Prof. Dr. Zhaoxiang Zhang | Object Tracking | Best Researcher Award
Professor at Unmanned System Research Institute, Northwestern Polytechnical University, China
Professor Zhaoxiang Zhang is a distinguished researcher at the Unmanned System Research Institute of Northwestern Polytechnical University. His academic career is characterized by profound contributions to the fields of aerospace engineering, computer vision, and autonomous systems. With a strong foundation in remote sensing and artificial intelligence, Prof. Zhang has emerged as a thought leader in processing point cloud data, developing robust unsupervised learning models, and advancing autonomous navigation technologies. His research has not only contributed to the theoretical development of these fields but also addressed critical real-world challenges in aerospace and defense sectors.
Profile
Education
Prof. Zhang pursued his academic training with a strong focus on aerospace technologies, remote sensing, and computational intelligence. His higher education and doctoral research revolved around spaceborne sensing systems, satellite navigation, and sensor fusion. This background equipped him with the analytical and technical foundation to bridge aerospace engineering with cutting-edge AI techniques. His graduate work emphasized image registration and attitude estimation, laying the groundwork for his later innovations in visual navigation and deep learning-based object tracking.
Experience
With years of experience leading both academic and applied research, Prof. Zhang has played a pivotal role in projects funded by the National Natural Science Foundation of China and multiple defense-sector institutions. He has successfully led a Youth Program grant and steered three vertical defense research subjects and two provincial-level initiatives. His research leadership spans the development of advanced deep learning architectures, unsupervised domain adaptation techniques, and lightweight models suitable for embedded aerospace systems. Prof. Zhang also contributes significantly to mentorship, guiding student teams that have earned national innovation awards and top honors at competitions like the Challenge Cup and Internet+ National Games.
Research Interests
Prof. Zhang’s research interests are multidisciplinary, encompassing aerospace target detection and recognition, attitude estimation, point cloud segmentation, multimodal data integration, and unsupervised model transfer. He focuses particularly on non-cooperative target tracking and cross-domain visual matching, crucial for autonomous navigation in dynamic or GPS-denied environments. His work also delves into scene change detection, pixel-level anomaly recognition, and the development of efficient, lightweight neural architectures for real-time applications on UAVs and small satellites. The fusion of AI with aerospace engineering in his work exemplifies a high-impact intersection of disciplines.
Awards
Prof. Zhang’s dedication to innovation and excellence has earned him national recognition. Notably, he has been honored with the Internet+ National Games Silver Award (twice) and the first prize in the prestigious Challenge Cup competition. Under his guidance, research group students have produced outstanding innovation outcomes recognized at the national level. These accolades underline his ability not only to conduct pioneering research but also to cultivate the next generation of innovators in aerospace AI technologies.
Publications
Prof. Zhang has authored over ten SCI-indexed publications as first or corresponding author. Seven of his most notable works include:
-
Zhang Z, Ji A, Zhang L, et al. (2023). Unsupervised seepage segmentation pipeline based on point cloud projection with large vision model. Tunnelling and Underground Space Technology — cited by 25 articles.
-
Zhang Z, Xu Y, Song J, et al. (2023). Robust pose estimation for non-cooperative space objects. Scientific Reports — cited by 18 articles.
-
Zhang Z, Xu Y, Song J, et al. (2023). Planet craters detection using unsupervised domain adaptation. IEEE Transactions on Aerospace and Electronic Systems — cited by 30 articles.
-
Zhang Z and Zhang L (2023). Rail Surface Defects Detection Using Multistep Domain Adaptation. IEEE Transactions on Systems, Man, and Cybernetics: Systems — cited by 22 articles.
-
Zhang Z, Ji A, Zhang L, et al. (2023). Deep learning for large-scale point cloud segmentation with causal inference. Automation in Construction — cited by 27 articles.
-
Zhang Z, Xu Y, Cui Q, et al. (2022). Unsupervised SAR and Optical Image Matching. IEEE Transactions on Geoscience and Remote Sensing — cited by 41 articles.
-
Song J, Zhang Z, Iwasaki A, et al. (2021). Augmented H∞ Filter for Satellite Jitter Estimation. IEEE Transactions on Aerospace and Electronic Systems — cited by 36 articles.
Conclusion
Professor Zhaoxiang Zhang stands at the forefront of integrating artificial intelligence with aerospace engineering. His extensive contributions in the domains of remote sensing, point cloud processing, and autonomous navigation have significantly advanced both theoretical frameworks and practical applications. As a mentor and leader, his influence extends beyond his own research to shaping the future of technological innovation through his students and collaborations. With a track record of impactful publications, national awards, and strategic project leadership, Prof. Zhang exemplifies the qualities of a transformative scientific thinker deserving of recognition in AI data science.