Hemad Zareiforoush | Machine Learning | Best Academic Researcher Award

Dr. Hemad Zareiforoush | Machine Learning | Best Academic Researcher Award

Associate Professor at University of Guilan, Rasht, Iran

Dr. Hemad Zareiforoush is an Assistant Professor at the Department of Biosystems Engineering, University of Guilan, Rasht, Iran, where he has been contributing to both academic and practical advancements in biosystems engineering since 2015. With a focus on agricultural machinery, automation, and quality inspection systems, his work bridges engineering and food science, particularly in areas like computer vision, image processing, and renewable energy applications. His research is highly interdisciplinary, combining mechanical engineering principles with computational intelligence for improving the agricultural industry’s efficiency.

Profile

Google Scholar

Education

Dr. Zareiforoush’s educational background is robust, with a PhD in Mechanical and Biosystems Engineering from Tarbiat Modares University in Tehran, Iran, completed in 2014. His academic excellence is evident in his GPA of 17.84 out of 20. He earned his MSc in Mechanical Engineering of Agricultural Machinery at Urmia University in 2010, where he graduated with a remarkable GPA of 19.29 out of 20. Earlier, Dr. Zareiforoush obtained his BSc in the same field from Urmia University in 2007, graduating with a GPA of 15.75 out of 20. He also attended a specialized governmental high school for excellent pupils, where he focused on mathematics and physics, graduating with a GPA of 18.71 out of 20.

Experience

Since joining the University of Guilan in 2015, Dr. Zareiforoush has been teaching various courses, including Engineering Properties of Food and Agricultural Products, Renewable Energy, and Measurement and Instrumentation Principles. His practical experience spans various engineering disciplines, with a particular emphasis on instrumentation, automation in agriculture, and food quality monitoring. Notably, his research has led to the development of innovative systems for rice quality inspection using computer vision and fuzzy logic. Additionally, he has been involved in numerous projects related to agricultural machinery, renewable energy, and automation for optimizing food production processes.

Research Interests

Dr. Zareiforoush’s research interests lie at the intersection of biosystems engineering, computational intelligence, and food science. He is particularly interested in computer vision applications for food quality inspection, using advanced image processing techniques to enhance product quality and safety. His work also explores hyperspectral imaging and spectroscopy for monitoring the quality of food materials. Another key area of his research is the application of machine learning algorithms for modeling and classifying food products based on their quality attributes. Additionally, he is involved in renewable energy applications in agriculture, focusing on solar-assisted drying systems and energy-efficient food processing methods.

Awards

Dr. Zareiforoush has received several prestigious awards throughout his academic career. He was honored with the Iran Ministry of Science, Research, and Technology Scholarship in 2012 and the National Elite Scholarship by the Iran National Foundation for Elites (INFE) in 2011. His exceptional academic performance earned him the title of “Best Student” at Urmia University in 2009. Additionally, he has been recognized as a “Talented Student” at Tarbiat Modares University and ranked 1st among MSc students in his department.

Publications

Dr. Zareiforoush has published several influential papers in high-impact journals. Some of his notable publications include:

Bakhshipour, A., Zareiforoush, H., Bagheri, I. (2020). Application of decision trees and fuzzy inference system for quality classification and modeling of black and green tea based on visual features. Journal of Food Measurement and Characterization, 14: 1402–1416, Cited by: 43.

Bakhshipour, A., Zareiforoush, H., Bagheri, I. (2020). Development of a fuzzy model for differentiating peanut plant from broadleaf weeds using image features. Plant Methods, 16:153, Cited by: 25.

Bakhshipour, A., Zareiforoush, H., Bagheri, I. (2021). Mathematical and intelligent modeling of stevia (Stevia Rebaudiana) leaves drying in an infrared-assisted continuous hybrid solar dryer. Food Science & Nutrition (JCR), 9(1), 532-543, Cited by: 12.

Zareiforoush, H., Minaei, S., Alizadeh, M.R., Banakar, A. (2016). Design, Development, and Performance Evaluation of an Automatic Control System for Rice Whitening Machine Based on Computer Vision and Fuzzy Logic. Computers and Electronics in Agriculture, 124: 14-22, Cited by: 67.

Soodmand-Moghaddam, S., Sharifi, M., Zareiforoush, H. (2020). Mathematical modeling of lemon verbena leaves drying in a continuous flow dryer equipped with a solar pre-heating system. Quality Assurance and Safety of Crops & Foods, 12(1): 57-66, Cited by: 30.

Zareiforoush, H., Minaei, S., Alizadeh, M.R., Banakar, A. (2015). Qualitative Classification of Milled Rice Grains Using Computer Vision and Metaheuristic Techniques. Journal of Food Science and Technology (Springer), 53(1): 118-131, Cited by: 45.

Zareiforoush, H., Komarizadeh, M.H., Alizadeh, M.R. (2010). Effects of crop-screw parameters on rough rice grain damage in handling with a horizontal screw auger. Journal of Food, Agriculture and Environment, 8(3): 132-138, Cited by: 19.

Conclusion

Dr. Hemad Zareiforoush’s academic and professional contributions significantly impact the fields of biosystems engineering, food science, and agricultural machinery. His work in developing intelligent systems for quality inspection and automation has improved agricultural productivity and food safety. His expertise in computational techniques, including fuzzy logic and machine learning, continues to shape the future of smart farming and food processing. With numerous awards, highly cited publications, and a track record of excellence, Dr. Zareiforoush is a leading figure in his field.

Faye Taxman | Data-Driven Decision Making | Best Researcher Award

Prof. Faye Taxman | Data-Driven Decision Making | Best Researcher Award

University Professor at George Mason University, United States

Dr. Faye S. Taxman is a distinguished University Professor at George Mason University, where she serves as the Director of the Center for Advancing Correctional Excellence! (ACE!). Her work has had a profound impact on criminal justice policy, implementation science, and evidence-based practices in correctional settings. With decades of experience in criminology, she has contributed significantly to improving interventions for justice-involved populations, particularly in the areas of rehabilitation, health services, and community corrections. A widely cited scholar, Dr. Taxman has received numerous accolades for her groundbreaking research and dedication to the field.

Profile

Orcid

Education

Dr. Taxman earned her Ph.D. in Criminal Justice from Rutgers University in 1982, following an M.A. in the same field in 1981. Prior to that, she completed her undergraduate studies in Political Science and Criminal Justice at the University of Tulsa, where she graduated with honors in 1977. Her academic training laid a strong foundation for her career in research, policy development, and the advancement of evidence-based practices in criminology and public policy.

Professional Experience

Dr. Taxman has held numerous academic and research positions throughout her career. Since 2020, she has been a University Professor at George Mason University’s Scholar School of Policy and Government. She has also served as Director of the Center for Advancing Correctional Excellence! (ACE!) since 2009. Her academic affiliations extend to institutions such as Griffith University, Howard University School of Medicine, and Florida State University. Before joining George Mason University, she held key positions at the University of Maryland, Virginia Commonwealth University, and the Institute for Law and Justice, among others. Her career has been marked by extensive involvement in research projects aimed at improving correctional systems, public safety outcomes, and evidence-based policy applications.

Research Interests

Dr. Taxman’s research focuses on criminal justice policy, correctional rehabilitation, implementation science, and behavioral health interventions for justice-involved individuals. She has been instrumental in developing and evaluating strategies to enhance community corrections, improve substance use disorder treatments, and implement evidence-based practices in justice systems. Her work has emphasized the integration of public health and justice systems, aiming to improve rehabilitation outcomes and reduce recidivism. Her recent projects include studies on supervision conditions, digital interventions for justice-involved individuals, and the development of translational research strategies for policy implementation.

Awards and Recognitions

Dr. Taxman has received numerous prestigious awards for her contributions to criminology and public policy. In 2023, she was honored with the Vollmer Award from the American Society of Criminology for her outstanding scholarship. She has also been recognized with the Scholar School Award for Outstanding Scholarship, the Society for Implementation Research Collaboration Mission Award, and the Joan McCord Award for experimental criminology. Additionally, she was named a Fellow of the American Society of Criminology and the Academy of Experimental Criminology. Her lifetime achievements in sentencing and corrections research have been recognized by the Division of Sentencing and Corrections of the American Society of Criminology. Her scholarship continues to shape the field and influence justice reform initiatives.

Selected Publications

Taxman, F. S., & Pattavina, A. (2021). “Simulation Modeling for Criminal Justice.” Criminology & Public Policy. Cited by 85 articles.

Taxman, F. S., Henderson, C. E., & Young, D. (2019). “Behavioral Health Services and Probation: Evidence-Based Practices.” Journal of Offender Rehabilitation. Cited by 120 articles.

Taxman, F. S., Caudy, M. S., & Rhodes, A. (2018). “Translational Criminology: Applying Research to Justice Practices.” Justice Quarterly. Cited by 97 articles.

Taxman, F. S., & Perdoni, M. (2017). “The Role of Implementation Science in Correctional Settings.” Journal of Criminal Justice Education. Cited by 75 articles.

Taxman, F. S., & Bouffard, J. (2016). “Community Corrections and Risk-Needs Assessment Tools.” Criminal Justice and Behavior. Cited by 140 articles.

Taxman, F. S., & Belenko, S. (2015). “Substance Abuse Treatment in the Criminal Justice System: Implementation and Impact.” Health & Justice. Cited by 130 articles.

Taxman, F. S. (2014). “The Role of Supervision in Reducing Recidivism: Lessons from Evidence-Based Practices.” Corrections Today. Cited by 110 articles.

Conclusion

Dr. Faye S. Taxman is a leading figure in criminology, recognized for her extensive research and commitment to improving the criminal justice system through evidence-based interventions. Her work has influenced policy decisions, program implementations, and research methodologies in the field of criminal justice. Through her leadership, scholarship, and dedication to mentorship, she continues to shape the future of criminal justice and public policy research. Her contributions have left an enduring impact on the advancement of effective correctional practices and justice system improvements.