Shaohua Wu | AI for Science | Best Researcher Award

Assoc. Prof. Dr. Shaohua Wu | AI for Science | Best Researcher Award

Associate Professor at Dalian University of Technology, China

Dr. Shaohua Wu is a leading expert in reactive flow simulations and multiphase thermofluid systems, serving as an Associate Professor at the Dalian University of Technology. His academic journey spans globally, with research and teaching stints in China, Singapore, and the UK. With over a decade of experience in high-fidelity computational modeling and AI-driven simulations, he has established a significant footprint in both fundamental research and industrial applications in energy and combustion systems.

Profile

Scopus | ORCID | Google Scholar

Best Researcher Award

Dr. Wu is a highly deserving candidate for the “Best Researcher Award” due to his significant contributions to population balance modeling, soot dynamics, and AI-integrated combustion simulations. His innovative methodologies and high-impact publications have enhanced the understanding and design of clean energy systems. Moreover, his leadership in high-profile national and international projects demonstrates his continued influence and excellence in advancing research for energy sustainability and environmental impact reduction.

Education

Dr. Wu completed his Ph.D. in Thermodynamics from the National University of Singapore in 2018 with joint training at the University of Cambridge. He earned his M.A. and B.S. from Tianjin University in Power Machinery and Thermal Energy Engineering, respectively. His cross-institutional and interdisciplinary education has laid a robust foundation for his advanced simulation and modeling expertise in energy systems.

Experience

Currently an Associate Professor and Ph.D. supervisor, Dr. Wu leads a research group on multiphase reactive flows at Dalian University of Technology. He has served as a Research Fellow at the National University of Singapore and as a Research Associate at the University of Cambridge. His work spans industrial collaborations, governmental funded research, and innovative AI applications in energy systems.

Research Interest

Dr. Wu’s research centers around computational fluid dynamics for multiphase and reactive flow systems, particularly in propulsion and power generation. He integrates population balance modeling, chemical kinetics, and AI-enhanced simulation tools to investigate complex particulate and soot dynamics. His current focus includes machine learning-driven flow simulations, chemical mechanism reduction, and thermal system optimization.

Publications

Dr. Wu has authored numerous high-impact journal articles. Key recent publications include:

  • “A tri-variate moment projection method for multi-dimensional particle population balance dynamics,” Journal of Aerosol Science, 2024.

  • “An efficient data-driven approach for reactivity-controlled compression ignition engine,” International Journal of Hydrogen Energy, 2024.

  • “Analysis of soot formation in diesel engines fueled by biofuel blends,” Fuel, 2024.

  • “Efficient simulation of soot particle processes in diesel engines,” Applied Energy, 2020.

  • “Development of a compact kinetic mechanism for furan biofuels combustion,” Fuel, 2021.
    These works reflect his blend of deep theoretical insight and practical application, especially in clean combustion and particle modeling.

Zihan Deng | Artificial Intelligence | Best Researcher Award

Dr. Zihan Deng | Artificial Intelligence | Best Researcher Award

Harbin Institute of Technology, China

Zihan Deng is a young and accomplished researcher in the field of imaging technology and computational tomography, with a strong foundation in deep learning and artificial intelligence. With a robust academic background and an array of interdisciplinary experiences, Deng has made significant contributions through high-impact publications, competitive grants, and patents. His expertise lies at the intersection of optical instrumentation and medical image analysis, and he continues to actively engage in scientific exploration with promising results.

Profile

Orcid

Education

Deng completed his undergraduate studies in Computer Science and Technology at Harbin Engineering University (2019–2023), ranking in the top 5% of his class. His academic curriculum included rigorous coursework in mathematics and computer science, scoring consistently above 90 in core subjects. He was subsequently recommended for direct admission into the graduate program at Harbin Institute of Technology, where he is currently pursuing his Master’s degree at the Institute of Ultra-Precision Optical Instrument Engineering under the mentorship of Professor Junning Cui and Academician Jiubin Tan. His research spans CT reconstruction, deep learning-based image enhancement, and X-ray detection technologies.

Experience

Deng has accumulated diverse experience through internships and collaborative projects. He served in leadership roles within student organizations and academic competitions, including receiving awards in national-level modeling and software contests. He undertook summer research at Tsinghua University’s IDG/McGovern Brain Research Institute and was later selected to join Germany’s PTB “Chief Engineer Class” as a visiting scholar. Professionally, he interned with Chengdu Shuzhilian Technology and Guangzhou CVTE, where he contributed to image processing and video enhancement projects. He has also played key roles in multimillion-yuan research collaborations with institutions like CGN Research Institute and GF High-End Semiconductor Imaging Systems.

Research Interest

Deng’s research interests revolve around imaging technology, deep learning, and CT reconstruction methods. He focuses on developing advanced algorithms for sparse-angle computed tomography, artifact reduction, and multi-view image correction using neural networks. His work integrates domain-specific knowledge from instrumentation science with state-of-the-art machine learning frameworks to improve image quality in both medical diagnostics and industrial inspection. He also investigates beam hardening correction and reconstruction under large field-of-view (FOV) conditions, addressing challenges in high-precision imaging systems.

Award

Over the course of his academic journey, Deng has received 11 scholarships and numerous accolades. These include five first-class and two second-class academic scholarships from Harbin Engineering University, the prestigious Xiaomi Scholarship, and the Outstanding Youth League Member Award. His undergraduate thesis on sparse-angle CT reconstruction was selected as an Excellent Graduation Project (top 2%). He has also won national-level awards in competitions such as the Mathematical Modeling Contest and the English Proficiency Championship.

Publication

Deng has authored or co-authored several influential papers in prestigious journals and conferences. His representative publications include:

  1. Deng Z., Wang Z., et al. (2024). “COO-DuDo: Computation Overhead Optimization Methods for Dual-Domain Sparse-View CT Reconstruction”, Expert Systems with Applications (JCR Q1, IF=7.5, in press) – cited in advanced CT algorithm research.

  2. Deng Z., Wang Z., Lin L., Wang S., Cui J. (2024). “Research on the Effectiveness of Multi-View Slice Correction Technology Based on Deep Learning in High-Pitch Spiral Scanning Reconstruction”, Journal of X-Ray Science and Technology (JCR Q2, IF=3.0) – applied in spiral CT systems.

  3. Wang Z.#, Deng Z.#, Liu F., et al. (2023). “OSNet & MNetO for Linear Computed Tomography in Multi-Scenarios”, IEEE Transactions on Instrumentation and Measurement (JCR Q1, IF=5.6) – widely cited in instrumentation imaging.

  4. Deng Z., Deng K., Wang Z., et al.. “Small Class Discussion-Based Teaching in Instrumentation Education”, The International Journal of Education – cited in engineering education reform discussions.

  5. Li Z., Li K., Deng Z., et al. (2024). “Assessment of Sheetlet Thickness in Human Left Ventricular Free Wall Using X-ray Phase-Contrast Microtomography”, Medical Image Analysis (JCR Q1, IF=10.9, accepted) – applied in cardiovascular research.

  6. Deng Z., Wang Z., Lin L., et al. (2025). “Computation Overhead Optimization Dual-Domain Network for Sparse-View CT Reconstruction”, ICASSP 2025 (CCF-B Conference) – in review, expected to support efficient CT image pipelines.

  7. Deng Z., Wang Z., Lin L., Wang S. “Hel-MUNet: Mamba-Unet with Helical Encoding for Clinical High Pitch Helical CT Reconstruction”, MICCAI 2025 (under review) – aligned with cutting-edge clinical imaging methods.

Conclusion

Zihan Deng exemplifies the next generation of research professionals driving innovation in imaging and artificial intelligence. Through a blend of strong theoretical foundation, hands-on project experience, and impactful publications, he has demonstrated exceptional capability in solving complex technical problems. With continued guidance under leading scholars and global exposure, Deng is well-positioned to become a prominent figure in the advancement of smart medical imaging and intelligent instrumentation.

Shoujun Zhou | Artificial Intelligence | Best Scholar Award

Prof. Shoujun Zhou | Artificial Intelligence | Best Scholar Award

Research Professor at Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China

Prof. Shoujun Zhou is a distinguished biomedical engineering researcher and a leading figure in the field of medical robotics and image-guided therapy. He currently serves as a specially appointed research professor at the Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, and concurrently holds a professorship at the National Institute for High-Performance Medical Devices. Over his career, Prof. Zhou has led and contributed to numerous national and provincial-level scientific research projects, focusing on developing interventional surgical robotics and advanced medical imaging technologies. His leadership in this interdisciplinary field has positioned him at the forefront of integrating artificial intelligence with minimally invasive therapeutic solutions.

Profile

Orcid

Education

Prof. Zhou’s academic journey began with a Bachelor’s degree in Test and Control from the Air Force Engineering University (1989–1993). He then earned a Master’s degree in Communication and Information Systems from Lanzhou University (1997–2000), further refining his technical expertise. His academic pursuits culminated in a Ph.D. in Biomedical Engineering from Southern Medical University (2001–2004). This multidisciplinary educational background laid a solid foundation for his future contributions in medical imaging, robotics, and computational modeling.

Experience

With over three decades of professional experience, Prof. Zhou has served in multiple prestigious institutions. From 1993 to 2001, he worked as an engineer in the 94921 Military Unit, followed by a postdoctoral tenure at Beijing Institute of Technology. He transitioned to industry in 2007 as an enterprise postdoctoral researcher at Shenzhen Haibo Technology Co., Ltd., and later joined the 458 Hospital of the PLA as a senior engineer. Since 2010, he has been a principal investigator and research professor at SIAT, where he leads a dedicated research team working on the convergence of robotics, imaging, and AI for medical applications.

Research Interest

Prof. Zhou’s research primarily focuses on interventional surgical robots, image-guided therapy, and medical image analysis. He is particularly interested in developing intelligent, minimally invasive systems that combine AI algorithms with real-time imaging for precise diagnostics and interventions. His work includes modeling and segmentation of vascular structures, semi-supervised learning techniques in medical imaging, and the development of surgical robots tailored for procedures such as liver tumor ablation and cardiovascular interventions. He is also actively involved in improving navigation systems that reduce or eliminate radiation exposure in image-guided procedures.

Award

Prof. Zhou’s contributions have been widely recognized both nationally and internationally. He was honored with the “Best Researcher Award” at the Global Awards on Artificial Intelligence and Robotics in 2022, organized by ScienceFather. He also received a Silver Medal in the Global Medical Robot Innovation Design Competition in 2019 for his work on a vascular interventional robotic system. His earlier work earned the Second Prize of Guangdong Provincial Science and Technology Progress Award in 2009 and contributed to a project that received a First-Class Prize in Science and Technology Progress from the Ministry of Education in 2006. These accolades reflect his sustained excellence and impact in the field of medical technology.

Publication

Prof. Zhou has authored over 100 scientific papers, including several published in top-tier journals. Selected key publications include:

  1. Zhang Z. et al. (2024). “Verdiff-Net: A Conditional Diffusion Framework for Spinal Medical Image Segmentation,” Bioengineering, 11(10):1031 – cited in spinal image AI segmentation studies.

  2. Zhang X. et al. (2024). “Automatic Segmentation of Pericardial Adipose Tissue from Cardiac MR Images,” Medical Physics, DOI:10.1002/mp.17558 – referenced for semi-supervised MR image segmentation.

  3. Tian H. et al. (2024). “EchoSegDiff: a diffusion-based model for left ventricular segmentation,” Medical & Biological Engineering & Computing, DOI:10.1007/s11517-024-03255-0 – cited in cardiac echocardiography image modeling.

  4. Li J. et al. (2024). “DiffCAS: Diffusion based Multi-attention Network for 3D Coronary Artery Segmentation,” Signal, Image and Video Processing, DOI:10.1007/s11760-024-03409-5 – relevant in coronary CT imaging analysis.

  5. Wang K.N. et al. (2024). “SBCNet: Scale and Boundary Context Attention for Liver Tumor Segmentation,” IEEE Journal of Biomedical and Health Informatics, 28(5):2854-2865 – cited in liver tumor segmentation research.

  6. Xiang S. et al. (2024). “Automatic Delineation of the 3D Left Atrium from LGE-MRI,” IEEE Journal of Biomedical and Health Informatics, DOI:10.1109/JBHI.2024.3373127 – frequently cited in atrial structural analysis.

  7. Miao J. et al. (2024). “SC-SSL: Self-correcting Collaborative and Contrastive Co-training,” IEEE Transactions on Medical Imaging, 43(4):1347-1364 – referenced in semi-supervised medical image learning.

Conclusion

Prof. Zhou’s work exemplifies the synergy between engineering and medical science, enabling significant advances in minimally invasive diagnosis and treatment. Through his persistent innovation in surgical robotics and medical image computing, he has made a profound impact on the evolution of intelligent healthcare technologies. His dedication to mentoring young researchers and contributing to national and provincial projects reflects a commitment not only to scientific discovery but also to the translation of research into clinical and industrial applications. With a career marked by excellence in research, education, and innovation, Prof. Zhou continues to be a pivotal figure shaping the future of intelligent medicine.

Tushar Kafare | Artificial Intelligence | Best Researcher Award

Dr. Tushar Kafare | Artificial Intelligence | Best Researcher Award

Assistant Professor at Sinhgad College of Engineering, India

Dr. Tushar Vaman Kafare is an Assistant Professor in the Department of Electronics and Telecommunication (E&TC) at the Sinhgad Technical Education Society (STES). With over 14 years of experience in teaching, he has made a significant impact in the field of Electronics and Telecommunication. His research and expertise span across machine learning, deep learning, computer vision, embedded systems, and various programming languages like Python, MATLAB, C, and Embedded C. Dr. Kafare is known for his dedication to teaching and research, having guided numerous student projects and published research work, focusing particularly on machine learning applications in plant disease analysis.

Profile

Google Scholar

Education

Dr. Kafare holds an M.E. degree in Electronics and Telecommunication, as well as a B.E. in Electronics. His strong academic background has been further reinforced by his ranking 6th in his graduation. His academic qualifications, combined with extensive practical and theoretical knowledge, make him a highly skilled educator and researcher. His ongoing Ph.D. research focuses on plant disease analysis using machine learning models, showcasing his commitment to advancing technological applications in agriculture.

Experience

Having joined STES on September 7, 2022, Dr. Kafare brings with him a wealth of experience in academia and industry. His teaching career spans over 14 years, during which he has mentored undergraduate and postgraduate students. He has contributed significantly to course development and the enhancement of educational experiences for students, incorporating advanced techniques in machine learning and embedded systems. Additionally, Dr. Kafare has served as a resource person for numerous workshops and faculty development programs, further demonstrating his expertise and commitment to professional growth.

Research Interests

Dr. Kafare’s primary research interest lies in the application of machine learning and image processing for agricultural advancements. His Ph.D. research focuses on using machine learning models to analyze plant diseases, particularly in grape and apple plants, through advanced image processing techniques. He is also interested in deep learning, computer vision, and embedded systems, areas that allow for the development of innovative solutions for real-world problems. Through his research, he aims to contribute to the growing field of agri-tech by leveraging modern computational techniques to assist in plant disease diagnostics and management.

Awards

Dr. Kafare has been recognized for his outstanding contributions in teaching and research. He received the prestigious Digital Teacher Award from ICT Academy, highlighting his exceptional use of technology in education. Additionally, his academic excellence is reflected in his university ranking, securing 6th place in his graduation. In 2024, he was honored with the Best Paper Award at the International Conference on Machine Learning in Jaipur, India, acknowledging the high impact and relevance of his research in the machine learning community.

Publications

Dr. Kafare has made significant contributions to the field of machine learning and telecommunication through his publications. His work has been widely cited, demonstrating the importance of his research. Below is a list of selected publications:

Kafare, T.V. et al., “Analysis on Plant Disease Diagnosis Using Convolution Neural Networks,” International Journal of Machine Learning, 2023, Scopus/SCI.

Kafare, T.V. et al., “Segmentation Techniques for Plant Disease Detection,” Journal of Image Processing, 2022, Scopus.

Kafare, T.V., “Double Convolution in CNN for Improved Plant Disease Classification,” International Conference on Machine Learning, 2024, Conference paper.

Kafare, T.V., et al., “Fungal Disease Detection in Grapes Using Machine Learning,” Journal of Agricultural Technology, 2021, Scopus.

Conclusion

Dr. Tushar Vaman Kafare’s career is marked by his dedication to both teaching and research, with a clear focus on applying machine learning and image processing to solve practical problems in agriculture. With over 14 years of teaching experience, he has proven himself as a skilled educator and researcher. His ongoing Ph.D. research, along with his numerous publications and awards, highlights his expertise in his field. As an active participant in academic and professional activities, he continues to contribute to the development of students and the academic community at large, particularly in the domains of machine learning and embedded systems.

Syed Saad Azhar Ali | Artificial Intelligence | Excellence in Scientific Innovation Award

Assoc. Prof. Dr. Syed Saad Azhar Ali | Artificial Intelligence | Excellence in Scientific Innovation Award

Assoc. Prof. Dr. Syed Saad Azhar Ali, Associate Professor, Saudi Arabia.

Dr. Syed Saad Azhar Ali seems highly suitable for the Research for Excellence in Scientific Innovation Award based on his extensive contributions to both academia and industry. Here are several key reasons why he qualifies:

Profile

Orcid

🎓 Education

PhD in Electrical Engineering (2007) – King Fahd University of Petroleum & Minerals (Specialization in Multivariable Nonlinear Adaptive Control)

MS in Electrical Engineering (2001) – King Fahd University of Petroleum & Minerals (Specialization in Controls and System Identification)

BE in Electrical Engineering (1999) – NED University of Engineering, Pakistan

👨‍🏫 Academic and Research Leadership

Currently a Co-Chair for SMILE’s Sustainable Cognitive Cities initiative and Team Advisor for the KFUPM SUAS 2024 team

Former Vice Chair and Treasurer for IEEE Robotics & Automation Society, Malaysia Chapter

Coordinator for the MX Program in Unmanned Aircraft Systems at KFUPM

Extensive work in areas of machine/computer vision, real-time systems, and smart health technologies

🏆 Awards and Recognition

Team Advisor for the SUAS 2024 championship-winning team, KFUPM

Multiple medals from ITEX, MTE, and SEDEX

Recognized by IEEE RAS, Malaysia, with Service and Excellence Awards

💼 Professional Affiliations

Senior Member of IEEE

Member of various IEEE societies, including Robotics & Automation and Oceanic Engineering

Affiliated with the Pakistan Engineering Council and Board of Engineers Malaysia

🌍 International Collaborations

Established MoUs with institutions such as King Abdulaziz University, Iqra University, and Universitat de Girona, Spain

📚 Publications 

Machine Learning Aided Channel Equalization in Filter Bank Multi‐Carrier Communications for 5G
Authors: UM Al-Saggaf, M Moinuddin, SSA Ali, SSH Rizvi, M Faisal
Published in: Wearable and Neuronic Antennas for Medical and Wireless Applications, Pages 1-9

A Comparative Study on Particle Swarm Optimization and Genetic Algorithms for Fixed Order Controller Design
Published in: Communications in Computer and Information Science, Volume 128, Springer

Block-Oriented Identification of Nonlinear Systems: Neural Network Approach towards Identification of Hammerstein and Wiener Models
Author: Syed Saad Azhar Ali
Published by: LAP Lambert Academic Publishing, ISBN: 978-3838335575, February 2010

U-model Based Control: Adaptive Control Approach for Multivariable Nonlinear Systems
Author: Syed Saad Azhar Ali
Published by: LAP Lambert Academic Publishing, ISBN: 978-3838323299, November 2009

Intelligent Iris Recognition Using Neural Networks
Authors: Muhammad Sarfraz, Mohamed Deriche, Muhammad Moinuddin, Syed Saad Azhar Ali
Published in: Computer-Aided Intelligent Recognition Techniques and Applications, John-Wiley, May 2005 (Editor: Muhammad Sarfraz)