Ali Mehrizi | Machine Learning | Best Paper Award

Dr. Ali Mehrizi | Machine Learning | Best Paper Award

Lecturer at Ferdowsi University of Mashhad, Iran.

Ali Mehrizi is a distinguished researcher and lecturer in Artificial Intelligence (AI) and Machine Learning at Ferdowsi University of Mashhad (FUM), Iran. With a wealth of experience exceeding a decade, his expertise spans adaptive probabilistic models, distributed learning, multi-target tracking, time series forecasting, and Gaussian Mixture Probability Hypothesis Density (GMPHD) methods. Dr. Mehrizi has published multiple impactful articles in renowned journals such as Expert Systems with Applications and Fuzzy Sets and Systems. He is deeply committed to advancing the understanding and application of AI techniques and has successfully mentored numerous students in areas ranging from Data Mining to Advanced Operating Systems.

Profile

Google Scholar

Education

Dr. Mehrizi educational background is rooted in Artificial Intelligence. He is currently pursuing a Ph.D. in AI at Ferdowsi University of Mashhad (2017–2024), under the supervision of Professor H. Sadoghi Yazdi. His dissertation focuses on financial time series forecasting using experience-based adaptive learning, a project that has already produced several publications in top-tier journals. Previously, he earned an M.Sc. in AI from Azad University of Mashhad (2011–2013), where he worked on adaptive semi-supervised learning, optimizing self-organizing map models. His early academic journey began with a B.Sc. in Computer Engineering from the University of Birjand, later transferring to Azad University of Mashhad.

Experience

Dr. Mehrizi professional career spans various roles, beginning in 2001 when he became the IT & Network Manager at the Faculty of Engineering. In this capacity, he significantly improved the system performance and network management. Since 2011, he has been involved in research in AI and Machine Learning, contributing to the development of machine learning models and publishing his findings in high-impact journals. He has also served as a lecturer since 2013, teaching a variety of undergraduate and graduate courses, including Data Mining, Operating Systems, and Advanced Operating Systems. As a researcher, he has mentored students in their theses, particularly in machine learning and pattern recognition, fostering the next generation of AI experts.

Research Interests

Dr. Mehrizi  research interests are broad, focusing on several key areas within the domain of AI. His work on distributed adaptive learning, particularly through Diffusion LMS and Diffusion RLS, aims to optimize decentralized data processing for dynamic systems. In addition, he has contributed to probabilistic and hypothesis-based learning, exploring the use of Gaussian Mixture Probability Hypothesis Density (GMPHD) models for uncertainty-based learning and tracking. His research also delves into time series analysis and forecasting, with a particular focus on financial markets. Dr. Mehrizi’s interest in multi-target tracking extends to real-time tracking algorithms, emphasizing performance in noisy and incomplete data environments. He is also committed to semi-supervised learning, exploring hybrid methods that bridge supervised and unsupervised learning approaches in scenarios with limited labeled data.

Awards

Dr. Mehrizi contributions to the fields of AI and machine learning have earned him recognition in various academic and professional circles. He has been nominated for multiple awards for his research, particularly in adaptive learning and time series forecasting. His work is highly regarded in the academic community, and he continues to push the boundaries of AI research, especially in the areas of distributed learning and multi-target tracking.

Publications

Dr. Mehrizi has authored several articles in well-respected journals in AI and machine learning. His key publications include:

Mehrizi, A., & Yazdi, H. S. (2019). “Adaptive probabilistic methods for long-term financial time series forecasting.” Expert Systems with Applications.

Mehrizi, A., & Yazdi, H. S. (2020). “Semi-supervised learning using GSOM for adaptive classification.” Fuzzy Sets and Systems.

Mehrizi, A. (2022). “Distributed adaptive learning for dynamic systems using Diffusion LMS and RLS.” Emerging Markets Finance and Trade.

Mehrizi, A., & Yazdi, H. S. (2021). “Gaussian Mixture Probability Hypothesis Density for multi-target tracking.” Journal of Machine Learning Research.

These publications have been cited extensively by various researchers in the fields of machine learning, AI, and financial forecasting, underscoring Dr. Mehrizi’s significant impact on the academic community.

Conclusion

Dr. Ali Mehrizi is a leading researcher and educator in the field of Artificial Intelligence and Machine Learning, with a deep commitment to advancing these fields through his innovative research. His extensive academic background and his practical experience in both teaching and real-world applications have made him an invaluable asset to Ferdowsi University of Mashhad. With a strong focus on adaptive learning, probabilistic models, and time series forecasting, Dr. Mehrizi continues to contribute to the evolution of AI. His work not only shapes academic research but also provides vital insights into practical AI solutions for industries like finance and engineering. As a mentor and educator, he remains dedicated to shaping the future of AI professionals and researchers.

Ouafae El Melhaoui | Machine Learning | Best Researcher Award

Dr. Ouafae El Melhaoui | Machine Learning | Best Researcher Award

Electronic and System Laboratory National School of Applied Sciences, ENSA Mohammed first University, Morocco

Dr. Ouafae El Melhaoui is a distinguished researcher in the field of electronics and artificial intelligence, specializing in data classification through innovative AI approaches. With extensive experience in teaching and research, she has contributed significantly to the development of machine learning algorithms, deep learning models, genetic optimization techniques, and convolutional neural networks. Her expertise spans various domains, including signal processing, data mining, and fuzzy classification. Dr. El Melhaoui’s academic journey and professional career reflect her commitment to advancing AI-driven methodologies for complex data analysis.

Profile

Orcid

Education

Dr. El Melhaoui earned her Ph.D. in Electronics with a specialization in artificial intelligence from Mohammed Premier University in 2013. Her doctoral research focused on developing new data classification techniques through advanced signal processing methods. Prior to that, she obtained a Diploma of Advanced Studies (D.E.S.A) in Physics and Technology of Microelectronic Devices and Sensors from Cadi Ayyad University in 2007, where she explored the structural and optical properties of boron nitride. She also holds a Bachelor’s degree in Electronics from Mohammed Premier University, solidifying her strong foundation in electronic systems and computational methodologies.

Professional Experience

Dr. El Melhaoui has an extensive teaching and research background, having worked at various academic institutions. She has supervised numerous undergraduate and graduate projects, focusing on machine learning applications, image processing, and signal analysis. Her professional journey includes collaborations with research laboratories such as LETSER and LETAS, where she contributed to projects in electromagnetism, renewable energy, and electronic systems. She has also been involved in industrial collaborations, developing AI-based solutions for quality control, object recognition, and signal denoising in real-world applications.

Research Interests

Dr. El Melhaoui’s research focuses on artificial intelligence applications in electronics and signal processing. She is particularly interested in computer vision, deep learning, convolutional neural networks, data mining, and optimization algorithms. Her work involves developing novel classification methods for complex data structures, integrating evolutionary computing techniques, and enhancing predictive analytics for diverse applications. Her contributions aim to bridge the gap between theoretical advancements in AI and their practical implementations in engineering and medical diagnostics.

Awards and Recognitions

Dr. El Melhaoui has received several accolades for her research contributions. She has been recognized for her innovative approaches in AI-driven signal processing and has participated in multiple national and international scientific conferences. Her work has been instrumental in advancing knowledge in AI-based classification techniques, earning her a reputation as a leading researcher in her field.

Publications

Novel Classification Algorithm for Complex Class Structures, e-Prime – Advances in Electrical Engineering, Electronics and Energy (Under Review, 2024). Scopus Q1, SJR=0.65.

Hybridization Denoising Method for EMG Signals Using EWT and EMD Techniques, International Journal on Engineering Applications (Under Review, 2024). Scopus Q2, SJR=0.28.

A Novel Signature Recognition System Using a Convolutional Neural Network and Fuzzy Classifier, International Journal of Computational Vision and Robotics (2024). Scopus Q4, SJR=0.21.

Improved Signature Recognition System Based on Statistical Features and Fuzzy Logic, e-Prime – Advances in Electrical Engineering, Electronics and Energy (2024). Scopus Q1, SJR=0.65.

Optimized Framework for Signature Recognition Using Genetic Algorithm, Loci Method, and Fuzzy Classifier, Engineered Science Publisher (2024). Scopus Q1, SJR=0.87.

Design of a Patch Antenna for High-Gain Applications Using One-Dimensional Electromagnetic Band Gap Structures, Engineered Science Publisher (2024). Scopus Q1, SJR=0.87.

Enhancing Signature Recognition Performance through Convolutional Neural Network and K-Nearest Neighbors, International Journal of Technical and Physical Problems of Engineering (2023). Scopus Q3, SJR=0.23.

Conclusion

Dr. Ouafae El Melhaoui’s career exemplifies a strong dedication to research and education in the fields of electronics and artificial intelligence. Her contributions to AI-based classification and signal processing have led to significant advancements in the domain. With a solid academic background, extensive teaching experience, and a robust publication record, she continues to drive innovation in machine learning, deep learning, and AI applications. Her work not only enhances theoretical models but also provides practical solutions to complex engineering problems, making a lasting impact in the field.

Ameni Chetouane | Computer Science | Best Researcher Award

Dr. Ameni Chetouane | Computer Science | Best Researcher Award

Contractual assistant at Higher Institute of Computer Science – Tunisia (ISI), Tunisia

Ameni Chetouane is a dedicated doctoral student specializing in computer science, currently pursuing her PhD at the Ecole Nationale des Sciences de l’Informatique (ENSI) at the University of Manouba, Tunisia. Her academic journey began with a Bachelor’s in Applied Computer Networks followed by a Master’s degree, where she concentrated on network technologies and video analysis for traffic congestion detection. She is deeply involved in research aimed at securing Software Defined Networking (SDN) systems against cyber-attacks using Artificial Intelligence (AI) methods.

Profile

Orcid

Education

Ameni’s education spans several years, starting with a Bachelor’s degree in Applied Computer Networks from the Institut Supérieur d’Informatique de Mahdia (ISIMA) in 2014. She pursued two Master’s degrees, one focusing on network technologies and telecommunications, and the other on research in computer science, both from the University of Carthage’s Faculté des Sciences de Bizerte (FSB). Her doctoral studies, commenced in 2021, are focused on the application of AI for intrusion detection systems (IDS) in SDN environments, with a goal to combat cyber-attacks.

Experience

Ameni has gained practical teaching experience as a part-time instructor at the Institut Supérieur des Etudes Technologiques de Bizerte and the Faculté des Sciences de Bizerte, where she taught subjects such as database engineering and object-oriented programming. Her internships, including research at LaBRI, University of Bordeaux, and her professional project at Millénia Engineering, have allowed her to apply theoretical knowledge in real-world network and software development projects.

Research Interests

Ameni’s research is primarily focused on the security of SDN environments, particularly in utilizing AI for effective threat detection and mitigation. Her doctoral thesis specifically explores AI-driven solutions for securing SDN systems against Distributed Denial of Service (DDoS) attacks. She aims to improve the performance of IDSs by incorporating machine learning (ML) and continual learning methods into SDN security architectures, ensuring adaptive and real-time defenses against evolving threats.

Awards

Ameni has earned recognition for her academic and research excellence, notably her significant contributions to the field of SDN and AI. Her work has been presented at various international conferences, contributing to advancements in network security research. While specific awards are not listed, her impact within the academic community, through her publications and conference participations, is considerable.

Publications

Ameni Chetouane, Sabra Mabrouk, Imen Jemili, and Mohamed Mosbah. “A comparative study of vehicle detection methods in a video sequence.” International Workshop on Distributed Computing for Emerging Smart Networks, Springer, 2019.

Ameni Chetouane, Sabra Mabrouk, Imen Jemili, and Mohamed Mosbah. “Vision-based vehicle detection for road traffic congestion classification.” Concurrency and Computation: Practice and Experience, 2022.

Ameni Chetouane, Sabra Mabrouk, and Mohamed Mosbah. “Traffic congestion detection: Solutions, open issues, and challenges.” International Workshop on Distributed Computing for Emerging Smart Networks, Springer, 2020.

Ameni Chetouane and Kamel Karoui. “A survey of machine learning methods for DDoS threats detection against SDN.” International Workshop on Distributed Computing for Emerging Smart Networks, Springer, 2022.

Ameni Chetouane, Kamel Karoui, and Ghayth Nemri. “An intelligent ML-based IDS framework for DDoS detection in the SDN environment.” International Conference on Advances in Mobile Computing and Multimedia Intelligence, Springer, 2022.

Ameni Chetouane and Kamel Karoui. “DDoS detection approach based on continual learning in the SDN environment.” International Conference on Hybrid Intelligent Systems, Springer, 2022.

Ameni Chetouane and Kamel Karoui. “Risk-based intrusion detection system in Software Defined Networking.” Concurrency and Computation: Practice and Experience, 2023.

Conclusion

Ameni Chetouane stands out in her field with a robust educational background, strong professional experiences, and an ongoing commitment to researching the intersection of AI and SDN security. Through her published works, she has made significant contributions to securing networks using intelligent methods, focusing on solving complex cyber threats in modern network infrastructures. As she continues her research, her work promises to shape the future of AI-driven cybersecurity in SDN environments.

Mohamed Abdalzaher | Artificial Intelligence | Best Researcher Award

Assoc. Prof. Dr. Mohamed Abdalzaher | Artificial Intelligence | Best Researcher Award

Associate Professor at National Research Institute of Astronomy and Geophysics, Egypt

Mohamed Salah Abdalzaher is a distinguished researcher and academic with a strong focus on machine learning, deep learning, and seismology. He currently holds the position of Research Fellow at the Electrical Engineering Department of the American University of Sharjah (AUS) and is on leave from his role as Associate Professor in the Seismology Department at the National Research Institute of Astronomy and Geophysics (NRIAG) in Egypt. Abdalzaher’s work integrates advanced technologies such as machine learning and remote sensing with seismology, addressing issues related to earthquake prediction and disaster management.

Profile

Scopus

Education

Abdalzaher’s academic journey began with a Bachelor’s degree in Electronics and Communications Engineering from Obour High Institute of Engineering and Technology in 2008. He continued his studies with a Master’s degree from Ain Shams University, focusing on Electronics and Communications Engineering, before obtaining his PhD in Electronics and Communications Engineering from the Egypt-Japan University of Science and Technology in 2016. His postdoctoral research at Kyushu University, Japan, in 2019 contributed to his deepening expertise in machine learning applications and earthquake management technologies.

Experience

Abdalzaher’s professional experience spans both academia and research. As a Research Fellow at AUS, he is at the forefront of advancing machine learning applications in the field of electrical engineering. His role involves conducting cutting-edge research and supervising graduate students in their research projects. In addition, he serves as an Associate Professor at NRIAG, where he leads research efforts on seismic hazard assessments and Earthquake Engineering. He has supervised numerous PhD and MSc theses, contributing to the development of future experts in seismology and engineering.

Research Interest

Abdalzaher’s research interests are broad and multidisciplinary, covering topics such as machine learning, deep learning, cybersecurity, remote sensing, Internet of Things (IoT), and optimization techniques. His primary focus, however, is on the application of machine learning and artificial intelligence for earthquake prediction, seismic hazard assessment, and disaster management. He is also deeply engaged in using remote sensing technologies to monitor seismic activities and improve the accuracy of seismic event classification, with the aim of enhancing early warning systems and disaster response strategies.

Awards

Abdalzaher has received numerous awards and recognitions for his contributions to the fields of electrical engineering and seismology. His work on integrating machine learning with seismic monitoring systems has been widely recognized, contributing significantly to the advancement of earthquake early warning systems and seismic hazard prediction models. His publications, which include high-impact journal papers, reflect his contributions to the scientific community and his ongoing efforts to innovate in the fields of earthquake engineering and smart systems.

Publications

Sharshir, S.W., Joseph, A., Abdalzaher, M.S., et al. (2024). “Using multiple machine learning techniques to enhance the performance prediction of heat pump-driven solar desalination unit.” Desalination and Water Treatment.

Etman, A., Abdalzaher, M. S., et al. (2024). “A Survey on Machine Learning Techniques in Smart Grids Based on Wireless Sensor Networks.” IEEE ACCESS.

Habbak E. L., Abdalzaher, M. S., et al. (2024). “Enhancing the Classification of Seismic Events With Supervised Machine Learning and Feature Importance.” Scientific Report.

Abdalzaher, M. S., Soliman, M. S., & Fouda, M. M. (2024). “Using Deep Learning for Rapid Earthquake Parameter Estimation in Single-Station Single-Component Earthquake Early Warning System.” IEEE Transactions on Geoscience and Remote Sensing.

Krichen, M., Abdalzaher, M. S., et al. (2024). “Emerging technologies and supporting tools for earthquake disaster management: A perspective, challenges, and future directions.” Progress in Disaster Science.

Abdalzaher, M. S., Moustafa, S. R., & Yassien, M. (2024). “Development of smoothed seismicity models for seismic hazard assessment in the Red Sea region.” Natural Hazards.

Moustafa, S. S., Mohamed, G. E. A., Elhadidy, M. S., & Abdalzaher, M. S. (2023). “Machine learning regression implementation for high-frequency seismic wave attenuation estimation in the Aswan Reservoir area, Egypt.” Environmental Earth Sciences.

These publications have garnered attention from peers in the field, with many articles cited extensively, contributing to the evolution of seismic hazard assessment techniques and the integration of machine learning in the geophysical sciences.

Conclusion

Mohamed Salah Abdalzaher has established himself as a leading expert in the application of machine learning, deep learning, and remote sensing technologies to seismology and earthquake engineering. His work has greatly advanced seismic hazard assessments and earthquake early warning systems, utilizing innovative methods to enhance the accuracy of seismic predictions. Abdalzaher continues to push the boundaries of research, with a particular focus on optimizing and deploying machine learning algorithms for real-world disaster management applications. His academic and professional contributions make him a valuable asset to both the academic community and the broader scientific field.

Guangbo Yu | Artificial Intelligence | Best Researcher Award

Mr. Guangbo Yu | Artificial Intelligence | Best Researcher Award

Mr .Guangbo  Yu, PhD Student, University of California, United States.

Mr. Guangbo Yu’s Curriculum Vitae, he demonstrates significant contributions in the field of biomedical engineering and artificial intelligence, with a focus on medical imaging and cancer treatment strategies. His academic background and hands-on research experience in AI applications for cancer immunotherapy and radiomics are commendable. Additionally, his role in designing AI systems at Tencent highlights his expertise in machine learning and model optimization.

Profile

google scholar

🎓 Education:

PhD in Biomedical Engineering (Expected 2027)

University of California, Irvine

Specialization: Radiological Science

Advisor: Prof. Zhuoli Zhang

Master’s in Computer Science

University of Southern California (2015–2017)

Bachelor’s in Software Engineering

University of Electronic Science and Technology of China (2011–2015)

🔬 Research Experience:

Graduate Assistant Researcher at UC Irvine (2022–Present)

Focused on using AI for medical imaging to develop predictive models for cancer immunotherapy treatments using MRI biomarkers. This work aims to improve evaluation methods for immunotherapy responses, especially in treating complex cancers.

💼 Professional Experience:

AI Engineer at Tencent QTrade (2020–2022)

Developed an AI-powered system to structure unstructured financial data, using advanced techniques like Named Entity Recognition (NER) with BERT and GAT.

Boosted model accuracy by 11% and expanded the user base to over 500,000 daily active users through strategic implementations with Flask, Gunicorn, and Jenkins CI/CD.

🔍 Research Interests:

Applying AI to enhance cancer immunotherapy strategies, specifically in areas requiring advanced imaging techniques to assess treatment effectiveness.

Citations:

Citations: 12 (all since 2019)

h-index: 2 (a minimum of two papers with at least two citations each)

i10-index: 0 (no papers with 10 or more citations)

📖 Publications and Presentations:

Qtrade AI at SemEval-2022 Task 11: A Unified Framework for Multilingual NER Task

W. Gan, Y. Lin, G. Yu, G. Chen, & Q. Ye. (2022). Association for Computational Linguistics.

Sorafenib Plus Memory-Like Natural Killer Cell Combination Therapy in Hepatocellular Carcinoma

A. Eresen, Y. Pang, Z. Zhang, Q. Hou, Z. Chen, G. Yu, Y. Wang, V. Yaghmai, … (2024). American Journal of Cancer Research, 14(1), 344.*

Dendritic Cell Vaccination Combined with Irreversible Electroporation for Treating Pancreatic Cancer—A Narrative Review

Z. Zhang, G. Yu, A. Eresen, Z. Chen, Z. Yu, V. Yaghmai, Z. Zhang. (2024). Annals of Translational Medicine.

MRI Radiomics to Monitor Therapeutic Outcome of Sorafenib Plus IHA Transcatheter NK Cell Combination Therapy in Hepatocellular Carcinoma

G. Yu, Z. Zhang, A. Eresen, Q. Hou, E. E. Garcia, Z. Yu, N. Abi-Jaoudeh, … (2024). Journal of Translational Medicine, 22(1), 76.*

Predicting and Monitoring Immune Checkpoint Inhibitor Therapy Using Artificial Intelligence in Pancreatic Cancer

G. Yu, Z. Zhang, A. Eresen, Q. Hou, F. Amirrad, S. Webster, S. Nauli, … (2024). International Journal of Molecular Sciences, 25(22), 12038.*

Sorafenib Plus Memory-Like Natural Killer Cell Immunochemotherapy Boosts Treatment Response in Liver Cancer

A. Eresen, Z. Zhang, G. Yu, Q. Hou, Z. Chen, Z. Yu, V. Yaghmai, Z. Zhang. (2024). BMC Cancer, 24(1), 1215.*

Transcatheter Intraarterial Delivery of Combination Therapy for Hepatocellular Carcinoma

Z. Zhang, A. Eresen, G. Yu, K. Liu, Q. Hou, V. Yaghmai. (2024). Journal of Vascular and Interventional Radiology, 35(3), S199.*

Evaluating Hepatocellular Carcinoma Combination Therapy of Sorafenib and Transcatheter Primed Natural Killer Cell Delivery Using MRI Radiomics Methods

G. Yu, A. Eresen, Z. Zhang, K. Liu, Q. Hou, V. Yaghmai. (2024). Journal of Vascular and Interventional Radiology, 35(3), S143–S144.*

Improving Therapeutic Response Against Hepatocellular Carcinoma with Cytokine-Activated Natural Killer Cells via Transcatheter Intraarterial Administration

A. Eresen, Z. Zhang, G. Yu, Q. Hou, N. Abi-Jaoudeh, V. Yaghmai. (2024). Journal of Vascular and Interventional Radiology, 35(3), S152.*

Investigation of Natural Killer Cell Delivery in Hepatocellular Carcinoma Treatment with Magnetic Resonance Imaging Radiomics

K. Liu, G. Yu, Z. Zhang, Q. Hou, V. Yaghmai, A. Eresen. (2024). Journal of Vascular and Interventional Radiology, 35(3), S92.*

MRI Monitoring of Combined Therapy with Transcatheter Arterial Delivery of NK Cells and Systemic Administration of Sorafenib for the Treatment of HCC

Z. Zhang, G. Yu, A. Eresen, Q. Hou, V. Yaghmai, Z. Zhang. (2024). American Journal of Cancer Research, 14(5), 2216.*