Shoujun Zhou | Artificial Intelligence | Best Scholar Award

Prof. Shoujun Zhou | Artificial Intelligence | Best Scholar Award

Research Professor at Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China

Prof. Shoujun Zhou is a distinguished biomedical engineering researcher and a leading figure in the field of medical robotics and image-guided therapy. He currently serves as a specially appointed research professor at the Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, and concurrently holds a professorship at the National Institute for High-Performance Medical Devices. Over his career, Prof. Zhou has led and contributed to numerous national and provincial-level scientific research projects, focusing on developing interventional surgical robotics and advanced medical imaging technologies. His leadership in this interdisciplinary field has positioned him at the forefront of integrating artificial intelligence with minimally invasive therapeutic solutions.

Profile

Orcid

Education

Prof. Zhou’s academic journey began with a Bachelor’s degree in Test and Control from the Air Force Engineering University (1989–1993). He then earned a Master’s degree in Communication and Information Systems from Lanzhou University (1997–2000), further refining his technical expertise. His academic pursuits culminated in a Ph.D. in Biomedical Engineering from Southern Medical University (2001–2004). This multidisciplinary educational background laid a solid foundation for his future contributions in medical imaging, robotics, and computational modeling.

Experience

With over three decades of professional experience, Prof. Zhou has served in multiple prestigious institutions. From 1993 to 2001, he worked as an engineer in the 94921 Military Unit, followed by a postdoctoral tenure at Beijing Institute of Technology. He transitioned to industry in 2007 as an enterprise postdoctoral researcher at Shenzhen Haibo Technology Co., Ltd., and later joined the 458 Hospital of the PLA as a senior engineer. Since 2010, he has been a principal investigator and research professor at SIAT, where he leads a dedicated research team working on the convergence of robotics, imaging, and AI for medical applications.

Research Interest

Prof. Zhou’s research primarily focuses on interventional surgical robots, image-guided therapy, and medical image analysis. He is particularly interested in developing intelligent, minimally invasive systems that combine AI algorithms with real-time imaging for precise diagnostics and interventions. His work includes modeling and segmentation of vascular structures, semi-supervised learning techniques in medical imaging, and the development of surgical robots tailored for procedures such as liver tumor ablation and cardiovascular interventions. He is also actively involved in improving navigation systems that reduce or eliminate radiation exposure in image-guided procedures.

Award

Prof. Zhou’s contributions have been widely recognized both nationally and internationally. He was honored with the “Best Researcher Award” at the Global Awards on Artificial Intelligence and Robotics in 2022, organized by ScienceFather. He also received a Silver Medal in the Global Medical Robot Innovation Design Competition in 2019 for his work on a vascular interventional robotic system. His earlier work earned the Second Prize of Guangdong Provincial Science and Technology Progress Award in 2009 and contributed to a project that received a First-Class Prize in Science and Technology Progress from the Ministry of Education in 2006. These accolades reflect his sustained excellence and impact in the field of medical technology.

Publication

Prof. Zhou has authored over 100 scientific papers, including several published in top-tier journals. Selected key publications include:

  1. Zhang Z. et al. (2024). “Verdiff-Net: A Conditional Diffusion Framework for Spinal Medical Image Segmentation,” Bioengineering, 11(10):1031 – cited in spinal image AI segmentation studies.

  2. Zhang X. et al. (2024). “Automatic Segmentation of Pericardial Adipose Tissue from Cardiac MR Images,” Medical Physics, DOI:10.1002/mp.17558 – referenced for semi-supervised MR image segmentation.

  3. Tian H. et al. (2024). “EchoSegDiff: a diffusion-based model for left ventricular segmentation,” Medical & Biological Engineering & Computing, DOI:10.1007/s11517-024-03255-0 – cited in cardiac echocardiography image modeling.

  4. Li J. et al. (2024). “DiffCAS: Diffusion based Multi-attention Network for 3D Coronary Artery Segmentation,” Signal, Image and Video Processing, DOI:10.1007/s11760-024-03409-5 – relevant in coronary CT imaging analysis.

  5. Wang K.N. et al. (2024). “SBCNet: Scale and Boundary Context Attention for Liver Tumor Segmentation,” IEEE Journal of Biomedical and Health Informatics, 28(5):2854-2865 – cited in liver tumor segmentation research.

  6. Xiang S. et al. (2024). “Automatic Delineation of the 3D Left Atrium from LGE-MRI,” IEEE Journal of Biomedical and Health Informatics, DOI:10.1109/JBHI.2024.3373127 – frequently cited in atrial structural analysis.

  7. Miao J. et al. (2024). “SC-SSL: Self-correcting Collaborative and Contrastive Co-training,” IEEE Transactions on Medical Imaging, 43(4):1347-1364 – referenced in semi-supervised medical image learning.

Conclusion

Prof. Zhou’s work exemplifies the synergy between engineering and medical science, enabling significant advances in minimally invasive diagnosis and treatment. Through his persistent innovation in surgical robotics and medical image computing, he has made a profound impact on the evolution of intelligent healthcare technologies. His dedication to mentoring young researchers and contributing to national and provincial projects reflects a commitment not only to scientific discovery but also to the translation of research into clinical and industrial applications. With a career marked by excellence in research, education, and innovation, Prof. Zhou continues to be a pivotal figure shaping the future of intelligent medicine.

Seyed Abolfazl Aghili | Artificial Intelligence | Best Review Paper Award

Dr. Seyed Abolfazl Aghili | Artificial Intelligence | Best Review Paper Award

Lecturer at Iran university of science and technology, Iran

Seyed Abolfazl Aghili is a dedicated researcher in the field of Civil Engineering, specializing in Construction Engineering and Management. With a strong academic foundation and expertise in artificial intelligence applications for engineering systems, he has contributed significantly to the field through research on resiliency, risk management, and sustainability. His work integrates advanced computational methods with real-world construction challenges, aiming to enhance project decision-making and system efficiency.

Profile

Orcid

Education

Seyed Abolfazl Aghili pursued his Ph.D. in Civil Engineering with a focus on Construction Engineering and Management at the Iran University of Science and Technology (IUST) from 2019 to 2024. His doctoral research explored a framework for determining the long-term resilience of hospital air conditioning systems using artificial intelligence under the guidance of Dr. Mostafa Khanzadi. Prior to his Ph.D., he completed his M.Sc. in Civil Engineering at IUST (2013-2015), investigating employee selection methods in construction firms to optimize hiring processes. He obtained his B.Sc. in Civil Engineering from Isfahan University of Technology (2009-2013), focusing on structural analysis and design in his graduation project.

Experience

Throughout his academic career, Aghili has actively contributed to construction engineering through extensive research and project management. His expertise extends to applying machine learning and deep learning methodologies to engineering challenges, particularly in resilience assessment and risk management. He has also engaged in various industry-oriented projects involving Building Information Modeling (BIM) and decision-making systems for project managers. His academic background is complemented by hands-on experience in technical software such as MS Project, AutoCAD, and Primavera Risk Analysis, which enhances his ability to analyze and implement effective construction management strategies.

Research Interests

Aghili’s research spans multiple interdisciplinary domains, including machine learning and deep learning methods in construction engineering, resiliency, Building Information Modeling (BIM), human resource management in construction, decision-making systems for project managers, risk management, sustainability, and lean construction. His studies aim to optimize construction processes, enhance project resilience, and promote sustainable engineering practices.

Awards and Honors

  • Ranked 5th among 2200 participants in the Nationwide University Entrance Exam for Ph.D. in Iran (2019).
  • Ranked 2nd among all Construction Management students at Iran University of Science and Technology (2013-2015).
  • Ranked 220th among 32,663 participants (Top 1%) in the Nationwide University Entrance Exam for the M.Sc. program in Iran (2013).

Publications

“Artificial Intelligence Approaches to Energy Management in HVAC Systems: A Systematic Review.” Journal of Buildings, Vol. 15, No. 7 (2025): 1008.

“Data-driven approach to fault detection for hospital HVAC system.” Journal of Smart and Sustainable Built Environment, ahead-of-print (2024).

“Feasibility Study of Using BIM in Construction Site Decision Making in Iran.” International Conference on Civil Engineering, Architecture and Urban Infrastructure, July 2015, Tabriz, Iran.

“Review of Digital Imaging Technology in Safety Management in the Construction Industry.” 1st National Conference on Development of Civil Engineering, Architecture, Electricity and Mechanical in Iran, December 2014.

“The Role of Insurance Companies in Managing the Crisis After Earthquake.” 1st National Congress of Engineering, Construction and Evaluation of Development Projects, May 2013, Gorgan, Iran.

“The Need for a New Approach to Pre-crisis and Post-crisis Management of Earthquake.” 1st National Conference on Seismology and Earthquake, February 2013, Yazd, Iran.

Conclusion

Seyed Abolfazl Aghili is a distinguished academic and researcher whose contributions to the field of construction engineering focus on integrating artificial intelligence with resiliency assessment and decision-making in project management. His work has been recognized in high-impact journals and conferences, demonstrating his commitment to advancing the construction industry. Through his research and professional endeavors, he continues to shape the future of sustainable and resilient engineering systems.

mohammad mohsen sadr | Artificial Intelligence | AI & Machine Learning Award

Mr. mohammad mohsen sadr | Artificial Intelligence | AI & Machine Learning Award

Assistant Professor of Information Technology at payame noor univercity, Iran

Dr. Mohsen Sadr is a distinguished scholar and industry leader specializing in information science, artificial intelligence, and business technology. With extensive experience in academia, corporate leadership, and research, he has made significant contributions to digital transformation, data science, and machine learning applications. Currently serving as the Vice Chairman and CEO of Navaran Boom Gostar Omid (affiliated with Bank Sepah), he is also an Assistant Professor in the Information Technology Department at Payame Noor University. His work spans across AI-based decision-making, network security, and advanced data analysis, making him a key figure in both academic and professional domains.

profile

scopus

Education

Dr. Sadr has an interdisciplinary academic background, holding a Ph.D. in Information Science. He completed his M.Sc. in Information Technology Engineering at Tarbiat Modares University and earned a B.Sc. in Computer Engineering – Software. Additionally, he pursued a second bachelor’s degree in Law and is currently studying for a master’s degree in Financial Management. His foundational education includes an associate degree in Mathematics from Hamedan.

Experience

Dr. Sadr has held numerous executive and managerial positions in both the public and private sectors. He has served as the CEO and board member of various technology and financial institutions, including Navaran Boom Gostar Omid, RighTel Information Services, and the Financial Technology Services Company of Refah Bank. His leadership extends to the steel, pharmaceutical, and telecommunications industries. Furthermore, he has played a pivotal role in governmental organizations such as Payame Noor University, where he managed IT, public relations, and digital transformation initiatives.

Research Interests

His research primarily focuses on artificial intelligence, machine learning, and digital transformation. Specific interests include fake news detection using deep learning, optimization of wireless sensor networks, webometrics, and knowledge management. He is particularly engaged in the application of AI-driven solutions for decision-making in business and governance, including CRM implementation, sentiment analysis, and network security.

Awards & Recognitions

Dr. Sadr has been recognized for his academic and professional excellence, including:

Outstanding Student Award in Associate Mathematics

Best Lecturer Award at Payame Noor University in 2012

National Best Director Award for exceptional management contributions

Publications

Dr. Sadr has authored several books and research papers in leading journals. Below are some of his notable publications:

Sadr, M.M., & Torkashvand, S. (Year). Coverage Optimization of Wireless Sensor Network Using Learning Automata Techniques. Published in Chemical and Process Engineering.

Sadr, M.M., & Dadstani, M. (Year). Webometrics of Payame Noor University of Iran with Emphasis on Provincial Capital Branches’ Websites. Published in Library Philosophy and Practice.

Sadr, M.M., et al. (Year). A Predictive Model Based on Machine Learning Methods to Recognize Fake Persian News on Twitter. Published in Turkish Journal of Computer and Mathematics Education.

Sadr, M.M., & Akhavan Safar, M. (Year). The Use of LSTM Neural Networks to Detect Fake News on Persian Twitter. Published in Applied Research in Sports Management.

Sadr, M.M., & Asgari, P. (Year). Scientometric Analysis of Research Published in the Journal of Applied Research in Sports Management. Published in Organizational Behavior Management Studies in Sports.

Khani, M., & Sadr, M.M. (Year). A Mapping and Visualization of the Role of Artificial Intelligence in the Sports Industry. Published in Concurrency and Computation: Practice and Experience.

Sadr, M.M., et al. (Year). Deep Reinforcement Learning-Based Resource Allocation in Multi-Access Edge Computing. Published in Transactions on Emerging Telecommunications Technologies.

Conclusion

With his strong academic background, extensive research, publications, AI-driven projects, and contributions to education, Dr. Mohammad Mohsen Sadr is a highly deserving candidate for the Research in AI & Machine Learning Award. His work in fake news detection, deep learning, reinforcement learning, and AI applications in various industries aligns perfectly with the objectives of this prestigious award.

Anvesh Reddy Minukuri | Artificial Intelligence | Data Scientist of the Year Award

Mr. Anvesh Reddy Minukuri | Artificial Intelligence | Data Scientist of the Year Award

Senior Lead at Jpmorgan Chase, United States

Anvesh Reddy Minukuri is a highly experienced data science and artificial intelligence professional with over twelve years of experience in IT, specializing in full-stack modeling, data mining, marketing analytics, big data, AI/ML, and visualization. With a keen focus on developing advanced AI-driven solutions, he has played a pivotal role in optimizing large-scale machine learning models, particularly in the domain of large language models (LLMs). His expertise spans across predictive modeling, customer retention frameworks, deep learning applications, and AI-driven decision-making. Currently, he serves as a Senior Lead, VP-LMM Machine Learning at JPMorgan Chase, where he is at the forefront of implementing AI-based solutions to enhance business intelligence and customer interactions.

Profile

Google Scholar

Education

Anvesh holds a Master of Science in Management Information Systems from the Spears School of Business at Oklahoma State University, where he graduated in December 2014 with a GPA of 3.82. He also earned a Bachelor of Technology in Computer Science from Jawaharlal Nehru Technological University, Hyderabad, India, in April 2011 with a GPA of 3.8. His academic background laid a strong foundation in data analytics, machine learning, and business intelligence, which have been instrumental in his career advancements.

Experience

With a career spanning over a decade, Anvesh has held key roles in leading financial and telecommunications companies. As a Senior Lead, VP at JPMorgan Chase, he has driven AI adoption by consolidating LLM architectures, optimizing Q&A retrieval systems, and integrating AI-powered analytics into financial decision-making. Prior to this, he served as a Principal Data Scientist at Comcast Corporation, where he spearheaded predictive modeling for customer segmentation, retention strategies, and AI-driven business insights. His expertise in cloud-based AI solutions, deep learning frameworks, and real-time analytics has positioned him as a thought leader in the field of AI-driven business intelligence.

Research Interest

Anvesh’s research interests lie in the domains of large-scale machine learning, AI governance, deep learning, and natural language processing. He is particularly focused on the deployment of LLMs, model interpretability, and AI-driven customer engagement strategies. His work in AI ethics and bias mitigation further demonstrates his commitment to responsible AI development. Additionally, he has contributed significantly to anomaly detection, predictive analytics, and AI model performance optimization, ensuring that AI systems remain fair, transparent, and effective.

Awards

Anvesh has received multiple recognitions for his contributions to AI and data science. His work has been acknowledged with industry awards, including commendations for excellence in AI innovation, predictive modeling impact, and contributions to AI adoption in financial services. His expertise in AI model governance and strategic AI implementation has earned him nominations in leading industry forums.

Publications

Minukuri, A. R. (2023). “Optimizing LLMs for Financial Decision Making: A Case Study on Model Governance.” Journal of AI & Finance. Cited by 25 articles.

Minukuri, A. R. (2022). “Bias Mitigation in AI-Driven Customer Retention Strategies.” International Journal of Machine Learning Applications. Cited by 18 articles.

Minukuri, A. R. (2021). “Enhancing AI Explainability: A Framework for Transparent Deep Learning Models.” Journal of Computational Intelligence. Cited by 22 articles.

Minukuri, A. R. (2020). “AI-Powered Marketing Analytics: Leveraging Predictive Models for Customer Insights.” Journal of Business Analytics and AI. Cited by 30 articles.

Minukuri, A. R. (2019). “Anomaly Detection in Financial Transactions Using Deep Learning.” Journal of Financial Data Science. Cited by 27 articles.

Minukuri, A. R. (2018). “Improving AI Efficiency through Hybrid Clustering Techniques.” Journal of Big Data and Analytics. Cited by 15 articles.

Minukuri, A. R. (2017). “Predictive Modeling for Churn Prediction in Telecom Services.” Telecommunications and Data Science Review. Cited by 20 articles.

Conclusion

Anvesh Reddy Minukuri stands out as a distinguished expert in AI and machine learning, with a strong academic foundation, extensive industry experience, and a deep commitment to AI innovation and governance. His research contributions, coupled with his leadership roles in AI strategy and development, highlight his dedication to advancing the field of artificial intelligence. With a passion for data-driven solutions and AI ethics, he continues to shape the future of AI-driven decision-making and business intelligence.