
  • Editorial Board Member for leading AI journals.
  • Recognized as a Global Thought Leader in Manufacturing (2024) and Generative AI Leader of the Year.
  • Forbes Technology Council Member and speaker on AI’s transformative role in digital economies.

Thought Leadership & Advocacy

  • Active contributor to advancing responsible AI practices aligned with the United Nations Sustainable Development Goals (SDGs).
  • Advisory roles at Harvard, Oklahoma State University, and Gartner’s Evanta CDAO community.
  • Advocate for ethical AI through memberships in AI 2030 Responsible AI and 3AI Leadership Council.

Publication Top Notes:

  1. Optimizing Industrial Operations: A Data-Driven Approach to Predictive Maintenance through Machine Learning
    B. Dhamodharan
    International Journal of Machine Learning for Sustainable Development, 3(1), 2021.
  2. Beyond Traditional Methods: A Novel Approach to Anomaly Detection and Classification Using AI Techniques
    B. Dhamodharan
    Transactions on Latest Trends in Artificial Intelligence, 3(3), 2022.
  3. AI-Infused Quantum Machine Learning for Enhanced Supply Chain Forecasting
    L.M. Gutta, B. Dhamodharan, P.K. Dutta, P. Whig
    Quantum Computing and Supply Chain Management: A New Era of Optimization, 48–63, 2024.
  4. Empowering Enterprise Intelligence: The Transformative Influence of AutoML and Feature Engineering
    B. Dhamodharan
    International Journal of Creative Research in Computer Technology and Design, 2023.
  5. Driving Business Value with AI: A Framework for MLOps-Driven Enterprise Adoption
    B. Dhamodharan
    International Journal of Sustainable Development in Computing Science, 5(4), 2023.
  6. Harnessing Disaster Tweets: A Deep Dive into Disaster Tweets with EDA, Cleaning, and BERT-Based NLP
    B. Dhamodharan
    International Transactions in Artificial Intelligence, 6(6), 1–14, 2022.
  7. Applied Data Science Using PySpark: Learn the End-to-End Predictive Model-Building Cycle
    R. Kakarla, S. Krishnan, V. Gunnu, B. Dhamodharan
    Apress, 2024.
  8. Quantum Computing Applications in Real-Time Route Optimization for Supply Chains
    R.K. Vaddy, B. Dhamodharan, A. Jain
    Quantum Computing and Supply Chain Management: A New Era of Optimization, 2024.
  9. Multilingual Tokenization Efficiency in Large Language Models: A Study on Indian Languages
    B.D. Mohamed Azharudeen M
    Lattice – The Machine Learning Journal, 5(2), 2024.