Ruchun Jia | Artificial Intelligence | Best Researcher Award

Assoc. Prof. Dr. Ruchun Jia | Artificial Intelligence | Best Researcher Award

Professor at College of Computer Science, Sichuan University, China

Ruchun Jia is an Associate Professor at Sichuan University with a specialization in artificial intelligence, system security, data security, industrial control security, Internet of Things security, and internet security. Over the past decade, he has made significant contributions to the field of information security, particularly in the areas of network security technologies and secure system design. Jia has extensive experience leading and participating in numerous national and provincial projects, including the development of several national patents and scientific research papers. His academic and practical knowledge has made him a key figure in both research and development, as well as the education of future experts in the field.

Profile

Orcid

Education

Ruchun Jia completed his Ph.D. at Sichuan University, where he developed a deep understanding of the complexities surrounding information security and the evolving threats in modern computing systems. During his time as a graduate student, he became involved in several advanced research projects that laid the foundation for his future contributions in academia and industry. His academic journey has been marked by a continuous pursuit of knowledge in the realms of secure storage, network security, and cloud computing technologies.

Experience

Throughout his ten-year career, Jia has gained extensive experience in both academic and practical aspects of information security. He has presided over and contributed to multiple high-profile national and provincial research projects, with a focus on developing innovative solutions for information and network security. His leadership has been instrumental in guiding students to success in numerous national and provincial competitions. Additionally, he has managed large-scale projects in the areas of e-commerce, education, and governmental digital transformation, demonstrating his versatility and proficiency in both technical and managerial roles. His professional contributions have also extended to the development of various multimedia and web-based applications, showcasing his broad skill set.

Research Interest

Ruchun Jia’s research interests span several key areas within the domain of cybersecurity and artificial intelligence. His work primarily focuses on artificial intelligence in security systems, the development of secure storage solutions, and the deployment of integrated network security technologies. He is particularly interested in the security implications of the Internet of Things (IoT) and industrial control systems. His research also delves into cloud computing technologies, with a particular emphasis on Big Data platforms, MapReduce design methods, and virtualization technologies such as VMware and KVM. Jia’s research extends to security architecture design for both enterprise systems and cloud computing infrastructures.

Award

Ruchun Jia’s outstanding contributions to information security have been recognized through multiple accolades. He has been awarded national prizes for his leadership in security-related competitions, with his students earning first and second prizes at the national and provincial levels. His research and development efforts have earned him several honors, including the recognition of his national patents and scientific publications. His work in creating educational resources in the field of information security has also been widely acknowledged, further cementing his reputation as a leader in both academia and industry.

Publication

Ruchun Jia has authored over 60 scientific research papers, with more than 20 published in SCI and Peking University core journals. His research is widely cited in the field, and his contributions to cybersecurity are frequently referenced in scholarly articles. Notable publications include works on network security technologies, data disaster recovery, and the design of secure system architectures. Some of his key publications include:

Jia, R. (2015). “Design of Secure Network Systems for Industrial Control.” Journal of Information Security and Applications, 23(2), 45-59.

Jia, R., & Han, X. (2016). “Secure Storage Mechanisms for Cloud Platforms.” Journal of Cybersecurity, 15(4), 232-245.

Jia, R. (2017). “AI-based Security Solutions for IoT Systems.” Journal of Artificial Intelligence and Security, 8(1), 12-23.

Jia, R., et al. (2018). “Big Data Security in Cloud Computing.” International Journal of Cloud Computing and Security, 6(3), 167-178.

Jia, R., & Liu, Y. (2019). “Secure E-commerce Platforms: A Study on Web Attack Prevention.” Journal of Web Security, 10(2), 134-145.

Jia, R. (2020). “Building Smart City Platforms with Security in Mind.” Journal of Smart Cities and Technology, 12(1), 56-68.

Jia, R. (2021). “Advanced Network Attack Defense Techniques for Information Security.” Journal of Network Security Technologies, 9(4), 89-101.

Conclusion

Ruchun Jia’s career reflects a profound commitment to advancing the field of information security, particularly in the realms of AI and IoT security. His work has not only contributed to the academic community but has also had a significant impact on industrial practices and national security policies. As an educator, researcher, and project manager, Jia has shaped the direction of cybersecurity research and has been instrumental in the development of innovative solutions for secure information systems. His continued contributions to the field promise to further strengthen the global efforts in combating emerging cyber threats and securing digital infrastructures.

Muyang Li | Deep learning | Best Researcher Award

Mr Muyang Li | Deep learning | Best Researcher Award

Tianjin University,  China

Muyang Li is a dedicated researcher at Tianjin University, specializing in the integration of chemical engineering and data science. Currently pursuing his Master’s degree, he has already made significant contributions to the fields of crystallization process optimization, material property prediction, and AI-driven image analysis.

Profile:

🎓 Education:

  • M.S. in Chemical Engineering and Technology (2022–Present), Tianjin University
  • B.S. in Chemical Engineering and Technology (2018–2022), Tianjin University

🔬 Research Focus:

Muyang Li’s research bridges chemical engineering and computer vision, with notable contributions in:

  • Crystallization process optimization using AI and image segmentation.
  • Developing novel methodologies for virtual dataset synthesis and material property prediction.
  • Implementing deep learning techniques (e.g., CNNs, Transformers, YOLOv8) for enhanced industrial applications.

🏆 Achievements:

  • Authored 4 impactful publications in leading journals such as Powder Technology and Chemical Engineering Journal (2024).
  • Recipient of prestigious awards, including the Samsung Scholarship (2020) and First-Class Scholarship for Master Students (2022).
  • Recognized as an Excellent Graduate of Tianjin University (2022).

🧪 Key Research Contributions:

  • Developed frameworks for optimizing crystallization processes via image and data enhancement strategies.
  • Pioneered methods for synthesizing virtual datasets using advanced neural networks like CoCosNet.
  • Advanced deep-learning applications for material properties prediction and dynamic emulsion analysis.

With his innovative approach and interdisciplinary expertise, Muyang Li is making significant strides in integrating chemical engineering with cutting-edge AI technologies.

Publication Top Notes:

1. Enhanced Powder Characteristics of Succinic Acid through Crystallization Techniques for Food Industry Application

  • Authors: Hutagaol, T.J., Liu, J., Li, M., Gao, Z., Gong, J.
  • Journal: Journal of Food Engineering
  • Year: 2025, Volume: 388, Article: 112376
  • Focus: Improved powder properties of succinic acid via advanced crystallization techniques tailored for food industry applications.
  • Citations: 0

2. Modeling and Validation of Multi-Objective Optimization for Mixed Xylene Hybrid Distillation/Crystallization Process

  • Authors: Chen, W., Yao, T., Liu, J., Gao, Z., Gong, J.
  • Journal: Separation and Purification Technology
  • Year: 2025, Volume: 354, Article: 128778
  • Focus: Multi-objective optimization model validation for hybrid distillation/crystallization in mixed xylene processing.
  • Citations: 0

3. A Deep Learning-Powered Intelligent Microdroplet Analysis Workflow for In-Situ Monitoring and Evaluation of a Dynamic Emulsion

  • Authors: Liu, J., Li, M., Cai, J., Gao, Z., Gong, J.
  • Journal: Chemical Engineering Journal
  • Year: 2024, Volume: 499, Article: 155927
  • Focus: Advanced deep-learning workflows for real-time dynamic emulsion monitoring.
  • Citations: 0

4. Predicting Crystalline Material Properties with AI: Bridging Molecular to Particle Scales

  • Authors: Chen, W., Li, M., Yao, T., Gao, Z., Gong, J.
  • Journal: Industrial and Engineering Chemistry Research
  • Year: 2024, Volume: 63(43), pp. 18241–18262
  • Type: Review
  • Focus: Utilizing AI for predicting crystalline material properties from molecular to particle scales.
  • Citations: 0

5. Experiment of Simulation Study on Gas-Solid Fluidization in Martian Environments

  • Authors: Ma, Y., Li, M., Ma, Z., Zhang, L., Liu, M.
  • Journal: Huagong Jinzhan/Chemical Industry and Engineering Progress
  • Year: 2024, Volume: 43(8), pp. 4203–4209
  • Focus: Simulation studies of gas-solid fluidization under Martian environmental conditions.
  • Citations: 0

6. Deep-Learning Based In-Situ Micrograph Analysis of High-Density Crystallization Slurry Using Image and Data Enhancement Strategy

  • Authors: Li, M., Liu, J., Yao, T., Gao, Z., Gong, J.
  • Journal: Powder Technology
  • Year: 2024, Volume: 437, Article: 119582
  • Focus: Application of deep-learning techniques for analyzing high-density crystallization slurry micrographs.
  • Citations: 2