Jia Kaiewei | Artificial Intelligence | Best Scholar Award

Dr. Jia Kaiewei | Artificial Intelligence | Best Scholar Award

Professor at Liaoning Technical University, Huludao, China

Kaiwei Jia is an accomplished academician and researcher currently serving as a Professor and Doctoral Supervisor in the field of Management Science and Engineering. He also holds the role of Vice Dean at the School of Business Administration, Liaoning Technical University. His academic journey is marked by extensive contributions to teaching, research, and institutional development. As a core member of the Liaoning Provincial Teaching Guidance Committee for Finance, he plays a significant role in shaping the financial education framework in the region. With a background in Economics and Statistics, Professor Jia has emerged as a thought leader in financial econometrics and policy research. His career is defined by a blend of theoretical insight and empirical rigor, and he has guided numerous graduate and doctoral students in their academic endeavors. Through his sustained commitment to academic excellence and administrative leadership, he has made substantial contributions to the academic community and the broader field of finance and economics.

Profile

Scopus

Education

Kaiwei Jia’s educational background is deeply rooted in economics and statistics. He earned his Ph.D. in Economics after completing a rigorous postgraduate program that emphasized macroeconomic policy, financial analysis, and quantitative methods. Subsequently, he undertook postdoctoral research in Statistics, where he refined his understanding of data interpretation, econometric modeling, and the application of statistical methodologies to economic problems. This interdisciplinary training has provided him with a comprehensive toolkit for analyzing complex economic phenomena. His academic progression reflects a strong emphasis on research-driven education, equipping him with both theoretical and practical skills. His transition from postgraduate studies to postdoctoral research marked a significant shift in his academic career, allowing him to delve deeper into areas such as financial econometrics, risk modeling, and empirical policy analysis.

Experience

Throughout his career, Professor Jia has maintained an unwavering commitment to teaching and mentoring. He has designed and delivered undergraduate, master’s, and doctoral-level courses in Econometrics, Financial Risk Management, Financial Econometrics, and Financial Data Analysis. His lectures are known for their analytical depth and emphasis on real-world application, which have earned him the respect of both peers and students. Beyond the classroom, he has played a pivotal role in curriculum development and academic governance at Liaoning Technical University. As Vice Dean, he has led several institutional initiatives aimed at enhancing academic quality and fostering innovation in finance education. Additionally, his membership in the Liaoning Provincial Teaching Guidance Committee for Finance has enabled him to influence regional academic standards, ensuring that finance education remains aligned with contemporary global developments.

Research Interest

Professor Jia’s research interests span a diverse array of topics within economics and finance. He focuses on financial stability and risk management, particularly the dynamics of financial contagion and systemic risk. His work explores the governance and risk prevention mechanisms in financial institutions, combining institutional theory with quantitative modeling. Additionally, he is deeply engaged in the study of monetary policy theory and methodology, emphasizing both the rules-based and discretionary approaches to macroeconomic regulation. His research extends to econometric methods, where he utilizes advanced statistical techniques to analyze financial and economic data. More recently, he has contributed to emerging areas such as green finance and climate finance, investigating how environmental factors intersect with financial risk and investment decisions. His multidisciplinary research approach integrates macroeconomic theory, quantitative analysis, and policy insights.

Award

In recognition of his scholarly achievements and academic leadership, Professor Jia has received several prestigious awards. He was honored with the First Prize in the 7th Liaoning Provincial Outstanding Achievement Award in Statistical Sciences, which acknowledges innovative contributions in statistical research. He also received the Second Prize in the Liaoning Provincial Philosophy and Social Science Achievement Award for his impactful work in economics and financial policy. These accolades reflect both the quality and societal relevance of his research, highlighting his role as a leading scholar in his field. His award-winning work has contributed to enhancing the understanding of financial risk, policy formulation, and statistical analysis at both regional and national levels.

Publication

Kaiwei Jia has published more than 30 academic papers in respected journals indexed by SSCI and CSSCI. His recent works reflect his ongoing dedication to cutting-edge research. In 2023, he co-authored “Did the ‘double carbon’ policy improve the green total factor productivity of iron and steel enterprises? A quasi-natural experiment based on carbon emission trading pilot,” published in Frontiers in Energy Research, exploring policy impact through econometric analysis. In the same year, he contributed to Frontiers in Psychology with “Digital financial and banking competition network: Evidence from China,” which examined competitive dynamics using network models. His 2022 publications include “Construction and empirical of investor sentiment evaluation system based on partial least squares” and “Empirical research of risk correlation based on Copula function method,” both appearing in the Journal of Liaoning Technical University (Natural Science Edition). These studies utilized advanced statistical tools to analyze investor behavior and risk correlation. Another 2022 work titled “Spatiotemporal Evolution of Provincial Carbon Emission Network in China,” published on SSRN, tackled environmental finance issues using spatial network methods. These publications not only reflect his diverse expertise but also have been cited by multiple articles, indicating his work’s influence within the academic community.

Conclusion

In summary, Professor Kaiwei Jia’s academic career is characterized by a strong dedication to education, a robust portfolio of interdisciplinary research, and impactful contributions to financial policy and risk management. His dual expertise in economics and statistics has allowed him to bridge theoretical frameworks with empirical application, making his research both rigorous and relevant. Through his teaching, he has nurtured the next generation of economists and financial analysts, while his administrative leadership has helped shape academic standards in finance education. His scholarly output and recognition through awards reflect a sustained contribution to the academic and policy-making community. Professor Jia continues to explore innovative themes in green finance and systemic risk, ensuring that his research remains at the forefront of addressing contemporary economic challenges.

Hemad Zareiforoush | Machine Learning | Best Academic Researcher Award

Dr. Hemad Zareiforoush | Machine Learning | Best Academic Researcher Award

Associate Professor at University of Guilan, Rasht, Iran

Dr. Hemad Zareiforoush is an Assistant Professor at the Department of Biosystems Engineering, University of Guilan, Rasht, Iran, where he has been contributing to both academic and practical advancements in biosystems engineering since 2015. With a focus on agricultural machinery, automation, and quality inspection systems, his work bridges engineering and food science, particularly in areas like computer vision, image processing, and renewable energy applications. His research is highly interdisciplinary, combining mechanical engineering principles with computational intelligence for improving the agricultural industry’s efficiency.

Profile

Google Scholar

Education

Dr. Zareiforoush’s educational background is robust, with a PhD in Mechanical and Biosystems Engineering from Tarbiat Modares University in Tehran, Iran, completed in 2014. His academic excellence is evident in his GPA of 17.84 out of 20. He earned his MSc in Mechanical Engineering of Agricultural Machinery at Urmia University in 2010, where he graduated with a remarkable GPA of 19.29 out of 20. Earlier, Dr. Zareiforoush obtained his BSc in the same field from Urmia University in 2007, graduating with a GPA of 15.75 out of 20. He also attended a specialized governmental high school for excellent pupils, where he focused on mathematics and physics, graduating with a GPA of 18.71 out of 20.

Experience

Since joining the University of Guilan in 2015, Dr. Zareiforoush has been teaching various courses, including Engineering Properties of Food and Agricultural Products, Renewable Energy, and Measurement and Instrumentation Principles. His practical experience spans various engineering disciplines, with a particular emphasis on instrumentation, automation in agriculture, and food quality monitoring. Notably, his research has led to the development of innovative systems for rice quality inspection using computer vision and fuzzy logic. Additionally, he has been involved in numerous projects related to agricultural machinery, renewable energy, and automation for optimizing food production processes.

Research Interests

Dr. Zareiforoush’s research interests lie at the intersection of biosystems engineering, computational intelligence, and food science. He is particularly interested in computer vision applications for food quality inspection, using advanced image processing techniques to enhance product quality and safety. His work also explores hyperspectral imaging and spectroscopy for monitoring the quality of food materials. Another key area of his research is the application of machine learning algorithms for modeling and classifying food products based on their quality attributes. Additionally, he is involved in renewable energy applications in agriculture, focusing on solar-assisted drying systems and energy-efficient food processing methods.

Awards

Dr. Zareiforoush has received several prestigious awards throughout his academic career. He was honored with the Iran Ministry of Science, Research, and Technology Scholarship in 2012 and the National Elite Scholarship by the Iran National Foundation for Elites (INFE) in 2011. His exceptional academic performance earned him the title of “Best Student” at Urmia University in 2009. Additionally, he has been recognized as a “Talented Student” at Tarbiat Modares University and ranked 1st among MSc students in his department.

Publications

Dr. Zareiforoush has published several influential papers in high-impact journals. Some of his notable publications include:

Bakhshipour, A., Zareiforoush, H., Bagheri, I. (2020). Application of decision trees and fuzzy inference system for quality classification and modeling of black and green tea based on visual features. Journal of Food Measurement and Characterization, 14: 1402–1416, Cited by: 43.

Bakhshipour, A., Zareiforoush, H., Bagheri, I. (2020). Development of a fuzzy model for differentiating peanut plant from broadleaf weeds using image features. Plant Methods, 16:153, Cited by: 25.

Bakhshipour, A., Zareiforoush, H., Bagheri, I. (2021). Mathematical and intelligent modeling of stevia (Stevia Rebaudiana) leaves drying in an infrared-assisted continuous hybrid solar dryer. Food Science & Nutrition (JCR), 9(1), 532-543, Cited by: 12.

Zareiforoush, H., Minaei, S., Alizadeh, M.R., Banakar, A. (2016). Design, Development, and Performance Evaluation of an Automatic Control System for Rice Whitening Machine Based on Computer Vision and Fuzzy Logic. Computers and Electronics in Agriculture, 124: 14-22, Cited by: 67.

Soodmand-Moghaddam, S., Sharifi, M., Zareiforoush, H. (2020). Mathematical modeling of lemon verbena leaves drying in a continuous flow dryer equipped with a solar pre-heating system. Quality Assurance and Safety of Crops & Foods, 12(1): 57-66, Cited by: 30.

Zareiforoush, H., Minaei, S., Alizadeh, M.R., Banakar, A. (2015). Qualitative Classification of Milled Rice Grains Using Computer Vision and Metaheuristic Techniques. Journal of Food Science and Technology (Springer), 53(1): 118-131, Cited by: 45.

Zareiforoush, H., Komarizadeh, M.H., Alizadeh, M.R. (2010). Effects of crop-screw parameters on rough rice grain damage in handling with a horizontal screw auger. Journal of Food, Agriculture and Environment, 8(3): 132-138, Cited by: 19.

Conclusion

Dr. Hemad Zareiforoush’s academic and professional contributions significantly impact the fields of biosystems engineering, food science, and agricultural machinery. His work in developing intelligent systems for quality inspection and automation has improved agricultural productivity and food safety. His expertise in computational techniques, including fuzzy logic and machine learning, continues to shape the future of smart farming and food processing. With numerous awards, highly cited publications, and a track record of excellence, Dr. Zareiforoush is a leading figure in his field.

Jalel Euchi | AI in Healthcare | Best Researcher Award

Assist. Prof. Dr. Jalel Euchi | AI in Healthcare | Best Researcher Award

Assistant professor | University of Sfax | Tunisia

Dr. Jalel Euchi is an accomplished academic and researcher specializing in operations research, optimization, and transportation systems. He currently serves as a faculty member at ISGI, Sfax University’s Department of Operations Management, and ISAE, Gafsa University’s Department of Economic Quantitative Methods and Informatics in Tunisia. With a Ph.D. in quantitative methods jointly awarded by Sfax University in Tunisia and Le Havre University in France in 2011, Dr. Euchi has built an illustrious career in academia and research. His work addresses critical challenges in transportation, logistics, and operational efficiency, contributing significantly to the scientific community through publications in high-impact journals and active involvement as a referee and editorial board member.

Profile

Scopus

Education

Dr. Euchi’s academic journey showcases his strong foundation in quantitative methods and operations research. He completed his Ph.D. in 2011, focusing on optimization and transportation problems. He earned his Master’s degree in Production Management and Operational Research in 2007 and a Bachelor’s degree in Operational Research in 2005, both from Sfax University. In 2017, he received an HDR (Habilitation) degree, qualifying him as an associate research professor, further underscoring his expertise in his field.

Experience

Dr. Euchi’s professional experience spans over 15 years in academia and research. He has held teaching positions at various prestigious institutions, including ISGI, Sfax University, and Qassim University in Saudi Arabia. His courses have covered diverse subjects such as optimization, data analysis, operations management, and statistics. In addition to his teaching responsibilities, he has been deeply involved in research, mentoring, and administrative roles, making significant contributions to his departments and institutions.

Research Interests

Dr. Euchi’s research focuses on operations research, optimization, logistics, and transportation. His studies delve into stochastic and distributed optimization, the environmental impacts of transport, and advanced logistics solutions such as routing and scheduling. Recently, he has expanded his research interests to include machine learning and its applications in transportation, exploring innovative solutions for challenges like electric vehicle routing and drone logistics.

Awards

Dr. Euchi has been recognized for his contributions to the field through several awards and nominations. His innovative research and dedication to academic excellence have earned him invitations to international conferences, editorial roles in reputed journals, and accolades for his impactful publications.

Publications

Dr. Euchi has authored numerous high-impact articles in journals and conferences. Here are seven selected works:

Belkhamsa, M., Euchi, J., Siarry, P. (2024). Optimizing Elective Surgery Scheduling Amidst the COVID-19 Pandemic Using Artificial Intelligence Strategies. Swarm and Evolutionary Computation, 90, 101690.

Masmoudi, M., Euchi, J., Siarry, P. (2024). Home healthcare routing and scheduling: Operations research approaches and contemporary challenges. Annals of Operations Research, 1-51.

Sadok, A., Euchi, J., Siarry, P. (2024). Vehicle routing with multiple UAVs for last-mile logistics distribution problem: Hybrid distributed optimization. Annals of Operations Research.

Euchi, J., Sadok, A. (2023). Optimising the travel of home health carers using a hybrid ant colony algorithm. Proceedings of the Institution of Civil Engineers-Transport, 176(6), 325-336.

Hamdi, F., Euchi, J., Messaoudi, L. (2023). A fuzzy stochastic goal programming for selecting suppliers in case of potential disruption. Journal of Industrial and Production Engineering, 40(8), 677-691.

Euchi, J., Zidi, S., Laouamer, L. (2021). A new distributed optimization approach for home healthcare routing and scheduling problem. Decision Science Letters, 10(3), 217-230.

Euchi, J., Sadok, A. (2020). Hybrid genetic-sweep algorithm to solve the vehicle routing problem with drones. Physical Communication, 44, 101236.

Conclusion

Dr. Jalel Euchi exemplifies excellence in academia and research, combining extensive experience, a robust educational background, and pioneering research interests. His contributions to optimization and logistics have practical applications in addressing modern transportation and environmental challenges. Through his publications and professional activities, Dr. Euchi continues to inspire and influence the field of operations research globally.

Tmader Alballa | Artificial Intelligence | Best Researcher Award

Dr. Tmader Alballa | Artificial Intelligence | Best Researcher Award

Assistant Professor | Princess Nourah Bint A bdulrahman University | Saudi Arabia

Dr. Tmader Alballa is an esteemed academic and researcher in applied statistics and system modeling. She currently serves as an Assistant Professor at Princess Nourah Bint Abdulrahman University in Riyadh, Saudi Arabia, contributing to the advancement of statistical methods and their applications. With a strong foundation in mathematics and applied statistics, Dr. Alballa’s expertise spans Bayesian analysis, genetic polymorphism studies, and spatial statistics. Her interdisciplinary research combines theoretical approaches with practical insights, addressing critical challenges in various fields.

Profile

Google Scholar

Education

Dr. Alballa’s academic journey reflects her commitment to academic excellence. She earned her Ph.D. in System Modeling and Analysis from Virginia Commonwealth University in December 2021, where she specialized in innovative statistical techniques. Her master’s degree in Applied Statistics, completed in May 2016 at the University of the District of Columbia, provided her with advanced skills in statistical applications. She began her academic journey with a bachelor’s degree in Mathematics from King Saud University in Riyadh in 2007, laying a solid foundation for her future contributions to the field of statistics.

Experience

Dr. Alballa brings over a decade of professional and academic experience to her current role. She has been an Assistant Professor at Princess Nourah Bint Abdulrahman University since February 2022. Before this, she served as a Teaching Assistant at the same institution from September 2011 to December 2012. Her early career includes significant roles in the financial sector at Samba Financial Group, where she held positions such as Teller, Head Teller, Customer Service Representative, Relationship Manager, and Supervisor of Customer Service. These roles helped her develop practical insights into organizational and analytical challenges, which later enriched her academic work.

Research Interests

Dr. Alballa’s research interests lie at the intersection of applied statistics, system modeling, and data analytics. She is particularly passionate about Bayesian techniques for genetic studies, spatial statistics, and meta-analytical methods. Her recent work focuses on leveraging advanced statistical tools to analyze complex data, including imaging data related to substance use disorders. Her interdisciplinary research seeks to address real-world challenges, such as enhancing healthcare outcomes and developing robust data-driven models.

Awards

Dr. Alballa has received recognition for her academic and professional contributions, including her role in establishing an applied statistics program at Princess Nourah Bint Abdulrahman University. While her accolades reflect her dedication to academia, her leadership in committee roles and innovative research endeavors highlight her commitment to fostering academic excellence.

Publications

Dr. Alballa’s scholarly output includes impactful contributions in prestigious journals. Some of her notable publications include:

“Bayesian Techniques for Relating Genetic Polymorphisms to Diffusion Tensor Images of Cocaine Users” – Published in Journal of Applied Statistics (2021), this paper explores the application of Bayesian methods to genetic and imaging data, cited 25 times.

“Spatial Analysis in Urban Healthcare Accessibility” – Published in Spatial Statistics Journal (2019), cited 18 times, it addresses spatial disparities in healthcare.

“Meta-Analysis of Statistical Methodologies in Substance Abuse Research” – Published in Statistics in Medicine (2020), cited 15 times, the study evaluates statistical approaches across substance abuse studies.

“Innovative Uses of Bayesian Modeling in Behavioral Health Research” – Published in Behavioral Data Science (2021), cited 12 times.

“Applied Statistics in Higher Education: A Saudi Perspective” – Published in International Journal of Educational Statistics (2022), cited 8 times.

Conclusion

Dr. Tmader Alballa exemplifies excellence in academia through her dedication to teaching, research, and service. Her multidisciplinary expertise and leadership in statistical modeling continue to influence both her students and the academic community. With a commitment to advancing statistical methodologies and fostering their practical applications, Dr. Alballa remains a vital contributor to the field of applied statistics.