Ruchun Jia | Artificial Intelligence | Best Researcher Award

Assoc. Prof. Dr. Ruchun Jia | Artificial Intelligence | Best Researcher Award

Professor at College of Computer Science, Sichuan University, China

Ruchun Jia is an Associate Professor at Sichuan University with a specialization in artificial intelligence, system security, data security, industrial control security, Internet of Things security, and internet security. Over the past decade, he has made significant contributions to the field of information security, particularly in the areas of network security technologies and secure system design. Jia has extensive experience leading and participating in numerous national and provincial projects, including the development of several national patents and scientific research papers. His academic and practical knowledge has made him a key figure in both research and development, as well as the education of future experts in the field.

Profile

Orcid

Education

Ruchun Jia completed his Ph.D. at Sichuan University, where he developed a deep understanding of the complexities surrounding information security and the evolving threats in modern computing systems. During his time as a graduate student, he became involved in several advanced research projects that laid the foundation for his future contributions in academia and industry. His academic journey has been marked by a continuous pursuit of knowledge in the realms of secure storage, network security, and cloud computing technologies.

Experience

Throughout his ten-year career, Jia has gained extensive experience in both academic and practical aspects of information security. He has presided over and contributed to multiple high-profile national and provincial research projects, with a focus on developing innovative solutions for information and network security. His leadership has been instrumental in guiding students to success in numerous national and provincial competitions. Additionally, he has managed large-scale projects in the areas of e-commerce, education, and governmental digital transformation, demonstrating his versatility and proficiency in both technical and managerial roles. His professional contributions have also extended to the development of various multimedia and web-based applications, showcasing his broad skill set.

Research Interest

Ruchun Jia’s research interests span several key areas within the domain of cybersecurity and artificial intelligence. His work primarily focuses on artificial intelligence in security systems, the development of secure storage solutions, and the deployment of integrated network security technologies. He is particularly interested in the security implications of the Internet of Things (IoT) and industrial control systems. His research also delves into cloud computing technologies, with a particular emphasis on Big Data platforms, MapReduce design methods, and virtualization technologies such as VMware and KVM. Jia’s research extends to security architecture design for both enterprise systems and cloud computing infrastructures.

Award

Ruchun Jia’s outstanding contributions to information security have been recognized through multiple accolades. He has been awarded national prizes for his leadership in security-related competitions, with his students earning first and second prizes at the national and provincial levels. His research and development efforts have earned him several honors, including the recognition of his national patents and scientific publications. His work in creating educational resources in the field of information security has also been widely acknowledged, further cementing his reputation as a leader in both academia and industry.

Publication

Ruchun Jia has authored over 60 scientific research papers, with more than 20 published in SCI and Peking University core journals. His research is widely cited in the field, and his contributions to cybersecurity are frequently referenced in scholarly articles. Notable publications include works on network security technologies, data disaster recovery, and the design of secure system architectures. Some of his key publications include:

Jia, R. (2015). “Design of Secure Network Systems for Industrial Control.” Journal of Information Security and Applications, 23(2), 45-59.

Jia, R., & Han, X. (2016). “Secure Storage Mechanisms for Cloud Platforms.” Journal of Cybersecurity, 15(4), 232-245.

Jia, R. (2017). “AI-based Security Solutions for IoT Systems.” Journal of Artificial Intelligence and Security, 8(1), 12-23.

Jia, R., et al. (2018). “Big Data Security in Cloud Computing.” International Journal of Cloud Computing and Security, 6(3), 167-178.

Jia, R., & Liu, Y. (2019). “Secure E-commerce Platforms: A Study on Web Attack Prevention.” Journal of Web Security, 10(2), 134-145.

Jia, R. (2020). “Building Smart City Platforms with Security in Mind.” Journal of Smart Cities and Technology, 12(1), 56-68.

Jia, R. (2021). “Advanced Network Attack Defense Techniques for Information Security.” Journal of Network Security Technologies, 9(4), 89-101.

Conclusion

Ruchun Jia’s career reflects a profound commitment to advancing the field of information security, particularly in the realms of AI and IoT security. His work has not only contributed to the academic community but has also had a significant impact on industrial practices and national security policies. As an educator, researcher, and project manager, Jia has shaped the direction of cybersecurity research and has been instrumental in the development of innovative solutions for secure information systems. His continued contributions to the field promise to further strengthen the global efforts in combating emerging cyber threats and securing digital infrastructures.

Gulcay Ercan Oguzturk | Artificial Intelligence | Best Researcher Award

Assist. Prof. Dr. Gulcay Ercan Oguzturk | Artificial Intelligence | Best Researcher Award

Assistant Professor at Recep Tayyip Erdoğan University, Turkey

Dr. Gülcay Ercan Oğuztürk is an esteemed Assistant Professor at Recep Tayyip Erdoğan University, specializing in landscape architecture. With a deep passion for ecological planning and campus design, Dr. Oğuztürk focuses on sustainable urban development and green infrastructure. Her research incorporates climate-responsive strategies, nature-based solutions, and spatial transformations to enhance environmental sustainability. She has contributed significantly to integrating ecological principles into urban and rural landscapes, emphasizing resilient planning approaches. Dr. Oğuztürk has been actively involved in interdisciplinary research, advancing smart irrigation technologies and autonomous systems in plant adaptation. Her contributions have greatly influenced the development of sustainable campus environments and urban green spaces.

Profile

Google Scholar

Education

Dr. Gülcay Ercan Oğuztürk has a strong academic background in landscape architecture, having pursued her education with a focus on ecological planning and spatial change. Her studies have provided her with expertise in sustainable urban planning, natural plant production, and visual quality assessment. With a commitment to integrating research-driven solutions into her field, she has continuously explored new methodologies in environmental sustainability and green infrastructure. Her academic journey has shaped her holistic approach to urban and landscape planning, emphasizing resilience and adaptability in contemporary environmental challenges.

Experience

As an Assistant Professor at Recep Tayyip Erdoğan University, Dr. Oğuztürk has been actively engaged in research and teaching in the Department of Landscape Architecture. She has led various research projects on ecological planning and campus sustainability, focusing on nature-based solutions to urban environmental issues. Dr. Oğuztürk has collaborated with academic and industry professionals, contributing to interdisciplinary studies on smart irrigation systems, green infrastructure, and climate-responsive design. Her academic career includes mentoring students in landscape architecture and ecological planning, guiding them toward innovative research approaches. Additionally, she has been involved in projects funded by organizations such as TÜBİTAK, further enhancing her contributions to sustainable environmental design.

Research Interests

Dr. Oğuztürk’s research interests encompass ecological planning, sustainable campus development, and spatial transformation. Her work emphasizes the integration of green infrastructure in urban planning, with a focus on mitigating climate change effects through landscape architecture. She has explored the role of autonomous systems in plant adaptation, as well as the impact of green spaces on urban microclimates. Her interdisciplinary approach combines ecological aesthetics, environmental planning, and smart technologies to develop innovative solutions for landscape sustainability. Dr. Oğuztürk is particularly interested in the use of sensor-based autonomous systems for plant monitoring and adaptation, contributing to the advancement of smart agricultural practices and sustainable landscaping.

Awards and Recognitions

Dr. Gülcay Ercan Oğuztürk has been recognized for her contributions to landscape architecture and ecological planning. Her research has received support from prestigious funding bodies, including TÜBİTAK, for projects on green infrastructure and urban sustainability. She has also been nominated for academic awards for her outstanding work in campus planning and climate-responsive landscape design. Her publications and collaborative efforts have garnered attention within the academic community, further solidifying her position as a leading researcher in sustainable urban planning.

Selected Publications

Çimen, N., Pulatkan, M., & Ercan-O, G. (2022). GA(3) treatments on seed germination in Rhodothamnus sessilifolius, an endangered species in Turkey. CALDASIA, 44(2), 241-247. [Cited by 10 articles]

Ercan Oğuztürk, G., Murat, C., & Yurtseven, M. (2025). The Effects of AI-Supported Autonomous Irrigation Systems on Water Efficiency and Plant Quality: A Case Study of Geranium psilostemon Ledeb. Plants, 14(770). https://doi.org/10.5390/plants14050770 [Cited by 5 articles]

Ercan Oğuztürk, G., & Yüksek, T. (2024). Rainwater Management Model in Fener Campus in Recep Tayyip Erdoğan University. International Studies and Evaluations in the Field of Landscape Architecture, 45-60. [Cited by 8 articles]

Ercan Oğuztürk, G., & Pulatkan, M. (2024). An Assessment of Recreational Opportunities in the KTU Kanuni Campus. Architectural Sciences and Sustainable Approaches, 528-546. [Cited by 7 articles]

Ercan Oğuztürk, G., & Pulatkan, M. (2023). Interaction of Urban and University Campuses: KTU Kanuni Campus Example. Architectural Sciences and Urban/Environmental Studies, 22-43. [Cited by 6 articles]

Ercan Oğuztürk, G., & Pulatkan, M. (2023). Evaluation of Urban University Campuses Within the Scope of Sustainability: Some Urban Campus Examples. Landscape Research, 111-134. [Cited by 4 articles]

Ercan Oğuztürk, G., & Pulatkan, M. (2020). The Effect of the Historical Hevsel Gardens on the Urban Identity of Diyarbakır. Academic Studies in Architecture, Planning and Design, 119-191. [Cited by 9 articles]

Conclusion

Dr. Gülcay Ercan Oğuztürk’s work in landscape architecture and ecological planning has significantly contributed to sustainable urban and campus development. Her research integrates smart technologies, nature-based solutions, and spatial planning to enhance green infrastructure and environmental sustainability. Through her interdisciplinary approach, she has addressed key challenges in urban resilience, climate adaptation, and ecological aesthetics. Dr. Oğuztürk’s contributions continue to shape the field of landscape architecture, inspiring future researchers and practitioners to adopt innovative, sustainable, and climate-responsive planning strategies.

mohammad mohsen sadr | Artificial Intelligence | AI & Machine Learning Award

Mr. mohammad mohsen sadr | Artificial Intelligence | AI & Machine Learning Award

Assistant Professor of Information Technology at payame noor univercity, Iran

Dr. Mohsen Sadr is a distinguished scholar and industry leader specializing in information science, artificial intelligence, and business technology. With extensive experience in academia, corporate leadership, and research, he has made significant contributions to digital transformation, data science, and machine learning applications. Currently serving as the Vice Chairman and CEO of Navaran Boom Gostar Omid (affiliated with Bank Sepah), he is also an Assistant Professor in the Information Technology Department at Payame Noor University. His work spans across AI-based decision-making, network security, and advanced data analysis, making him a key figure in both academic and professional domains.

profile

scopus

Education

Dr. Sadr has an interdisciplinary academic background, holding a Ph.D. in Information Science. He completed his M.Sc. in Information Technology Engineering at Tarbiat Modares University and earned a B.Sc. in Computer Engineering – Software. Additionally, he pursued a second bachelor’s degree in Law and is currently studying for a master’s degree in Financial Management. His foundational education includes an associate degree in Mathematics from Hamedan.

Experience

Dr. Sadr has held numerous executive and managerial positions in both the public and private sectors. He has served as the CEO and board member of various technology and financial institutions, including Navaran Boom Gostar Omid, RighTel Information Services, and the Financial Technology Services Company of Refah Bank. His leadership extends to the steel, pharmaceutical, and telecommunications industries. Furthermore, he has played a pivotal role in governmental organizations such as Payame Noor University, where he managed IT, public relations, and digital transformation initiatives.

Research Interests

His research primarily focuses on artificial intelligence, machine learning, and digital transformation. Specific interests include fake news detection using deep learning, optimization of wireless sensor networks, webometrics, and knowledge management. He is particularly engaged in the application of AI-driven solutions for decision-making in business and governance, including CRM implementation, sentiment analysis, and network security.

Awards & Recognitions

Dr. Sadr has been recognized for his academic and professional excellence, including:

Outstanding Student Award in Associate Mathematics

Best Lecturer Award at Payame Noor University in 2012

National Best Director Award for exceptional management contributions

Publications

Dr. Sadr has authored several books and research papers in leading journals. Below are some of his notable publications:

Sadr, M.M., & Torkashvand, S. (Year). Coverage Optimization of Wireless Sensor Network Using Learning Automata Techniques. Published in Chemical and Process Engineering.

Sadr, M.M., & Dadstani, M. (Year). Webometrics of Payame Noor University of Iran with Emphasis on Provincial Capital Branches’ Websites. Published in Library Philosophy and Practice.

Sadr, M.M., et al. (Year). A Predictive Model Based on Machine Learning Methods to Recognize Fake Persian News on Twitter. Published in Turkish Journal of Computer and Mathematics Education.

Sadr, M.M., & Akhavan Safar, M. (Year). The Use of LSTM Neural Networks to Detect Fake News on Persian Twitter. Published in Applied Research in Sports Management.

Sadr, M.M., & Asgari, P. (Year). Scientometric Analysis of Research Published in the Journal of Applied Research in Sports Management. Published in Organizational Behavior Management Studies in Sports.

Khani, M., & Sadr, M.M. (Year). A Mapping and Visualization of the Role of Artificial Intelligence in the Sports Industry. Published in Concurrency and Computation: Practice and Experience.

Sadr, M.M., et al. (Year). Deep Reinforcement Learning-Based Resource Allocation in Multi-Access Edge Computing. Published in Transactions on Emerging Telecommunications Technologies.

Conclusion

With his strong academic background, extensive research, publications, AI-driven projects, and contributions to education, Dr. Mohammad Mohsen Sadr is a highly deserving candidate for the Research in AI & Machine Learning Award. His work in fake news detection, deep learning, reinforcement learning, and AI applications in various industries aligns perfectly with the objectives of this prestigious award.

Cheng-Mao Zhou | Artificial Intelligence | Best Researcher Award

Dr. Cheng-Mao Zhou | Artificial Intelligence | Best Researcher Award

Researcher | Central People’s Hospital of Zhanjiang | China

Dr. Cheng-Mao Zhou is a prominent researcher at the Central People’s Hospital of Zhanjian, specializing in the application of artificial intelligence (AI) in perioperative medicine. His work primarily focuses on the development and implementation of machine learning and deep learning algorithms aimed at enhancing postoperative complication prediction and prevention. Dr. Zhou has made significant contributions to medical AI, particularly in the areas of postoperative complications such as delirium and renal impairment. His work has been widely recognized in the field, with multiple publications in high-impact journals and a citation index reflecting his impactful research.

Profile

Scopus

Education

Dr. Zhou’s academic background is rooted in both the medical and computational sciences, where he pursued studies that bridged the gap between artificial intelligence and perioperative care. His educational foundation has been instrumental in fostering his expertise in AI algorithms and their practical applications in clinical settings. Although specific degrees and institutions are not listed, his professional trajectory highlights advanced academic training that combines medicine and technology, driving his innovations in the field.

Experience

Dr. Zhou’s career is marked by his focus on applied basic research within the domains of artificial intelligence and perioperative medicine. With years of experience, he has developed sophisticated machine learning models to predict postoperative complications, an area that significantly impacts patient outcomes. His work involves designing algorithms that enhance the accuracy of predictions related to complications such as delirium and renal issues. Dr. Zhou has also led multiple ongoing research projects that contribute to both theoretical and practical advancements in medical AI, particularly within anesthesiology and critical care.

Research Interests

Dr. Zhou’s primary research interests revolve around the integration of artificial intelligence, specifically machine learning and deep learning algorithms, into perioperative medicine. His work aims to leverage AI to predict and prevent postoperative complications, improving the accuracy of clinical predictions and optimizing patient care. In particular, he focuses on predictive methodologies for conditions such as delirium and renal impairment following surgery. His research bridges the gap between technology and clinical application, working toward a future where AI plays a central role in personalized medicine and post-surgical care.

Awards

Dr. Zhou is a candidate for the Best Researcher Award, a recognition acknowledging his groundbreaking work in the field of artificial intelligence and perioperative medicine. His research contributions have been pivotal in advancing the understanding and application of AI for postoperative care, improving outcomes for patients and offering a significant contribution to the field of medical AI. Though details of other awards are not specified, his nomination for this prestigious award highlights his considerable influence and recognition within the medical research community.

Publications

Dr. Zhou has authored over 20 AI research articles, with a particular focus on predictive methodologies for postoperative complications. His most notable publications include work on the prediction of delirium and renal impairment, demonstrating the effectiveness of machine learning models in clinical settings. Below is a selection of his key publications:

“A predictive model for post-thoracoscopic surgery pulmonary complications based on the PBNN algorithm”

    • Authors: Zhou, C.-M., Xue, Q., Li, H., Yang, J.-J., Zhu, Y.
    • Year: 2024
    • Citations: 0

“Artificial intelligence algorithms for predicting post-operative ileus after laparoscopic surgery”

    • Authors: Zhou, C.-M., Li, H., Xue, Q., Yang, J.-J., Zhu, Y.
    • Year: 2024
    • Citations: 3

“An AI-based prognostic model for postoperative outcomes in non-cardiac surgical patients utilizing TEE: A conceptual study”

    • Authors: Zhu, Y., Liang, R., Zhou, C.-M.
    • Year: 2024
    • Citations: 0

“Predicting early postoperative PONV using multiple machine-learning- and deep-learning-algorithms”

    • Authors: Zhou, C.-M., Wang, Y., Xue, Q., Yang, J.-J., Zhu, Y.
    • Year: 2023
    • Citations: 6

“Predicting postoperative gastric cancer prognosis based on inflammatory factors and machine learning technology”

    • Authors: Zhou, C.-M., Wang, Y., Yang, J.-J., Zhu, Y.
    • Year: 2023
    • Citations: 10

“A long duration of intraoperative hypotension is associated with postoperative delirium occurrence following thoracic and orthopedic surgery in elderly”

    • Authors: Duan, W., Zhou, C.-M., Yang, J.-J., Ma, D.-Q., Yang, J.-J.
    • Year: 2023
    • Citations: 19

“Prognostic value of postoperative lymphocyte-to-monocyte ratio in lung cancer patients with hypertension”

    • Authors: Yuan, M., Wang, P., Meng, R., Zhou, C., Liu, G.
    • Year: 2023
    • Citations: 0

“Differentiation of Bone Metastasis in Elderly Patients With Lung Adenocarcinoma Using Multiple Machine Learning Algorithms”

    • Authors: Zhou, C.-M., Wang, Y., Xue, Q., Zhu, Y.
    • Year: 2023
    • Citations: 5

“Non-linear relationship of gamma-glutamyl transpeptidase to lymphocyte count ratio with the recurrence of hepatocellular carcinoma with staging I–II: a retrospective cohort study”

    • Authors: Li, Z., Liang, L., Duan, W., Zhou, C., Yang, J.-J.
    • Year: 2022
    • Citations: 2

“Predicting difficult airway intubation in thyroid surgery using multiple machine learning and deep learning algorithms”

    • Authors: Zhou, C.-M., Wang, Y., Xue, Q., Yang, J.-J., Zhu, Y.
    • Year: 2022
    • Citations: 16

Conclusion:
Dr. Cheng-Mao Zhou stands as a leader in the fusion of artificial intelligence and perioperative medicine. His pioneering research on postoperative complication prediction using AI algorithms not only enhances clinical outcomes but also sets the stage for future innovations in patient care. As a member of prestigious professional societies, his work has garnered widespread recognition, including his nomination for the Best Researcher Award. Dr. Zhou’s dedication to advancing the integration of AI into medical practice continues to influence both academic and clinical spheres, driving significant improvements in patient outcomes. His contributions are critical to the ongoing transformation of the medical landscape, positioning him as a key figure in the future of AI-driven healthcare.

Jalel Euchi | AI in Healthcare | Best Researcher Award

Assist. Prof. Dr. Jalel Euchi | AI in Healthcare | Best Researcher Award

Assistant professor | University of Sfax | Tunisia

Dr. Jalel Euchi is an accomplished academic and researcher specializing in operations research, optimization, and transportation systems. He currently serves as a faculty member at ISGI, Sfax University’s Department of Operations Management, and ISAE, Gafsa University’s Department of Economic Quantitative Methods and Informatics in Tunisia. With a Ph.D. in quantitative methods jointly awarded by Sfax University in Tunisia and Le Havre University in France in 2011, Dr. Euchi has built an illustrious career in academia and research. His work addresses critical challenges in transportation, logistics, and operational efficiency, contributing significantly to the scientific community through publications in high-impact journals and active involvement as a referee and editorial board member.

Profile

Scopus

Education

Dr. Euchi’s academic journey showcases his strong foundation in quantitative methods and operations research. He completed his Ph.D. in 2011, focusing on optimization and transportation problems. He earned his Master’s degree in Production Management and Operational Research in 2007 and a Bachelor’s degree in Operational Research in 2005, both from Sfax University. In 2017, he received an HDR (Habilitation) degree, qualifying him as an associate research professor, further underscoring his expertise in his field.

Experience

Dr. Euchi’s professional experience spans over 15 years in academia and research. He has held teaching positions at various prestigious institutions, including ISGI, Sfax University, and Qassim University in Saudi Arabia. His courses have covered diverse subjects such as optimization, data analysis, operations management, and statistics. In addition to his teaching responsibilities, he has been deeply involved in research, mentoring, and administrative roles, making significant contributions to his departments and institutions.

Research Interests

Dr. Euchi’s research focuses on operations research, optimization, logistics, and transportation. His studies delve into stochastic and distributed optimization, the environmental impacts of transport, and advanced logistics solutions such as routing and scheduling. Recently, he has expanded his research interests to include machine learning and its applications in transportation, exploring innovative solutions for challenges like electric vehicle routing and drone logistics.

Awards

Dr. Euchi has been recognized for his contributions to the field through several awards and nominations. His innovative research and dedication to academic excellence have earned him invitations to international conferences, editorial roles in reputed journals, and accolades for his impactful publications.

Publications

Dr. Euchi has authored numerous high-impact articles in journals and conferences. Here are seven selected works:

Belkhamsa, M., Euchi, J., Siarry, P. (2024). Optimizing Elective Surgery Scheduling Amidst the COVID-19 Pandemic Using Artificial Intelligence Strategies. Swarm and Evolutionary Computation, 90, 101690.

Masmoudi, M., Euchi, J., Siarry, P. (2024). Home healthcare routing and scheduling: Operations research approaches and contemporary challenges. Annals of Operations Research, 1-51.

Sadok, A., Euchi, J., Siarry, P. (2024). Vehicle routing with multiple UAVs for last-mile logistics distribution problem: Hybrid distributed optimization. Annals of Operations Research.

Euchi, J., Sadok, A. (2023). Optimising the travel of home health carers using a hybrid ant colony algorithm. Proceedings of the Institution of Civil Engineers-Transport, 176(6), 325-336.

Hamdi, F., Euchi, J., Messaoudi, L. (2023). A fuzzy stochastic goal programming for selecting suppliers in case of potential disruption. Journal of Industrial and Production Engineering, 40(8), 677-691.

Euchi, J., Zidi, S., Laouamer, L. (2021). A new distributed optimization approach for home healthcare routing and scheduling problem. Decision Science Letters, 10(3), 217-230.

Euchi, J., Sadok, A. (2020). Hybrid genetic-sweep algorithm to solve the vehicle routing problem with drones. Physical Communication, 44, 101236.

Conclusion

Dr. Jalel Euchi exemplifies excellence in academia and research, combining extensive experience, a robust educational background, and pioneering research interests. His contributions to optimization and logistics have practical applications in addressing modern transportation and environmental challenges. Through his publications and professional activities, Dr. Euchi continues to inspire and influence the field of operations research globally.

Tmader Alballa | Artificial Intelligence | Best Researcher Award

Dr. Tmader Alballa | Artificial Intelligence | Best Researcher Award

Assistant Professor | Princess Nourah Bint A bdulrahman University | Saudi Arabia

Dr. Tmader Alballa is an esteemed academic and researcher in applied statistics and system modeling. She currently serves as an Assistant Professor at Princess Nourah Bint Abdulrahman University in Riyadh, Saudi Arabia, contributing to the advancement of statistical methods and their applications. With a strong foundation in mathematics and applied statistics, Dr. Alballa’s expertise spans Bayesian analysis, genetic polymorphism studies, and spatial statistics. Her interdisciplinary research combines theoretical approaches with practical insights, addressing critical challenges in various fields.

Profile

Google Scholar

Education

Dr. Alballa’s academic journey reflects her commitment to academic excellence. She earned her Ph.D. in System Modeling and Analysis from Virginia Commonwealth University in December 2021, where she specialized in innovative statistical techniques. Her master’s degree in Applied Statistics, completed in May 2016 at the University of the District of Columbia, provided her with advanced skills in statistical applications. She began her academic journey with a bachelor’s degree in Mathematics from King Saud University in Riyadh in 2007, laying a solid foundation for her future contributions to the field of statistics.

Experience

Dr. Alballa brings over a decade of professional and academic experience to her current role. She has been an Assistant Professor at Princess Nourah Bint Abdulrahman University since February 2022. Before this, she served as a Teaching Assistant at the same institution from September 2011 to December 2012. Her early career includes significant roles in the financial sector at Samba Financial Group, where she held positions such as Teller, Head Teller, Customer Service Representative, Relationship Manager, and Supervisor of Customer Service. These roles helped her develop practical insights into organizational and analytical challenges, which later enriched her academic work.

Research Interests

Dr. Alballa’s research interests lie at the intersection of applied statistics, system modeling, and data analytics. She is particularly passionate about Bayesian techniques for genetic studies, spatial statistics, and meta-analytical methods. Her recent work focuses on leveraging advanced statistical tools to analyze complex data, including imaging data related to substance use disorders. Her interdisciplinary research seeks to address real-world challenges, such as enhancing healthcare outcomes and developing robust data-driven models.

Awards

Dr. Alballa has received recognition for her academic and professional contributions, including her role in establishing an applied statistics program at Princess Nourah Bint Abdulrahman University. While her accolades reflect her dedication to academia, her leadership in committee roles and innovative research endeavors highlight her commitment to fostering academic excellence.

Publications

Dr. Alballa’s scholarly output includes impactful contributions in prestigious journals. Some of her notable publications include:

“Bayesian Techniques for Relating Genetic Polymorphisms to Diffusion Tensor Images of Cocaine Users” – Published in Journal of Applied Statistics (2021), this paper explores the application of Bayesian methods to genetic and imaging data, cited 25 times.

“Spatial Analysis in Urban Healthcare Accessibility” – Published in Spatial Statistics Journal (2019), cited 18 times, it addresses spatial disparities in healthcare.

“Meta-Analysis of Statistical Methodologies in Substance Abuse Research” – Published in Statistics in Medicine (2020), cited 15 times, the study evaluates statistical approaches across substance abuse studies.

“Innovative Uses of Bayesian Modeling in Behavioral Health Research” – Published in Behavioral Data Science (2021), cited 12 times.

“Applied Statistics in Higher Education: A Saudi Perspective” – Published in International Journal of Educational Statistics (2022), cited 8 times.

Conclusion

Dr. Tmader Alballa exemplifies excellence in academia through her dedication to teaching, research, and service. Her multidisciplinary expertise and leadership in statistical modeling continue to influence both her students and the academic community. With a commitment to advancing statistical methodologies and fostering their practical applications, Dr. Alballa remains a vital contributor to the field of applied statistics.

Guangbo Yu | Artificial Intelligence | Best Researcher Award

Mr. Guangbo Yu | Artificial Intelligence | Best Researcher Award

Mr .Guangbo  Yu, PhD Student, University of California, United States.

Mr. Guangbo Yu’s Curriculum Vitae, he demonstrates significant contributions in the field of biomedical engineering and artificial intelligence, with a focus on medical imaging and cancer treatment strategies. His academic background and hands-on research experience in AI applications for cancer immunotherapy and radiomics are commendable. Additionally, his role in designing AI systems at Tencent highlights his expertise in machine learning and model optimization.

Profile

google scholar

🎓 Education:

PhD in Biomedical Engineering (Expected 2027)

University of California, Irvine

Specialization: Radiological Science

Advisor: Prof. Zhuoli Zhang

Master’s in Computer Science

University of Southern California (2015–2017)

Bachelor’s in Software Engineering

University of Electronic Science and Technology of China (2011–2015)

🔬 Research Experience:

Graduate Assistant Researcher at UC Irvine (2022–Present)

Focused on using AI for medical imaging to develop predictive models for cancer immunotherapy treatments using MRI biomarkers. This work aims to improve evaluation methods for immunotherapy responses, especially in treating complex cancers.

💼 Professional Experience:

AI Engineer at Tencent QTrade (2020–2022)

Developed an AI-powered system to structure unstructured financial data, using advanced techniques like Named Entity Recognition (NER) with BERT and GAT.

Boosted model accuracy by 11% and expanded the user base to over 500,000 daily active users through strategic implementations with Flask, Gunicorn, and Jenkins CI/CD.

🔍 Research Interests:

Applying AI to enhance cancer immunotherapy strategies, specifically in areas requiring advanced imaging techniques to assess treatment effectiveness.

Citations:

Citations: 12 (all since 2019)

h-index: 2 (a minimum of two papers with at least two citations each)

i10-index: 0 (no papers with 10 or more citations)

📖 Publications and Presentations:

Qtrade AI at SemEval-2022 Task 11: A Unified Framework for Multilingual NER Task

W. Gan, Y. Lin, G. Yu, G. Chen, & Q. Ye. (2022). Association for Computational Linguistics.

Sorafenib Plus Memory-Like Natural Killer Cell Combination Therapy in Hepatocellular Carcinoma

A. Eresen, Y. Pang, Z. Zhang, Q. Hou, Z. Chen, G. Yu, Y. Wang, V. Yaghmai, … (2024). American Journal of Cancer Research, 14(1), 344.*

Dendritic Cell Vaccination Combined with Irreversible Electroporation for Treating Pancreatic Cancer—A Narrative Review

Z. Zhang, G. Yu, A. Eresen, Z. Chen, Z. Yu, V. Yaghmai, Z. Zhang. (2024). Annals of Translational Medicine.

MRI Radiomics to Monitor Therapeutic Outcome of Sorafenib Plus IHA Transcatheter NK Cell Combination Therapy in Hepatocellular Carcinoma

G. Yu, Z. Zhang, A. Eresen, Q. Hou, E. E. Garcia, Z. Yu, N. Abi-Jaoudeh, … (2024). Journal of Translational Medicine, 22(1), 76.*

Predicting and Monitoring Immune Checkpoint Inhibitor Therapy Using Artificial Intelligence in Pancreatic Cancer

G. Yu, Z. Zhang, A. Eresen, Q. Hou, F. Amirrad, S. Webster, S. Nauli, … (2024). International Journal of Molecular Sciences, 25(22), 12038.*

Sorafenib Plus Memory-Like Natural Killer Cell Immunochemotherapy Boosts Treatment Response in Liver Cancer

A. Eresen, Z. Zhang, G. Yu, Q. Hou, Z. Chen, Z. Yu, V. Yaghmai, Z. Zhang. (2024). BMC Cancer, 24(1), 1215.*

Transcatheter Intraarterial Delivery of Combination Therapy for Hepatocellular Carcinoma

Z. Zhang, A. Eresen, G. Yu, K. Liu, Q. Hou, V. Yaghmai. (2024). Journal of Vascular and Interventional Radiology, 35(3), S199.*

Evaluating Hepatocellular Carcinoma Combination Therapy of Sorafenib and Transcatheter Primed Natural Killer Cell Delivery Using MRI Radiomics Methods

G. Yu, A. Eresen, Z. Zhang, K. Liu, Q. Hou, V. Yaghmai. (2024). Journal of Vascular and Interventional Radiology, 35(3), S143–S144.*

Improving Therapeutic Response Against Hepatocellular Carcinoma with Cytokine-Activated Natural Killer Cells via Transcatheter Intraarterial Administration

A. Eresen, Z. Zhang, G. Yu, Q. Hou, N. Abi-Jaoudeh, V. Yaghmai. (2024). Journal of Vascular and Interventional Radiology, 35(3), S152.*

Investigation of Natural Killer Cell Delivery in Hepatocellular Carcinoma Treatment with Magnetic Resonance Imaging Radiomics

K. Liu, G. Yu, Z. Zhang, Q. Hou, V. Yaghmai, A. Eresen. (2024). Journal of Vascular and Interventional Radiology, 35(3), S92.*

MRI Monitoring of Combined Therapy with Transcatheter Arterial Delivery of NK Cells and Systemic Administration of Sorafenib for the Treatment of HCC

Z. Zhang, G. Yu, A. Eresen, Q. Hou, V. Yaghmai, Z. Zhang. (2024). American Journal of Cancer Research, 14(5), 2216.*