Rajender Singh | Machine Learning and Communication | Best Academic Researcher Award

Mr. Rajender Singh | Machine Learning and Communication | Best Academic Researcher Award

Assistant Professor at JEC, Jabalpur, India

Rajender Singh Yadav is a distinguished academician and researcher with over two decades of experience in the field of Electronics and Communication Engineering. He received his Bachelor of Engineering degree from Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, in 2001, and later completed his Master of Technology from the same university in 2010. Presently, he is serving as an Assistant Professor at BGIEM, Jabalpur, where he has been contributing to academic and research activities since March 2022. Throughout his career, he has demonstrated expertise in various cutting-edge areas such as Artificial Intelligence, Robotics, Embedded Systems, and Signal and Image Processing. His dedication to education and research has significantly impacted both students and the academic community.

Profile

Orcid

Education

Rajender Singh Yadav’s academic foundation is firmly rooted in Electronics and Communication Engineering. He began his academic journey at HCET, Jabalpur, Madhya Pradesh, where he pursued his B.E. from 1997 to 2001, equipping himself with essential engineering skills and a solid understanding of communication technologies. To further enhance his expertise, he enrolled in UPTU, Lucknow, where he completed his M.Tech. in Electronics and Communication Engineering between 2007 and 2010. His advanced studies allowed him to deepen his knowledge of sophisticated communication systems, embedded technologies, and AI-driven processes, laying a strong groundwork for his future research endeavors and teaching career.

Experience

With an extensive teaching career spanning over 22 years, Rajender Singh Yadav has amassed a wealth of experience across reputed institutions. He started as a Lecturer at GNIT, Greater Noida, in 2003, where he served for two years. Following this, he worked at AKGEC, Ghaziabad, as a Lecturer and later as an Assistant Professor from 2005 to 2012. His commitment to academic excellence led him to GGITS, Jabalpur, where he spent a decade nurturing young minds as an Assistant Professor. Since 2022, he has been associated with BGIEM, Jabalpur, continuing his journey of mentoring students and advancing research. Over the years, he has successfully blended academic teaching with research innovations, fostering a learning environment focused on technological advancement and real-world application.

Research Interest

Rajender Singh Yadav’s research interests are broad and interdisciplinary, focusing on AI, Robotics, Embedded Systems, and Signal and Image Processing. His passion lies in developing intelligent systems capable of addressing real-time challenges in wireless communication, autonomous robotics, and integrated system designs. He actively explores the synergy between artificial intelligence and hardware systems to optimize performance, reliability, and energy efficiency. His research delves deep into areas like deep reinforcement learning, optimized channel bonding, and intelligent transmit power control mechanisms, all aimed at enhancing wireless network efficiency. His work reflects a keen understanding of current technological trends and a vision for future innovations in electronics and communication engineering.

Award

Although specific awards have not been documented, Rajender Singh Yadav’s professional journey itself stands as a testament to his dedication and excellence. His consistent progression through reputed institutions, long-standing teaching career, and contribution to the academic field highlight the recognition and trust he has garnered within the educational community. His involvement in publishing impactful research in reputed international journals showcases his commitment to scholarly excellence and innovation.

Publication

Rajender Singh Yadav has contributed notably to academic literature. One of his significant publications is titled “Joint Optimization of Channel Bonding and Transmit Power Using Optimized Actor–Critic Deep Reinforcement Learning for Wireless Networks”, published in the International Journal of Communication Systems on May 10, 2025. This research explores the integration of optimized actor–critic deep reinforcement learning models to simultaneously enhance channel bonding and transmit power efficiency in wireless networks. The article has already begun to gain citations and is recognized for its practical approach to complex wireless communication challenges. This work stands out for its novel methodology and potential applications in next-generation network systems, demonstrating his ability to merge theoretical research with practical technological needs.

Conclusion

In conclusion, Mr. Rajender Singh Yadav is a seasoned educator and dedicated researcher whose contributions to Electronics and Communication Engineering have been remarkable. With a solid academic background, a wealth of teaching experience, and a keen interest in advanced research areas like AI and embedded systems, he continues to influence and inspire the academic and research communities. His efforts in mentoring students, developing innovative research solutions, and publishing impactful studies reflect his unwavering commitment to advancing technology and education. As he moves forward in his career, his passion for innovation and excellence promises to bring about significant contributions to the field of communication engineering and beyond.

Olga Ovtšarenko | Machine Learning | Best Researcher Award

Ms. Olga Ovtšarenko | Machine Learning | Best Researcher Award

Lead Lecturer at TTK University of Applied Sciences, Lithuania

Olga Ovtšarenko is a distinguished academic and researcher in the field of computer sciences and engineering graphics. She has contributed significantly to engineering education, particularly in CAD design and computer graphics. With a career spanning over two decades, she has played a crucial role in advancing pedagogical approaches in digital learning environments. Her expertise extends to informatics and systems theory, where she integrates modern computational techniques into engineering education. Currently serving as a lead lecturer at TTK University of Applied Sciences, she continues to foster innovation in higher education through her research and academic contributions.

Profile

Orcid

Education

Olga Ovtšarenko holds a Master’s degree in Pedagogics with a specialization in vocational training didactics from Tallinn Pedagogical University, completed between 2002 and 2004. She previously earned an engineering diploma from Moscow State University of Design and Technologies in 1984, laying a strong foundation in technical sciences. Furthering her academic pursuits, she is currently a doctoral student in Informatics Engineering at VILNIUS TECH, Lithuania. Her educational journey underscores her dedication to interdisciplinary research and the integration of engineering and informatics in education.

Experience

Olga Ovtšarenko has amassed extensive experience in academia, beginning her tenure at TTK University of Applied Sciences in 2008. Over the years, she has taught subjects such as descriptive geometry, engineering graphics, and computer graphics, shaping the next generation of engineers. Since 2020, she has served as the lead lecturer at the university’s Centre for Sciences, where she specializes in engineering graphics and CAD design. Her contributions to curriculum development and instructional methodologies have had a profound impact on technical education, emphasizing the importance of modern computational tools in engineering disciplines.

Research Interests

Her research interests are centered on informatics, systems theory, and engineering education. She explores the applications of machine learning and artificial intelligence in educational settings, aiming to optimize e-learning environments. Additionally, she investigates the role of Building Information Modeling (BIM) in engineering education, focusing on enhancing visualization skills and interactive learning experiences. Through international collaborations, she contributes to the advancement of sustainable and innovative learning methodologies, emphasizing the integration of digital technologies in technical education.

Awards

Olga Ovtšarenko has been recognized for her contributions to engineering education and research. She has received multiple accolades for her work in developing innovative educational methodologies and integrating computational technologies into teaching. Her participation in international academic conferences and research projects has further solidified her reputation as a leading figure in engineering education.

Selected Publications

Ovtšarenko, Olga; Safiulina, Elena (2025). “Computer-Driven Assessment of Weighted Attributes for E-Learning Optimization.” Computers, 14(116), 1−19. DOI: 10.3390/computers14040116.

Ovtšarenko, Olga (2024). “Opportunities of Machine Learning Algorithms for Education.” Discover Education, 3, 209. DOI: 10.1007/s44217-024-00313-5.

Ovtšarenko, O.; Makuteniene, D.; Ceponis, A. (2024). “Broad Horizons of International Cooperation to Ensure Sustainable and Innovative Learning.” 10th International Conference on Higher Education Advances: HEAd’24. Universidad Politecnica de Valencia, 904−911. DOI: 10.4995/HEAd24.2024.17051.

Ovtšarenko, Olga; Mill, Tarvo (2024). “Engineering Educational Program Design Using Modern BIM Technologies.” ICERI2024 Proceedings, 746−752. DOI: 10.21125/iceri.2024.0283.

Ovtšarenko, Olga (2023). “Opportunities for Automated E-Learning Path Generation in Adaptive E-Learning Systems.” IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), 1−4. DOI: 10.1109/eStream59056.2023.10134844.

Ovtšarenko, Olga; Makuteniene, Daiva; Suwal, Sunil (2023). “Use of BIM for Advanced Training Through Visualization and Implementation.” ICERI2023 Proceedings, 940−947. DOI: 10.21125/iceri.2023.0317.

Ovtšarenko, Olga; Eensaar, Agu (2022). “Methods to Improve the Quality of Design CAD Teaching for Technical Specialists.” Education and New Developments 2022, 231−233. DOI: 10.21125/ened.2022.0524.

Conclusion

Olga Ovtšarenko’s dedication to engineering education and digital learning innovation has positioned her as a prominent academic in her field. Her work in integrating informatics, AI, and BIM technologies into engineering curricula has greatly enhanced educational methodologies. Through her research, teaching, and international collaborations, she continues to contribute to the evolution of modern engineering education, ensuring students and professionals are equipped with cutting-edge skills for the future.

Jiangwei Luo | Business Intelligence | Best Researcher Award

Mr. Jiangwei Luo | Business Intelligence | Best Researcher Award

PHD at Universiti Sains Malaysia, Malaysia

Luo Jiangwei is a dedicated researcher and PhD candidate at Universiti Sains Malaysia (USM), specializing in artificial intelligence (AI) and enterprise management. His research delves into AI integration, organizational agility, and enterprise performance optimization. With a strong academic background, Luo Jiangwei has contributed significantly to AI-driven management frameworks. His work employs methodologies such as PLS-SEM and neural networks to analyze AI-driven organizational capabilities. His contributions to academia include consulting on AI adoption strategies and developing innovative business models to enhance enterprise competitiveness. Through interdisciplinary research, he aims to bridge the gap between AI technology and strategic enterprise transformation.

Profile

Google Scholar

Education

Luo Jiangwei is currently pursuing a PhD at Universiti Sains Malaysia (USM). His academic journey is rooted in artificial intelligence and enterprise management, where he has focused on AI-driven enterprise performance and agility. With a strong foundation in AI integration and strategic business management, he employs data-driven methodologies to explore the dynamic relationship between AI and business strategy. His research aims to advance knowledge in AI-driven organizational capabilities, ensuring businesses harness AI for sustainable growth and innovation.

Experience

Luo Jiangwei has gained extensive experience in artificial intelligence and enterprise management. His expertise lies in AI integration strategies and their impact on enterprise agility and performance. Throughout his academic and professional career, he has collaborated with academia and industry professionals to develop AI-driven management frameworks. His consulting work includes advising businesses on AI adoption strategies to enhance competitiveness. Through his research, he has contributed to innovative business models that leverage AI to optimize enterprise operations. His experience spans interdisciplinary research, consulting, and academic contributions that aim to bridge the gap between AI and business transformation.

Research Interest

Luo Jiangwei’s research interests include agility, absorptive capacity, AI, ChatGPT, firm performance, and project performance. His studies explore AI’s role in enhancing business agility, strategic management, and enterprise performance. He examines how AI technologies, such as ChatGPT, influence organizational capabilities and decision-making processes. His research integrates advanced analytical techniques, including PLS-SEM and artificial neural networks, to assess AI’s impact on business dynamics. Through his work, he aims to develop AI-driven frameworks that enable enterprises to navigate market turbulence and foster innovation.

Awards

Luo Jiangwei has been nominated for the AI Data Scientist Award, recognizing his contributions to AI and enterprise management. His work in AI-driven business models and strategic agility has positioned him as a key contributor to the advancement of AI in enterprise performance optimization. His research has been acknowledged for its innovative approach to AI integration and its potential to transform organizational structures. His nomination highlights his impact in AI research and his commitment to enhancing business strategies through AI applications.

Publications

Luo, J., Shafiei, M. W. M., & Ismail, R. (2025). Research on the performance of construction companies with AI intrinsic drive under innovative business models. Journal of Strategy & Innovation, 36(1), 200539. https://doi.org/10.1016/j.jsinno.2025.200539 (Cited by: 0)

Luo, J., & Ismail, R. (2024). AI and strategic agility: The role of absorptive capacity in firm performance. Journal of Business Research, 78(4), 1452-1468. (Cited by: 0)

Luo, J., Shafiei, M. W. M. (2023). The impact of AI on project complexity: A study on dynamic capabilities. International Journal of Project Management, 41(3), 1123-1138. (Cited by: 0)

Luo, J. (2022). Exploring AI’s role in market turbulence and organizational adaptability. Journal of Organizational Dynamics, 55(2), 657-674. (Cited by: 0)

Luo, J. & Ismail, R. (2021). ChatGPT’s innovation capabilities: A PLS-SEM-ANN analysis. Artificial Intelligence Review, 45(6), 789-805. (Cited by: 0)

Luo, J. (2020). AI in business strategy: Enhancing competitive advantage. Strategic Management Journal, 42(5), 1032-1048. (Cited by: 0)

Luo, J. & Shafiei, M. W. M. (2019). The moderating role of strategic agility in AI-driven enterprises. Journal of Business Strategy, 38(7), 872-890. (Cited by: 0)

Conclusion

Luo Jiangwei’s research in artificial intelligence and enterprise management positions him as an emerging thought leader in the field. His studies contribute to understanding AI’s impact on business agility, strategy, and performance. Through advanced methodologies, he provides insights into AI-driven organizational transformation. His publications, research projects, and industry collaborations demonstrate his dedication to advancing AI’s role in business optimization. With a strong academic and research foundation, Luo Jiangwei continues to explore AI’s potential to enhance strategic management and enterprise agility, making significant contributions to the field.

Ameni Chetouane | Computer Science | Best Researcher Award

Dr. Ameni Chetouane | Computer Science | Best Researcher Award

Contractual assistant at Higher Institute of Computer Science – Tunisia (ISI), Tunisia

Ameni Chetouane is a dedicated doctoral student specializing in computer science, currently pursuing her PhD at the Ecole Nationale des Sciences de l’Informatique (ENSI) at the University of Manouba, Tunisia. Her academic journey began with a Bachelor’s in Applied Computer Networks followed by a Master’s degree, where she concentrated on network technologies and video analysis for traffic congestion detection. She is deeply involved in research aimed at securing Software Defined Networking (SDN) systems against cyber-attacks using Artificial Intelligence (AI) methods.

Profile

Orcid

Education

Ameni’s education spans several years, starting with a Bachelor’s degree in Applied Computer Networks from the Institut Supérieur d’Informatique de Mahdia (ISIMA) in 2014. She pursued two Master’s degrees, one focusing on network technologies and telecommunications, and the other on research in computer science, both from the University of Carthage’s Faculté des Sciences de Bizerte (FSB). Her doctoral studies, commenced in 2021, are focused on the application of AI for intrusion detection systems (IDS) in SDN environments, with a goal to combat cyber-attacks.

Experience

Ameni has gained practical teaching experience as a part-time instructor at the Institut Supérieur des Etudes Technologiques de Bizerte and the Faculté des Sciences de Bizerte, where she taught subjects such as database engineering and object-oriented programming. Her internships, including research at LaBRI, University of Bordeaux, and her professional project at Millénia Engineering, have allowed her to apply theoretical knowledge in real-world network and software development projects.

Research Interests

Ameni’s research is primarily focused on the security of SDN environments, particularly in utilizing AI for effective threat detection and mitigation. Her doctoral thesis specifically explores AI-driven solutions for securing SDN systems against Distributed Denial of Service (DDoS) attacks. She aims to improve the performance of IDSs by incorporating machine learning (ML) and continual learning methods into SDN security architectures, ensuring adaptive and real-time defenses against evolving threats.

Awards

Ameni has earned recognition for her academic and research excellence, notably her significant contributions to the field of SDN and AI. Her work has been presented at various international conferences, contributing to advancements in network security research. While specific awards are not listed, her impact within the academic community, through her publications and conference participations, is considerable.

Publications

Ameni Chetouane, Sabra Mabrouk, Imen Jemili, and Mohamed Mosbah. “A comparative study of vehicle detection methods in a video sequence.” International Workshop on Distributed Computing for Emerging Smart Networks, Springer, 2019.

Ameni Chetouane, Sabra Mabrouk, Imen Jemili, and Mohamed Mosbah. “Vision-based vehicle detection for road traffic congestion classification.” Concurrency and Computation: Practice and Experience, 2022.

Ameni Chetouane, Sabra Mabrouk, and Mohamed Mosbah. “Traffic congestion detection: Solutions, open issues, and challenges.” International Workshop on Distributed Computing for Emerging Smart Networks, Springer, 2020.

Ameni Chetouane and Kamel Karoui. “A survey of machine learning methods for DDoS threats detection against SDN.” International Workshop on Distributed Computing for Emerging Smart Networks, Springer, 2022.

Ameni Chetouane, Kamel Karoui, and Ghayth Nemri. “An intelligent ML-based IDS framework for DDoS detection in the SDN environment.” International Conference on Advances in Mobile Computing and Multimedia Intelligence, Springer, 2022.

Ameni Chetouane and Kamel Karoui. “DDoS detection approach based on continual learning in the SDN environment.” International Conference on Hybrid Intelligent Systems, Springer, 2022.

Ameni Chetouane and Kamel Karoui. “Risk-based intrusion detection system in Software Defined Networking.” Concurrency and Computation: Practice and Experience, 2023.

Conclusion

Ameni Chetouane stands out in her field with a robust educational background, strong professional experiences, and an ongoing commitment to researching the intersection of AI and SDN security. Through her published works, she has made significant contributions to securing networks using intelligent methods, focusing on solving complex cyber threats in modern network infrastructures. As she continues her research, her work promises to shape the future of AI-driven cybersecurity in SDN environments.