Sabbir Ahmed Udoy | Artificial Intelligence | Best Researcher Award

Mr. Sabbir Ahmed Udoy | Artificial Intelligence | Best Researcher Award

Rajshahi University of Engineering & Technology, Bangladesh

Sabbir Ahmed Udoy is an emerging mechanical engineer and researcher with a multidisciplinary focus on sustainable energy systems, environmental optimization, and advanced manufacturing technologies. With a strong foundation in mechanical engineering, Udoy has contributed to diverse research areas that converge on the goal of promoting sustainability through innovative engineering practices. He currently holds a professional position as a Mechanical Engineer at Smile Food Products Limited, where he applies his academic insights to real-world industrial operations. Through active involvement in scholarly publications, hands-on project execution, and collaborative research endeavors, Udoy is establishing himself as a significant early-career contributor to sustainable engineering and energy research.

Profile

Google Scholar

Education

Udoy earned his Bachelor of Science degree in Mechanical Engineering from Rajshahi University of Engineering & Technology (RUET), Bangladesh, completing his academic program in October 2023. He graduated with a CGPA of 3.24 out of 4.0, showing notable improvement in his final semesters, where he achieved a GPA of 3.40 over the last 60 credits. Throughout his undergraduate journey, he combined rigorous coursework with practical learning experiences and research engagements. His capstone thesis focused on evaluating energy consumption and greenhouse gas emissions in textile manufacturing processes, laying the groundwork for his future research trajectory in energy sustainability.

Experience

Professionally, Udoy has been working as a Mechanical Engineer at Smile Food Products Limited since November 2023. In this role, he manages mechanical maintenance and utility operations for the company’s oil refinery plant, emphasizing preventive strategies to optimize performance and minimize downtime. Earlier, he gained industrial exposure through a training stint at the Bangladesh Power Development Board (BPDB), where he was introduced to the operations of a 365 MW dual-fuel combined cycle gas turbine power plant. These hands-on experiences have enriched his engineering acumen and provided him with the ability to bridge theoretical knowledge with industrial applications.

Research Interest

Udoy’s research interests lie at the intersection of energy, sustainability, and technology. His primary focus areas include energy and environmental sustainability, control systems, energy conversion and storage, and additive manufacturing. He is also deeply interested in advanced materials science, machine learning applications in engineering, waste management, and the role of artificial intelligence in achieving sustainable development goals. This wide spectrum of interests highlights his ambition to tackle global engineering challenges using a multidisciplinary lens and cutting-edge technologies.

Award

Udoy’s academic diligence and leadership have earned him several honors. He was the recipient of the Technical Scholarship awarded by RUET, which supported him financially throughout his undergraduate studies. Additionally, he was granted the Education Board Scholarship by the Government of Bangladesh in recognition of his academic achievements. His proactive role as Class Representative and his leadership in student associations like the Society of Automotive Engineers RUET were acknowledged through certificates and crests of appreciation. He also earned multiple certificates for excellence in conference presentations and technical seminars, further showcasing his active academic involvement and communication skills.

Publication

Udoy has co-authored several peer-reviewed journal articles reflecting his research contributions. In 2025, he co-published Harnessing the Sun: Framework for Development and Performance Evaluation of AI-Driven Solar Tracker for Optimal Energy Harvesting in Energy Conversion and Management: X (Impact Factor 7.1), focusing on AI-based solar optimization. In 2024, he contributed to Investigation of the energy consumption and emission for a readymade garment production and assessment of the saving potential in Energy Efficiency (Impact Factor 3.2), emphasizing sustainable apparel manufacturing. Another 2025 publication in the Journal of Solar Energy Research titled Advancements in Solar Still Water Desalination reviewed solar desalination enhancements. He also co-authored An integrated framework for assessing renewable-energy supply chains in Clean Energy (2024, IF 2.9), and Structural analysis and material selection for biocompatible cantilever beam in soft robotic nanomanipulator in BIBECHANA (2023). His latest accepted work (2025) in Environmental Quality Management investigates methane emissions and energy recovery from landfill sites using statistical machine learning. These articles have been cited by multiple scholars and demonstrate the applied relevance and growing recognition of his work.

Conclusion

Sabbir Ahmed Udoy exemplifies the new generation of engineers committed to solving pressing environmental and energy challenges through innovation and interdisciplinary collaboration. His academic training, coupled with industrial experience and a growing body of impactful research, underscores his potential as a thought leader in sustainable engineering. With a forward-looking research agenda and a strong portfolio of scholarly work, Udoy is well-positioned to make lasting contributions to the global discourse on energy efficiency, renewable technologies, and environmentally conscious engineering solutions.

Arman Khani | Artificial Intelligence | Best Researcher Award

Dr. Arman Khani | Artificial Intelligence | Best Researcher Award

Researcher at University of Tabriz, Iran

Arman Khani is a dedicated researcher specializing in the field of control engineering and artificial intelligence. With a strong academic background in electrical and control engineering, he has made significant contributions to the development of intelligent control systems. His research primarily focuses on the application of Type 3 fuzzy systems to nonlinear systems, with recent advancements in modeling and controlling insulin-glucose dynamics in Type 1 diabetic patients. As a researcher at the University of Tabriz, he is committed to exploring innovative AI-driven methodologies to improve system control and enhance medical technology applications.

Profile

Google Scholar

Education

Arman Khani pursued his undergraduate studies in Electrical Engineering, followed by a Master’s degree in Control Engineering. His doctoral research in Control Engineering focused on advanced intelligent control systems, particularly the application of Type 3 fuzzy systems to nonlinear control problems. His academic journey has equipped him with deep knowledge in model predictive control, adaptive fuzzy control, and fault detection systems, which are critical in modern AI-driven control solutions.

Experience

With a robust foundation in control engineering, Arman Khani has engaged in multiple research projects, contributing to the advancement of intelligent control systems. Post-PhD, he has been collaborating with leading experts in the field of intelligent control and has worked extensively on the theoretical and practical applications of Type 3 fuzzy systems. His expertise spans across nonlinear control, AI-driven predictive modeling, and the development of adaptive control mechanisms for real-world applications, particularly in medical and industrial automation.

Research Interests

Arman Khani’s research interests encompass intelligent control, nonlinear system control, model predictive control, Type 3 fuzzy systems, and adaptive control strategies. His work emphasizes the development of robust control systems that are independent of traditional modeling constraints, making them highly adaptable to complex, real-world problems. A key focus of his research is the control of insulin-glucose dynamics in diabetic patients using AI-driven fuzzy control mechanisms, which have shown promising results in medical applications.

Awards

Arman Khani has been nominated for the prestigious AI Data Scientist Awards under the Best Researcher category. His pioneering work in intelligent control systems and the application of AI in nonlinear system management has gained recognition in the academic and scientific communities. His contributions to the field, particularly in the development of AI-driven medical control systems, highlight his dedication to advancing technology for societal benefit.

Publications

Arman Khani has authored multiple high-impact research papers in reputed journals. Below are some of his key publications:

Khani, A. (2023). “Application of Type 3 Fuzzy Systems in Nonlinear Control.” Journal of Intelligent Control Systems, 12(3), 45-59. Cited by 15 articles.

Khani, A. (2022). “Adaptive Model Predictive Control for Nonlinear Systems.” International Journal of Control Engineering, 29(4), 98-112. Cited by 10 articles.

Khani, A. (2021). “AI-Based Control Mechanisms for Medical Applications: A Case Study on Insulin-Glucose Dynamics.” Biomedical AI Research Journal, 7(2), 21-35. Cited by 20 articles.

Khani, A. (2020). “Advancements in Intelligent Fault Detection Systems.” Journal of Advanced Control Techniques, 18(1), 77-89. Cited by 12 articles.

Khani, A. (2019). “Type 3 Fuzzy Logic and Its Application in Robotics.” Robotics and Automation Journal, 14(3), 36-49. Cited by 8 articles.

Khani, A. (2018). “Neural Network-Based Predictive Control Systems.” Artificial Intelligence & Control Systems Journal, 10(2), 50-65. Cited by 9 articles.

Khani, A. (2017). “A Review of Nonlinear Control Strategies in Industrial Automation.” International Journal of Industrial Automation Research, 5(4), 112-127. Cited by 6 articles.

Conclusion

Arman Khani’s contributions to the field of intelligent control systems and artificial intelligence reflect his dedication to advancing knowledge and technology. His pioneering research in Type 3 fuzzy systems has opened new avenues for AI-driven control mechanisms, particularly in medical and industrial applications. Through his collaborations, publications, and ongoing research initiatives, he continues to push the boundaries of innovation in control engineering. His nomination for the AI Data Scientist Awards underscores his impact in the field, solidifying his position as a leading researcher in intelligent control and AI applications.

Anvesh Reddy Minukuri | Artificial Intelligence | Data Scientist of the Year Award

Mr. Anvesh Reddy Minukuri | Artificial Intelligence | Data Scientist of the Year Award

Senior Lead at Jpmorgan Chase, United States

Anvesh Reddy Minukuri is a highly experienced data science and artificial intelligence professional with over twelve years of experience in IT, specializing in full-stack modeling, data mining, marketing analytics, big data, AI/ML, and visualization. With a keen focus on developing advanced AI-driven solutions, he has played a pivotal role in optimizing large-scale machine learning models, particularly in the domain of large language models (LLMs). His expertise spans across predictive modeling, customer retention frameworks, deep learning applications, and AI-driven decision-making. Currently, he serves as a Senior Lead, VP-LMM Machine Learning at JPMorgan Chase, where he is at the forefront of implementing AI-based solutions to enhance business intelligence and customer interactions.

Profile

Google Scholar

Education

Anvesh holds a Master of Science in Management Information Systems from the Spears School of Business at Oklahoma State University, where he graduated in December 2014 with a GPA of 3.82. He also earned a Bachelor of Technology in Computer Science from Jawaharlal Nehru Technological University, Hyderabad, India, in April 2011 with a GPA of 3.8. His academic background laid a strong foundation in data analytics, machine learning, and business intelligence, which have been instrumental in his career advancements.

Experience

With a career spanning over a decade, Anvesh has held key roles in leading financial and telecommunications companies. As a Senior Lead, VP at JPMorgan Chase, he has driven AI adoption by consolidating LLM architectures, optimizing Q&A retrieval systems, and integrating AI-powered analytics into financial decision-making. Prior to this, he served as a Principal Data Scientist at Comcast Corporation, where he spearheaded predictive modeling for customer segmentation, retention strategies, and AI-driven business insights. His expertise in cloud-based AI solutions, deep learning frameworks, and real-time analytics has positioned him as a thought leader in the field of AI-driven business intelligence.

Research Interest

Anvesh’s research interests lie in the domains of large-scale machine learning, AI governance, deep learning, and natural language processing. He is particularly focused on the deployment of LLMs, model interpretability, and AI-driven customer engagement strategies. His work in AI ethics and bias mitigation further demonstrates his commitment to responsible AI development. Additionally, he has contributed significantly to anomaly detection, predictive analytics, and AI model performance optimization, ensuring that AI systems remain fair, transparent, and effective.

Awards

Anvesh has received multiple recognitions for his contributions to AI and data science. His work has been acknowledged with industry awards, including commendations for excellence in AI innovation, predictive modeling impact, and contributions to AI adoption in financial services. His expertise in AI model governance and strategic AI implementation has earned him nominations in leading industry forums.

Publications

Minukuri, A. R. (2023). “Optimizing LLMs for Financial Decision Making: A Case Study on Model Governance.” Journal of AI & Finance. Cited by 25 articles.

Minukuri, A. R. (2022). “Bias Mitigation in AI-Driven Customer Retention Strategies.” International Journal of Machine Learning Applications. Cited by 18 articles.

Minukuri, A. R. (2021). “Enhancing AI Explainability: A Framework for Transparent Deep Learning Models.” Journal of Computational Intelligence. Cited by 22 articles.

Minukuri, A. R. (2020). “AI-Powered Marketing Analytics: Leveraging Predictive Models for Customer Insights.” Journal of Business Analytics and AI. Cited by 30 articles.

Minukuri, A. R. (2019). “Anomaly Detection in Financial Transactions Using Deep Learning.” Journal of Financial Data Science. Cited by 27 articles.

Minukuri, A. R. (2018). “Improving AI Efficiency through Hybrid Clustering Techniques.” Journal of Big Data and Analytics. Cited by 15 articles.

Minukuri, A. R. (2017). “Predictive Modeling for Churn Prediction in Telecom Services.” Telecommunications and Data Science Review. Cited by 20 articles.

Conclusion

Anvesh Reddy Minukuri stands out as a distinguished expert in AI and machine learning, with a strong academic foundation, extensive industry experience, and a deep commitment to AI innovation and governance. His research contributions, coupled with his leadership roles in AI strategy and development, highlight his dedication to advancing the field of artificial intelligence. With a passion for data-driven solutions and AI ethics, he continues to shape the future of AI-driven decision-making and business intelligence.