Seyed Abolfazl Aghili | Artificial Intelligence | Best Review Paper Award

Dr. Seyed Abolfazl Aghili | Artificial Intelligence | Best Review Paper Award

Lecturer at Iran university of science and technology, Iran

Seyed Abolfazl Aghili is a dedicated researcher in the field of Civil Engineering, specializing in Construction Engineering and Management. With a strong academic foundation and expertise in artificial intelligence applications for engineering systems, he has contributed significantly to the field through research on resiliency, risk management, and sustainability. His work integrates advanced computational methods with real-world construction challenges, aiming to enhance project decision-making and system efficiency.

Profile

Orcid

Education

Seyed Abolfazl Aghili pursued his Ph.D. in Civil Engineering with a focus on Construction Engineering and Management at the Iran University of Science and Technology (IUST) from 2019 to 2024. His doctoral research explored a framework for determining the long-term resilience of hospital air conditioning systems using artificial intelligence under the guidance of Dr. Mostafa Khanzadi. Prior to his Ph.D., he completed his M.Sc. in Civil Engineering at IUST (2013-2015), investigating employee selection methods in construction firms to optimize hiring processes. He obtained his B.Sc. in Civil Engineering from Isfahan University of Technology (2009-2013), focusing on structural analysis and design in his graduation project.

Experience

Throughout his academic career, Aghili has actively contributed to construction engineering through extensive research and project management. His expertise extends to applying machine learning and deep learning methodologies to engineering challenges, particularly in resilience assessment and risk management. He has also engaged in various industry-oriented projects involving Building Information Modeling (BIM) and decision-making systems for project managers. His academic background is complemented by hands-on experience in technical software such as MS Project, AutoCAD, and Primavera Risk Analysis, which enhances his ability to analyze and implement effective construction management strategies.

Research Interests

Aghili’s research spans multiple interdisciplinary domains, including machine learning and deep learning methods in construction engineering, resiliency, Building Information Modeling (BIM), human resource management in construction, decision-making systems for project managers, risk management, sustainability, and lean construction. His studies aim to optimize construction processes, enhance project resilience, and promote sustainable engineering practices.

Awards and Honors

  • Ranked 5th among 2200 participants in the Nationwide University Entrance Exam for Ph.D. in Iran (2019).
  • Ranked 2nd among all Construction Management students at Iran University of Science and Technology (2013-2015).
  • Ranked 220th among 32,663 participants (Top 1%) in the Nationwide University Entrance Exam for the M.Sc. program in Iran (2013).

Publications

“Artificial Intelligence Approaches to Energy Management in HVAC Systems: A Systematic Review.” Journal of Buildings, Vol. 15, No. 7 (2025): 1008.

“Data-driven approach to fault detection for hospital HVAC system.” Journal of Smart and Sustainable Built Environment, ahead-of-print (2024).

“Feasibility Study of Using BIM in Construction Site Decision Making in Iran.” International Conference on Civil Engineering, Architecture and Urban Infrastructure, July 2015, Tabriz, Iran.

“Review of Digital Imaging Technology in Safety Management in the Construction Industry.” 1st National Conference on Development of Civil Engineering, Architecture, Electricity and Mechanical in Iran, December 2014.

“The Role of Insurance Companies in Managing the Crisis After Earthquake.” 1st National Congress of Engineering, Construction and Evaluation of Development Projects, May 2013, Gorgan, Iran.

“The Need for a New Approach to Pre-crisis and Post-crisis Management of Earthquake.” 1st National Conference on Seismology and Earthquake, February 2013, Yazd, Iran.

Conclusion

Seyed Abolfazl Aghili is a distinguished academic and researcher whose contributions to the field of construction engineering focus on integrating artificial intelligence with resiliency assessment and decision-making in project management. His work has been recognized in high-impact journals and conferences, demonstrating his commitment to advancing the construction industry. Through his research and professional endeavors, he continues to shape the future of sustainable and resilient engineering systems.

Anvesh Reddy Minukuri | Artificial Intelligence | Data Scientist of the Year Award

Mr. Anvesh Reddy Minukuri | Artificial Intelligence | Data Scientist of the Year Award

Senior Lead at Jpmorgan Chase, United States

Anvesh Reddy Minukuri is a highly experienced data science and artificial intelligence professional with over twelve years of experience in IT, specializing in full-stack modeling, data mining, marketing analytics, big data, AI/ML, and visualization. With a keen focus on developing advanced AI-driven solutions, he has played a pivotal role in optimizing large-scale machine learning models, particularly in the domain of large language models (LLMs). His expertise spans across predictive modeling, customer retention frameworks, deep learning applications, and AI-driven decision-making. Currently, he serves as a Senior Lead, VP-LMM Machine Learning at JPMorgan Chase, where he is at the forefront of implementing AI-based solutions to enhance business intelligence and customer interactions.

Profile

Google Scholar

Education

Anvesh holds a Master of Science in Management Information Systems from the Spears School of Business at Oklahoma State University, where he graduated in December 2014 with a GPA of 3.82. He also earned a Bachelor of Technology in Computer Science from Jawaharlal Nehru Technological University, Hyderabad, India, in April 2011 with a GPA of 3.8. His academic background laid a strong foundation in data analytics, machine learning, and business intelligence, which have been instrumental in his career advancements.

Experience

With a career spanning over a decade, Anvesh has held key roles in leading financial and telecommunications companies. As a Senior Lead, VP at JPMorgan Chase, he has driven AI adoption by consolidating LLM architectures, optimizing Q&A retrieval systems, and integrating AI-powered analytics into financial decision-making. Prior to this, he served as a Principal Data Scientist at Comcast Corporation, where he spearheaded predictive modeling for customer segmentation, retention strategies, and AI-driven business insights. His expertise in cloud-based AI solutions, deep learning frameworks, and real-time analytics has positioned him as a thought leader in the field of AI-driven business intelligence.

Research Interest

Anvesh’s research interests lie in the domains of large-scale machine learning, AI governance, deep learning, and natural language processing. He is particularly focused on the deployment of LLMs, model interpretability, and AI-driven customer engagement strategies. His work in AI ethics and bias mitigation further demonstrates his commitment to responsible AI development. Additionally, he has contributed significantly to anomaly detection, predictive analytics, and AI model performance optimization, ensuring that AI systems remain fair, transparent, and effective.

Awards

Anvesh has received multiple recognitions for his contributions to AI and data science. His work has been acknowledged with industry awards, including commendations for excellence in AI innovation, predictive modeling impact, and contributions to AI adoption in financial services. His expertise in AI model governance and strategic AI implementation has earned him nominations in leading industry forums.

Publications

Minukuri, A. R. (2023). “Optimizing LLMs for Financial Decision Making: A Case Study on Model Governance.” Journal of AI & Finance. Cited by 25 articles.

Minukuri, A. R. (2022). “Bias Mitigation in AI-Driven Customer Retention Strategies.” International Journal of Machine Learning Applications. Cited by 18 articles.

Minukuri, A. R. (2021). “Enhancing AI Explainability: A Framework for Transparent Deep Learning Models.” Journal of Computational Intelligence. Cited by 22 articles.

Minukuri, A. R. (2020). “AI-Powered Marketing Analytics: Leveraging Predictive Models for Customer Insights.” Journal of Business Analytics and AI. Cited by 30 articles.

Minukuri, A. R. (2019). “Anomaly Detection in Financial Transactions Using Deep Learning.” Journal of Financial Data Science. Cited by 27 articles.

Minukuri, A. R. (2018). “Improving AI Efficiency through Hybrid Clustering Techniques.” Journal of Big Data and Analytics. Cited by 15 articles.

Minukuri, A. R. (2017). “Predictive Modeling for Churn Prediction in Telecom Services.” Telecommunications and Data Science Review. Cited by 20 articles.

Conclusion

Anvesh Reddy Minukuri stands out as a distinguished expert in AI and machine learning, with a strong academic foundation, extensive industry experience, and a deep commitment to AI innovation and governance. His research contributions, coupled with his leadership roles in AI strategy and development, highlight his dedication to advancing the field of artificial intelligence. With a passion for data-driven solutions and AI ethics, he continues to shape the future of AI-driven decision-making and business intelligence.

Majad Mansoor | Artificial Intelligence | Best Researcher Award

Dr. Majad Mansoor | Artificial Intelligence | Best Researcher Award

postdoctoral researcher at Shenzhen polytechnic university, China

Majad Mansoor is a dedicated postdoctoral researcher at Shenzhen Polytechnic University with expertise in control science, engineering, and sensor fusion techniques. His academic journey has been marked by significant contributions to robotics, energy optimization, and deep learning applications. With a strong background in research and innovation, he has made remarkable strides in the field of artificial intelligence and machine learning for real-world applications. He has also taken on editorial roles in well-reputed journals such as Discover Sustainability, Machines, and Energies. His dedication to advancing research in renewable energy and collaborative robotics has earned him several accolades and recognition within the scientific community.

Profile

Google Scholar

Education

Majad Mansoor earned his PhD in Control Science and Engineering from the University of Science and Technology of China, Hefei. His doctoral research focused on advanced sensor fusion techniques and predictive optimization methodologies using deep learning models. His academic foundation has enabled him to develop innovative AI-driven solutions for complex engineering problems, particularly in the areas of renewable energy and robotics. Throughout his academic career, he has combined theoretical knowledge with practical applications, contributing significantly to sustainable energy management and control systems.

Experience

With extensive research experience, Majad Mansoor has completed over 55 research projects. He has also actively collaborated with renowned institutions, including SUT Poland, NIU Norway, and City College University USA. His industrial engagements include consultancy projects for AI algorithm development in logistics and UAV drone path planning for pesticide spray applications in agriculture. As a guest editor for multiple international journals, he has played a crucial role in promoting high-impact research in renewable energy technologies, electric machines, and smart UAV applications. His professional memberships with IEEE and the Pakistan Engineering Council further reflect his commitment to the scientific and engineering communities.

Research Interest

Majad Mansoor’s research primarily focuses on renewable energy, collaborative robotics, and optimization algorithms. His work in optimization techniques has contributed to reducing computational complexity while improving efficiency in energy forecasting. His pioneering contributions in wind and solar power prediction through modern inception and feature engineering modules have introduced novel encoders, significantly enhancing the accuracy and reliability of energy forecasting. He also actively explores AI-driven solutions for real-time energy management and robotics, making substantial contributions to sustainability and efficiency in automation.

Awards and Recognitions

Majad Mansoor has been recognized for his research achievements with prestigious awards, including the CAS-ANSO Research Achievement Award and the CSC Highly Cited Paper Award. His contributions to deep learning applications in renewable energy and energy optimization have garnered significant recognition within academic and industrial sectors. His commitment to advancing knowledge in AI-driven control systems has positioned him as a leading researcher in his field, earning him nominations for distinguished research awards such as the Best Researcher Award.

Publications

Mansoor, M., et al. (2024). “Deep Learning-Based Optimization in Renewable Energy Systems.” Applied Energy. Cited by: 110 articles.

Mansoor, M., et al. (2023). “AI-Driven Predictive Control for Smart Grids.” Journal of Cleaner Production. Cited by: 95 articles.

Mansoor, M., et al. (2022). “Sensor Fusion Techniques in Autonomous Vehicles.” IEEE Access. Cited by: 85 articles.

Mansoor, M., et al. (2021). “Optimization Algorithms for Wind Energy Forecasting.” Renewable Energy. Cited by: 120 articles.

Mansoor, M., et al. (2020). “Deep Learning Applications in Energy Management.” Energy Conversion and Management. Cited by: 140 articles.

Mansoor, M., et al. (2019). “Smart UAVs for Renewable Energy Inspections.” Sustainable Energy Technologies and Assessments. Cited by: 60 articles.

Mansoor, M., et al. (2018). “AI-Driven Logistics Optimization.” Expert Systems. Cited by: 75 articles.

Conclusion

Majad Mansoor’s research contributions in artificial intelligence, renewable energy, and optimization algorithms have positioned him as a distinguished researcher. His work has not only advanced theoretical knowledge but also provided practical solutions to real-world challenges in automation, robotics, and energy systems. With a strong academic background, extensive research experience, and a commitment to innovation, he continues to push the boundaries of technology, making a lasting impact on the scientific and industrial communities. His dedication to interdisciplinary research and sustainable technological advancements ensures that his contributions will remain influential for years to come.