Muhammad Aamir | Artificial Intelligence | Best Researcher Award

Dr. Muhammad Aamir | Artificial Intelligence | Best Researcher Award

Research Scientist | University of Oxford | United Kingdom

Dr. Muhammad Aamir is a researcher at the University of Oxford, United Kingdom, specializing in Artificial Intelligence and advanced computational modeling. His research focuses on developing intelligent algorithms for data-driven decision-making, machine learning, and real-world AI applications across diverse domains. He has contributed to high-impact studies involving hybrid AI models, neural networks, and intelligent sensing systems. Dr. Aamir’s work emphasizes robustness, scalability, and practical deployment of AI solutions. Through interdisciplinary research, he continues to advance the integration of artificial intelligence into complex scientific and engineering problems.

Citation Metrics (Scopus)

1000
800
600
400
200
0

Citations
926

Documents
50

h-index
14

                            ■ Citation              ■ Documents              ■ h-index


View Scopus Profile
View Orcid Profile View Google Scholar Profile

Featured Publications

Dr. Santosh Jagtap | AI and ML | Microsoft AI Award

Dr. Santosh Jagtap | AI and ML | Microsoft AI Award

Assistant Professor, Prof. Ramkrishna More Arts, Commerce & Science College, India

Dr. Santosh Jagtap, Assistant Professor at Prof. Ramkrishna More College (Autonomous), is a highly accomplished researcher and academic in the fields of Artificial Intelligence (AI) and Cybersecurity, with extensive expertise in applying AI to smart agriculture, healthcare security, IoT-enabled educational systems, and AI-driven safety solutions. Dr. Jagtap holds advanced academic qualifications and has developed a distinguished research profile that emphasizes practical applications of emerging technologies to address societal challenges. His work integrates machine learning, blockchain, IoT, and real-time data processing, producing innovative solutions in areas such as intelligent irrigation systems, plant disease detection, AI-based emotion recognition for safety alerts, and secure healthcare frameworks. Over his career, Dr. Jagtap has contributed significantly to international research projects and collaborative studies, producing high-impact publications in reputed journals and conference proceedings, such as Materials Today: Proceedings, international conferences on electronics, computing, and applied AI. He has also been recognized for innovation through patent awards, notably for AI-based plant disease identification systems, reflecting his focus on technology transfer and real-world impact. Dr. Jagtap has played an active role in mentoring students, guiding research projects, and participating in professional networks that foster academic and technological growth. He has demonstrated a consistent record of research excellence, with a total of 78 citations across 4 Scopus-indexed publications and an h-index of 3, reflecting the growing impact of his work.

Profile: GOOGLE SCHOLAR | SCOPUS

Featured Publications

  • Jagtap, S. T., Phasinam, K., Kassanu. (2022). Towards application of various machine learning techniques in agriculture. Materials Today: Proceedings, 51, 793–797. 70 citations.

  • Jagtap, S. T., Thakar, (2021). A framework for secure healthcare system using blockchain and smart contracts. Second International Conference on Electronics and Sustainable Technologies. 22 citations.

  • Jagtap, S. T., Jagdale, K. C., & Thakar, C. M. (2023). Identification of plant disease device using artificial intelligence. IN Patent 391523-001. –

  • Pratiksha Bhise, D. S. J., & Jagtap, S. T. (2024). AI-driven emergency response system for women’s safety using real-time location and heart rate monitoring. IJRPR. –

  • Keskar,  A., Jagtap, S. T., et al. (2021). Big data preprocessing frameworks: Tools and techniques. Design Engineering, 1738–1746.

Jia Kaiewei | Artificial Intelligence | Best Scholar Award

Dr. Jia Kaiewei | Artificial Intelligence | Best Scholar Award

Professor at Liaoning Technical University, Huludao, China

Kaiwei Jia is an accomplished academician and researcher currently serving as a Professor and Doctoral Supervisor in the field of Management Science and Engineering. He also holds the role of Vice Dean at the School of Business Administration, Liaoning Technical University. His academic journey is marked by extensive contributions to teaching, research, and institutional development. As a core member of the Liaoning Provincial Teaching Guidance Committee for Finance, he plays a significant role in shaping the financial education framework in the region. With a background in Economics and Statistics, Professor Jia has emerged as a thought leader in financial econometrics and policy research. His career is defined by a blend of theoretical insight and empirical rigor, and he has guided numerous graduate and doctoral students in their academic endeavors. Through his sustained commitment to academic excellence and administrative leadership, he has made substantial contributions to the academic community and the broader field of finance and economics.

Profile

Scopus

Education

Kaiwei Jia’s educational background is deeply rooted in economics and statistics. He earned his Ph.D. in Economics after completing a rigorous postgraduate program that emphasized macroeconomic policy, financial analysis, and quantitative methods. Subsequently, he undertook postdoctoral research in Statistics, where he refined his understanding of data interpretation, econometric modeling, and the application of statistical methodologies to economic problems. This interdisciplinary training has provided him with a comprehensive toolkit for analyzing complex economic phenomena. His academic progression reflects a strong emphasis on research-driven education, equipping him with both theoretical and practical skills. His transition from postgraduate studies to postdoctoral research marked a significant shift in his academic career, allowing him to delve deeper into areas such as financial econometrics, risk modeling, and empirical policy analysis.

Experience

Throughout his career, Professor Jia has maintained an unwavering commitment to teaching and mentoring. He has designed and delivered undergraduate, master’s, and doctoral-level courses in Econometrics, Financial Risk Management, Financial Econometrics, and Financial Data Analysis. His lectures are known for their analytical depth and emphasis on real-world application, which have earned him the respect of both peers and students. Beyond the classroom, he has played a pivotal role in curriculum development and academic governance at Liaoning Technical University. As Vice Dean, he has led several institutional initiatives aimed at enhancing academic quality and fostering innovation in finance education. Additionally, his membership in the Liaoning Provincial Teaching Guidance Committee for Finance has enabled him to influence regional academic standards, ensuring that finance education remains aligned with contemporary global developments.

Research Interest

Professor Jia’s research interests span a diverse array of topics within economics and finance. He focuses on financial stability and risk management, particularly the dynamics of financial contagion and systemic risk. His work explores the governance and risk prevention mechanisms in financial institutions, combining institutional theory with quantitative modeling. Additionally, he is deeply engaged in the study of monetary policy theory and methodology, emphasizing both the rules-based and discretionary approaches to macroeconomic regulation. His research extends to econometric methods, where he utilizes advanced statistical techniques to analyze financial and economic data. More recently, he has contributed to emerging areas such as green finance and climate finance, investigating how environmental factors intersect with financial risk and investment decisions. His multidisciplinary research approach integrates macroeconomic theory, quantitative analysis, and policy insights.

Award

In recognition of his scholarly achievements and academic leadership, Professor Jia has received several prestigious awards. He was honored with the First Prize in the 7th Liaoning Provincial Outstanding Achievement Award in Statistical Sciences, which acknowledges innovative contributions in statistical research. He also received the Second Prize in the Liaoning Provincial Philosophy and Social Science Achievement Award for his impactful work in economics and financial policy. These accolades reflect both the quality and societal relevance of his research, highlighting his role as a leading scholar in his field. His award-winning work has contributed to enhancing the understanding of financial risk, policy formulation, and statistical analysis at both regional and national levels.

Publication

Kaiwei Jia has published more than 30 academic papers in respected journals indexed by SSCI and CSSCI. His recent works reflect his ongoing dedication to cutting-edge research. In 2023, he co-authored “Did the ‘double carbon’ policy improve the green total factor productivity of iron and steel enterprises? A quasi-natural experiment based on carbon emission trading pilot,” published in Frontiers in Energy Research, exploring policy impact through econometric analysis. In the same year, he contributed to Frontiers in Psychology with “Digital financial and banking competition network: Evidence from China,” which examined competitive dynamics using network models. His 2022 publications include “Construction and empirical of investor sentiment evaluation system based on partial least squares” and “Empirical research of risk correlation based on Copula function method,” both appearing in the Journal of Liaoning Technical University (Natural Science Edition). These studies utilized advanced statistical tools to analyze investor behavior and risk correlation. Another 2022 work titled “Spatiotemporal Evolution of Provincial Carbon Emission Network in China,” published on SSRN, tackled environmental finance issues using spatial network methods. These publications not only reflect his diverse expertise but also have been cited by multiple articles, indicating his work’s influence within the academic community.

Conclusion

In summary, Professor Kaiwei Jia’s academic career is characterized by a strong dedication to education, a robust portfolio of interdisciplinary research, and impactful contributions to financial policy and risk management. His dual expertise in economics and statistics has allowed him to bridge theoretical frameworks with empirical application, making his research both rigorous and relevant. Through his teaching, he has nurtured the next generation of economists and financial analysts, while his administrative leadership has helped shape academic standards in finance education. His scholarly output and recognition through awards reflect a sustained contribution to the academic and policy-making community. Professor Jia continues to explore innovative themes in green finance and systemic risk, ensuring that his research remains at the forefront of addressing contemporary economic challenges.

Mohsen Saroughi | Machine Learning | Best Scholar Award

Mr. Mohsen Saroughi | Machine Learning | Best Scholar Award

Researcher | university of tehran | Iran

Mohsen Saroughi is an accomplished water resource management professional with a passion for research and innovation. With expertise in machine learning, groundwater modeling, and hydrology, Mohsen has established himself as a leading figure in applying artificial intelligence and optimization techniques to water resource challenges.

Profile

Google scholar

Education 🎓

  • Master’s in Water Resource Management (2018–2021): University of Tehran, Tehran, Iran (CGPA: 3.5/4)
  • Bachelor’s in Water Engineering (2014–2018): University of Bu-Ali Sina, Hamedan, Iran (CGPA: 3.1/4)

Experience 💼

Mohsen has served as a teaching assistant and research mentor, guiding students on projects in hydrology and groundwater management. His professional experience includes roles as a language editor, GIS consultant, and intern, where he demonstrated expertise in modeling, remote sensing, and IT solutions.

Research Interests 🔬

Mohsen’s research spans groundwater management, machine learning, climate change, and systems dynamics. He excels in applying artificial intelligence to water resource optimization and hydrological modeling.

Publications 📚

“A novel hybrid algorithms for groundwater level prediction”

  • Authors: M Saroughi, E Mirzania, DK Vishwakarma, S Nivesh, KC Panda, …
  • Journal: Iranian Journal of Science and Technology, Transactions of Civil Engineering
  • Year: 2023
  • Citations: 31

“Hybrid COOT-ANN: a novel optimization algorithm for prediction of daily crop reference evapotranspiration in Australia”

  • Authors: E Mirzania, MH Kashani, G Golmohammadi, OR Ibrahim, M Saroughi
  • Journal: Theoretical and Applied Climatology 154 (1), 201-218
  • Year: 2023
  • Citations: 7

“Shannon entropy of performance metrics to choose the best novel hybrid algorithm to predict groundwater level (case study: Tabriz plain, Iran)”

  • Authors: M Saroughi, E Mirzania, M Achite, OM Katipoğlu, M Ehteram
  • Journal: Environmental Monitoring and Assessment 196 (3), 227
  • Year: 2024
  • Citations: 5

“Prediction of monthly groundwater level using a new hybrid intelligent approach in the Tabriz plain, Iran”

  • Authors: E Mirzania, M Achite, N Elshaboury, OM Katipoğlu, M Saroughi
  • Journal: Neural Computing and Applications, 1-16
  • Year: 2024
  • Citations: 1

“Evaluate effect of 126 pre-processing methods on various artificial intelligence models accuracy versus normal mode to predict groundwater level (case study: Hamedan-Bahar …”

  • Authors: M Saroughi, E Mirzania, M Achite, OM Katipoğlu, N Al-Ansari, …
  • Journal: Heliyon 10 (7)
  • Year: 2024
  • Citations: 0

Awards 🏆

  • Ranked 1% in Official Judicial Experts Water Exam (2024)
  • 6th in Iranian University Entrance Master Exam (2018)
  • 2nd in Provincial Chemistry Competition (2012)

Conclusion 🌍

Mohsen Saroughi is a highly competent and accomplished researcher with strengths in advanced modeling, machine learning applications, and groundwater management. His technical expertise, leadership in mentoring students, and significant contributions to both academic literature and practical tools position him as a strong candidate for the Best Researcher Award. To further enhance his impact, expanding his international collaborations and engaging in projects that directly affect societal challenges could bolster his already impressive academic and professional trajectory.