Zihan Deng | Artificial Intelligence | Best Researcher Award

Dr. Zihan Deng | Artificial Intelligence | Best Researcher Award

Harbin Institute of Technology, China

Zihan Deng is a young and accomplished researcher in the field of imaging technology and computational tomography, with a strong foundation in deep learning and artificial intelligence. With a robust academic background and an array of interdisciplinary experiences, Deng has made significant contributions through high-impact publications, competitive grants, and patents. His expertise lies at the intersection of optical instrumentation and medical image analysis, and he continues to actively engage in scientific exploration with promising results.

Profile

Orcid

Education

Deng completed his undergraduate studies in Computer Science and Technology at Harbin Engineering University (2019–2023), ranking in the top 5% of his class. His academic curriculum included rigorous coursework in mathematics and computer science, scoring consistently above 90 in core subjects. He was subsequently recommended for direct admission into the graduate program at Harbin Institute of Technology, where he is currently pursuing his Master’s degree at the Institute of Ultra-Precision Optical Instrument Engineering under the mentorship of Professor Junning Cui and Academician Jiubin Tan. His research spans CT reconstruction, deep learning-based image enhancement, and X-ray detection technologies.

Experience

Deng has accumulated diverse experience through internships and collaborative projects. He served in leadership roles within student organizations and academic competitions, including receiving awards in national-level modeling and software contests. He undertook summer research at Tsinghua University’s IDG/McGovern Brain Research Institute and was later selected to join Germany’s PTB “Chief Engineer Class” as a visiting scholar. Professionally, he interned with Chengdu Shuzhilian Technology and Guangzhou CVTE, where he contributed to image processing and video enhancement projects. He has also played key roles in multimillion-yuan research collaborations with institutions like CGN Research Institute and GF High-End Semiconductor Imaging Systems.

Research Interest

Deng’s research interests revolve around imaging technology, deep learning, and CT reconstruction methods. He focuses on developing advanced algorithms for sparse-angle computed tomography, artifact reduction, and multi-view image correction using neural networks. His work integrates domain-specific knowledge from instrumentation science with state-of-the-art machine learning frameworks to improve image quality in both medical diagnostics and industrial inspection. He also investigates beam hardening correction and reconstruction under large field-of-view (FOV) conditions, addressing challenges in high-precision imaging systems.

Award

Over the course of his academic journey, Deng has received 11 scholarships and numerous accolades. These include five first-class and two second-class academic scholarships from Harbin Engineering University, the prestigious Xiaomi Scholarship, and the Outstanding Youth League Member Award. His undergraduate thesis on sparse-angle CT reconstruction was selected as an Excellent Graduation Project (top 2%). He has also won national-level awards in competitions such as the Mathematical Modeling Contest and the English Proficiency Championship.

Publication

Deng has authored or co-authored several influential papers in prestigious journals and conferences. His representative publications include:

  1. Deng Z., Wang Z., et al. (2024). “COO-DuDo: Computation Overhead Optimization Methods for Dual-Domain Sparse-View CT Reconstruction”, Expert Systems with Applications (JCR Q1, IF=7.5, in press) – cited in advanced CT algorithm research.

  2. Deng Z., Wang Z., Lin L., Wang S., Cui J. (2024). “Research on the Effectiveness of Multi-View Slice Correction Technology Based on Deep Learning in High-Pitch Spiral Scanning Reconstruction”, Journal of X-Ray Science and Technology (JCR Q2, IF=3.0) – applied in spiral CT systems.

  3. Wang Z.#, Deng Z.#, Liu F., et al. (2023). “OSNet & MNetO for Linear Computed Tomography in Multi-Scenarios”, IEEE Transactions on Instrumentation and Measurement (JCR Q1, IF=5.6) – widely cited in instrumentation imaging.

  4. Deng Z., Deng K., Wang Z., et al.. “Small Class Discussion-Based Teaching in Instrumentation Education”, The International Journal of Education – cited in engineering education reform discussions.

  5. Li Z., Li K., Deng Z., et al. (2024). “Assessment of Sheetlet Thickness in Human Left Ventricular Free Wall Using X-ray Phase-Contrast Microtomography”, Medical Image Analysis (JCR Q1, IF=10.9, accepted) – applied in cardiovascular research.

  6. Deng Z., Wang Z., Lin L., et al. (2025). “Computation Overhead Optimization Dual-Domain Network for Sparse-View CT Reconstruction”, ICASSP 2025 (CCF-B Conference) – in review, expected to support efficient CT image pipelines.

  7. Deng Z., Wang Z., Lin L., Wang S. “Hel-MUNet: Mamba-Unet with Helical Encoding for Clinical High Pitch Helical CT Reconstruction”, MICCAI 2025 (under review) – aligned with cutting-edge clinical imaging methods.

Conclusion

Zihan Deng exemplifies the next generation of research professionals driving innovation in imaging and artificial intelligence. Through a blend of strong theoretical foundation, hands-on project experience, and impactful publications, he has demonstrated exceptional capability in solving complex technical problems. With continued guidance under leading scholars and global exposure, Deng is well-positioned to become a prominent figure in the advancement of smart medical imaging and intelligent instrumentation.

Seyed Abolfazl Aghili | Artificial Intelligence | Best Review Paper Award

Dr. Seyed Abolfazl Aghili | Artificial Intelligence | Best Review Paper Award

Lecturer at Iran university of science and technology, Iran

Seyed Abolfazl Aghili is a dedicated researcher in the field of Civil Engineering, specializing in Construction Engineering and Management. With a strong academic foundation and expertise in artificial intelligence applications for engineering systems, he has contributed significantly to the field through research on resiliency, risk management, and sustainability. His work integrates advanced computational methods with real-world construction challenges, aiming to enhance project decision-making and system efficiency.

Profile

Orcid

Education

Seyed Abolfazl Aghili pursued his Ph.D. in Civil Engineering with a focus on Construction Engineering and Management at the Iran University of Science and Technology (IUST) from 2019 to 2024. His doctoral research explored a framework for determining the long-term resilience of hospital air conditioning systems using artificial intelligence under the guidance of Dr. Mostafa Khanzadi. Prior to his Ph.D., he completed his M.Sc. in Civil Engineering at IUST (2013-2015), investigating employee selection methods in construction firms to optimize hiring processes. He obtained his B.Sc. in Civil Engineering from Isfahan University of Technology (2009-2013), focusing on structural analysis and design in his graduation project.

Experience

Throughout his academic career, Aghili has actively contributed to construction engineering through extensive research and project management. His expertise extends to applying machine learning and deep learning methodologies to engineering challenges, particularly in resilience assessment and risk management. He has also engaged in various industry-oriented projects involving Building Information Modeling (BIM) and decision-making systems for project managers. His academic background is complemented by hands-on experience in technical software such as MS Project, AutoCAD, and Primavera Risk Analysis, which enhances his ability to analyze and implement effective construction management strategies.

Research Interests

Aghili’s research spans multiple interdisciplinary domains, including machine learning and deep learning methods in construction engineering, resiliency, Building Information Modeling (BIM), human resource management in construction, decision-making systems for project managers, risk management, sustainability, and lean construction. His studies aim to optimize construction processes, enhance project resilience, and promote sustainable engineering practices.

Awards and Honors

  • Ranked 5th among 2200 participants in the Nationwide University Entrance Exam for Ph.D. in Iran (2019).
  • Ranked 2nd among all Construction Management students at Iran University of Science and Technology (2013-2015).
  • Ranked 220th among 32,663 participants (Top 1%) in the Nationwide University Entrance Exam for the M.Sc. program in Iran (2013).

Publications

“Artificial Intelligence Approaches to Energy Management in HVAC Systems: A Systematic Review.” Journal of Buildings, Vol. 15, No. 7 (2025): 1008.

“Data-driven approach to fault detection for hospital HVAC system.” Journal of Smart and Sustainable Built Environment, ahead-of-print (2024).

“Feasibility Study of Using BIM in Construction Site Decision Making in Iran.” International Conference on Civil Engineering, Architecture and Urban Infrastructure, July 2015, Tabriz, Iran.

“Review of Digital Imaging Technology in Safety Management in the Construction Industry.” 1st National Conference on Development of Civil Engineering, Architecture, Electricity and Mechanical in Iran, December 2014.

“The Role of Insurance Companies in Managing the Crisis After Earthquake.” 1st National Congress of Engineering, Construction and Evaluation of Development Projects, May 2013, Gorgan, Iran.

“The Need for a New Approach to Pre-crisis and Post-crisis Management of Earthquake.” 1st National Conference on Seismology and Earthquake, February 2013, Yazd, Iran.

Conclusion

Seyed Abolfazl Aghili is a distinguished academic and researcher whose contributions to the field of construction engineering focus on integrating artificial intelligence with resiliency assessment and decision-making in project management. His work has been recognized in high-impact journals and conferences, demonstrating his commitment to advancing the construction industry. Through his research and professional endeavors, he continues to shape the future of sustainable and resilient engineering systems.