Bhavesh Kataria | AI and Machine Learning | AI & Machine Learning Award

Dr. Bhavesh Kataria | AI and Machine Learning | AI & Machine Learning Award

Post-Doctoral Fellow at Emory University | United States

Dr. Bhavesh Kataria is a highly accomplished academician, researcher, and innovator in Computer Engineering, recognized globally for his leadership in Artificial Intelligence, Machine Learning, and Digital Image Processing. His professional journey spans academia and research institutions across India and the United States, including his role at Emory University, where he contributes to advanced AI-driven healthcare analytics and digital pathology solutions. With a Ph.D. focused on Optical Character Recognition of Sanskrit Manuscripts using Convolutional Neural Networks, Dr. Kataria has combined technical precision with deep domain expertise to address challenges in multilingual text recognition and medical imaging. His scholarly portfolio includes numerous publications in reputed international journals, multiple granted patents, and several authored books covering cutting-edge topics in AI, cloud computing, and web technologies. An active member of prestigious organizations such as IEEE and ACM, he serves on editorial boards of international journals and as a reviewer for globally recognized publishers like Springer Nature and Science Publishing Group. He has also chaired sessions and reviewed Ph.D. theses, contributing significantly to the academic ecosystem. Dr. Kataria’s pioneering innovations, such as AI-based network visualization tools, smart teaching devices, and healthcare monitoring systems, underscore his commitment to translational research and practical AI applications. Honored with awards including the Best Researcher Award and Teaching Excellence Award, he exemplifies a blend of scholarly excellence, innovation, and mentorship. His dedication to advancing intelligent systems and promoting interdisciplinary research continues to inspire global collaboration in emerging computational technologies.

Profiles: Scopus | ORCID

Featured Publications

Kataria, B., & Jethva, H. B. (2024, September 30). Decentralized security mechanisms for AI-driven wireless networks: Integrating blockchain and federated learning.

Kataria, B. (2024, June 2). Automated detection of tuberculosis using deep learning algorithms on chest X-rays.

Shivadekar, S., Kataria, B., Hundekari, S., Wanjale, K., Balpande, V. P., & Suryawanshi, R. (2023). Deep learning based image classification of lungs radiography for detecting COVID-19 using a deep CNN and ResNet 50.

Shivadekar, S., Kataria, B., Limkar, S., Wagh, K., Lavate, S., & Mulla, R. (2023, June 15). Design of an efficient multimodal engine for preemption and post-treatment recommendations for skin diseases via a deep learning-based hybrid bioinspired process.

Kataria, B., Jethva, H. B., Shinde, P. V., Banait, S. S., Shaikh, F., & Ajani, S. (2023, April 30). SLDEB: Design of a secure and lightweight dynamic encryption bio-inspired model for IoT networks.

Dr. Santosh Jagtap | AI and ML | Microsoft AI Award

Dr. Santosh Jagtap | AI and ML | Microsoft AI Award

Assistant Professor, Prof. Ramkrishna More Arts, Commerce & Science College, India

Dr. Santosh Jagtap, Assistant Professor at Prof. Ramkrishna More College (Autonomous), is a highly accomplished researcher and academic in the fields of Artificial Intelligence (AI) and Cybersecurity, with extensive expertise in applying AI to smart agriculture, healthcare security, IoT-enabled educational systems, and AI-driven safety solutions. Dr. Jagtap holds advanced academic qualifications and has developed a distinguished research profile that emphasizes practical applications of emerging technologies to address societal challenges. His work integrates machine learning, blockchain, IoT, and real-time data processing, producing innovative solutions in areas such as intelligent irrigation systems, plant disease detection, AI-based emotion recognition for safety alerts, and secure healthcare frameworks. Over his career, Dr. Jagtap has contributed significantly to international research projects and collaborative studies, producing high-impact publications in reputed journals and conference proceedings, such as Materials Today: Proceedings, international conferences on electronics, computing, and applied AI. He has also been recognized for innovation through patent awards, notably for AI-based plant disease identification systems, reflecting his focus on technology transfer and real-world impact. Dr. Jagtap has played an active role in mentoring students, guiding research projects, and participating in professional networks that foster academic and technological growth. He has demonstrated a consistent record of research excellence, with a total of 78 citations across 4 Scopus-indexed publications and an h-index of 3, reflecting the growing impact of his work.

Profile: GOOGLE SCHOLAR | SCOPUS

Featured Publications

  • Jagtap, S. T., Phasinam, K., Kassanu. (2022). Towards application of various machine learning techniques in agriculture. Materials Today: Proceedings, 51, 793–797. 70 citations.

  • Jagtap, S. T., Thakar, (2021). A framework for secure healthcare system using blockchain and smart contracts. Second International Conference on Electronics and Sustainable Technologies. 22 citations.

  • Jagtap, S. T., Jagdale, K. C., & Thakar, C. M. (2023). Identification of plant disease device using artificial intelligence. IN Patent 391523-001. –

  • Pratiksha Bhise, D. S. J., & Jagtap, S. T. (2024). AI-driven emergency response system for women’s safety using real-time location and heart rate monitoring. IJRPR. –

  • Keskar,  A., Jagtap, S. T., et al. (2021). Big data preprocessing frameworks: Tools and techniques. Design Engineering, 1738–1746.

Shoujun Zhou | Artificial Intelligence | Best Scholar Award

Prof. Shoujun Zhou | Artificial Intelligence | Best Scholar Award

Research Professor at Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China

Prof. Shoujun Zhou is a distinguished biomedical engineering researcher and a leading figure in the field of medical robotics and image-guided therapy. He currently serves as a specially appointed research professor at the Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, and concurrently holds a professorship at the National Institute for High-Performance Medical Devices. Over his career, Prof. Zhou has led and contributed to numerous national and provincial-level scientific research projects, focusing on developing interventional surgical robotics and advanced medical imaging technologies. His leadership in this interdisciplinary field has positioned him at the forefront of integrating artificial intelligence with minimally invasive therapeutic solutions.

Profile

Orcid

Education

Prof. Zhou’s academic journey began with a Bachelor’s degree in Test and Control from the Air Force Engineering University (1989–1993). He then earned a Master’s degree in Communication and Information Systems from Lanzhou University (1997–2000), further refining his technical expertise. His academic pursuits culminated in a Ph.D. in Biomedical Engineering from Southern Medical University (2001–2004). This multidisciplinary educational background laid a solid foundation for his future contributions in medical imaging, robotics, and computational modeling.

Experience

With over three decades of professional experience, Prof. Zhou has served in multiple prestigious institutions. From 1993 to 2001, he worked as an engineer in the 94921 Military Unit, followed by a postdoctoral tenure at Beijing Institute of Technology. He transitioned to industry in 2007 as an enterprise postdoctoral researcher at Shenzhen Haibo Technology Co., Ltd., and later joined the 458 Hospital of the PLA as a senior engineer. Since 2010, he has been a principal investigator and research professor at SIAT, where he leads a dedicated research team working on the convergence of robotics, imaging, and AI for medical applications.

Research Interest

Prof. Zhou’s research primarily focuses on interventional surgical robots, image-guided therapy, and medical image analysis. He is particularly interested in developing intelligent, minimally invasive systems that combine AI algorithms with real-time imaging for precise diagnostics and interventions. His work includes modeling and segmentation of vascular structures, semi-supervised learning techniques in medical imaging, and the development of surgical robots tailored for procedures such as liver tumor ablation and cardiovascular interventions. He is also actively involved in improving navigation systems that reduce or eliminate radiation exposure in image-guided procedures.

Award

Prof. Zhou’s contributions have been widely recognized both nationally and internationally. He was honored with the “Best Researcher Award” at the Global Awards on Artificial Intelligence and Robotics in 2022, organized by ScienceFather. He also received a Silver Medal in the Global Medical Robot Innovation Design Competition in 2019 for his work on a vascular interventional robotic system. His earlier work earned the Second Prize of Guangdong Provincial Science and Technology Progress Award in 2009 and contributed to a project that received a First-Class Prize in Science and Technology Progress from the Ministry of Education in 2006. These accolades reflect his sustained excellence and impact in the field of medical technology.

Publication

Prof. Zhou has authored over 100 scientific papers, including several published in top-tier journals. Selected key publications include:

  1. Zhang Z. et al. (2024). “Verdiff-Net: A Conditional Diffusion Framework for Spinal Medical Image Segmentation,” Bioengineering, 11(10):1031 – cited in spinal image AI segmentation studies.

  2. Zhang X. et al. (2024). “Automatic Segmentation of Pericardial Adipose Tissue from Cardiac MR Images,” Medical Physics, DOI:10.1002/mp.17558 – referenced for semi-supervised MR image segmentation.

  3. Tian H. et al. (2024). “EchoSegDiff: a diffusion-based model for left ventricular segmentation,” Medical & Biological Engineering & Computing, DOI:10.1007/s11517-024-03255-0 – cited in cardiac echocardiography image modeling.

  4. Li J. et al. (2024). “DiffCAS: Diffusion based Multi-attention Network for 3D Coronary Artery Segmentation,” Signal, Image and Video Processing, DOI:10.1007/s11760-024-03409-5 – relevant in coronary CT imaging analysis.

  5. Wang K.N. et al. (2024). “SBCNet: Scale and Boundary Context Attention for Liver Tumor Segmentation,” IEEE Journal of Biomedical and Health Informatics, 28(5):2854-2865 – cited in liver tumor segmentation research.

  6. Xiang S. et al. (2024). “Automatic Delineation of the 3D Left Atrium from LGE-MRI,” IEEE Journal of Biomedical and Health Informatics, DOI:10.1109/JBHI.2024.3373127 – frequently cited in atrial structural analysis.

  7. Miao J. et al. (2024). “SC-SSL: Self-correcting Collaborative and Contrastive Co-training,” IEEE Transactions on Medical Imaging, 43(4):1347-1364 – referenced in semi-supervised medical image learning.

Conclusion

Prof. Zhou’s work exemplifies the synergy between engineering and medical science, enabling significant advances in minimally invasive diagnosis and treatment. Through his persistent innovation in surgical robotics and medical image computing, he has made a profound impact on the evolution of intelligent healthcare technologies. His dedication to mentoring young researchers and contributing to national and provincial projects reflects a commitment not only to scientific discovery but also to the translation of research into clinical and industrial applications. With a career marked by excellence in research, education, and innovation, Prof. Zhou continues to be a pivotal figure shaping the future of intelligent medicine.

Tayyaba Rani | Artificial Intelligence | Data Scientist of the Year Award

Ms. Tayyaba Rani | Artificial Intelligence | Data Scientist of the Year Award

PhD Scholar at Xi’an jiaotong university, China

Tayyaba Rani is a driven academic and researcher from Pakistan who has dedicated her scholarly journey to the field of applied economics, with a particular focus on sustainable development, energy economics, and environmental policy. With extensive teaching and research experience, she has cultivated a nuanced understanding of economic systems and their intersection with ecological challenges. Tayyaba is committed to contributing meaningfully to the academic community by producing high-impact research and sharing knowledge through her teaching and seminar engagements. Her work is rooted in the vision of fostering sustainability through empirical research and policy insights, making her a strong candidate for award nominations in academic excellence and research leadership.

Profile

Orcid

Education

Tayyaba’s academic foundation is both comprehensive and multidisciplinary, spanning economics, commerce, and finance. She is currently pursuing a PhD in Applied Economics from Xi’an Jiaotong University, China, focusing on energy economics, environmental sustainability, and development. Prior to her doctoral studies, she earned an MPhil in Commerce with distinction from Government College University (GCU), Faisalabad, where she also completed her Master of Commerce. Her earlier academic achievements include a Bachelor of Commerce from the University of Punjab and an Intermediate degree in Computer Sciences. Her consistent academic excellence is highlighted by her silver medal distinction in her Master’s program and first position at the undergraduate level.

Experience

Tayyaba has held multiple roles in academia and public service, showcasing her versatility and commitment to education and research. Her professional journey began as a Commerce Lecturer at Qasmia College of Commerce & Sciences, where she taught courses in banking, finance, and accounting. She then served as a Visiting Lecturer at Government College University Faisalabad, teaching financial management and marketing to postgraduate students. Following her academic roles, she worked as an Assistant Accountant in the Population Welfare Department, Faisalabad, where she managed financial documents, verified statements, and assisted in budgeting processes. These experiences have enhanced her capabilities in both research and administration.

Research Interest

Her research is centered around sustainable development, environmental degradation, energy consumption, financial development, and globalization. She aims to investigate the complex relationships between fiscal policies, technological innovation, energy use, and ecological impact in emerging and developed economies. Tayyaba’s scholarly curiosity extends to evaluating how remittances, digital governance, and institutional efficiency can serve as moderating factors in the environmental-economic nexus. Her interdisciplinary perspective allows her to blend economics with policy and environmental science, producing policy-relevant insights for South Asian and global contexts.

Awards

Throughout her academic and professional journey, Tayyaba has received numerous accolades for her excellence in education and communication. She was awarded a Silver Medal for being the second topper in her Master of Commerce program at GCU Faisalabad. Her academic performance also earned her a laptop under the Prime Minister Laptop Scheme. She received the Excellent Teacher Award from Qasmia College and was recognized as the Best English Debater by GCU Faisalabad. Furthermore, she secured first position in her academic level at Government College for Women Faisalabad, showcasing her consistent dedication to learning and public speaking.

Publications

Tayyaba Rani’s publication record reflects her active engagement in cutting-edge research on environmental and energy economics. Among her recent works are:

“Revisiting the environmental impact of financial development on economic growth and carbon emissions” (2022, Clean Technologies and Environmental Policy), cited for its comprehensive review of South Asian economies.

“Linking personal remittance and fossil fuels energy consumption to environmental degradation” (2023, Environment, Development and Sustainability), widely referenced in regional policy discussions.

“Exploring the moderating effect of globalization, financial development, and environmental degradation nexus” (2022, Environment, Development and Sustainability), praised for its policy implications.

“A cross-sectoral analysis of energy shortages in Pakistan” (2023, Economic Research-Ekonomska Istraživanja), offering empirical insights using input-output modeling.

“Impact of tourism, globalization, and technology innovation on ecological footprints in G-10 countries” (2022, Economic Research-Ekonomska Istraživanja), known for its cross-country comparative approach.

“Resource curse, energy consumption, and the moderating role of digital governance” (2024, Resources Policy), offering strategic insights into digital governance.

“Digitalization’s role in climate change and renewable energy for sustainable development” (2024, Energy & Environment), recognized for advancing the discussion on digital sustainability.

Conclusion

Tayyaba Rani’s career trajectory exemplifies a fusion of academic rigor, professional experience, and a strong commitment to sustainability-driven research. She has continuously strived to enhance her academic portfolio through impactful publications, effective teaching, and active participation in international seminars and conferences. Her interdisciplinary expertise and evidence-based insights make her a promising researcher poised to contribute significantly to environmental and development economics. With her unwavering focus on innovation and knowledge dissemination, Tayyaba stands out as a deserving candidate for academic recognition and award nominations in the field of applied economics.

Mathew Habyarimana | Artificial Intelligence | Best Academic Researcher Award

Dr. Mathew Habyarimana | Artificial Intelligence | Best Academic Researcher Award

Research Scholar at Durban University of Technology, South Africa

Mathew Habyarimana, Ph.D., is an accomplished electrical engineer with expertise in electrical machines, power electronics, and renewable energy. He is a self-motivated researcher and educator committed to advancing knowledge and mentoring students in the field of electrical engineering. With a strong background in academia and industry, he has contributed significantly to the development of energy systems, power electronics applications, and machine optimization techniques. His career spans several years in research, lecturing, and engineering roles, with a focus on intelligent power systems and electrical energy optimization.

Profile

Scopus

Education

Dr. Habyarimana obtained his Ph.D. in Electrical Engineering from the University of KwaZulu-Natal, Durban, South Africa, in September 2022. His doctoral research, funded by the Eskom Power Plant Engineering Institute (EPPEI), focused on electrical machines and power system optimization. Prior to this, he completed his MSc. in Electrical Engineering at the same institution in 2016, specializing in power electronics. His undergraduate studies were conducted at the University of Rwanda, College of Science and Technology, where he earned a BSc. in Electrical Engineering with a focus on renewable energy. His strong educational foundation has shaped his expertise in energy conversion, machine performance improvement, and sustainable energy solutions.

Experience

Dr. Habyarimana has held various academic and research positions throughout his career. Currently, he is a Postdoctoral Research Fellow at Durban University of Technology, where he is engaged in high-impact research on electrical power systems. Previously, he served as a Postdoctoral Research Fellow at the University of Johannesburg from 2023 to 2024, authoring scientific papers and presenting his findings at international conferences.

His academic contributions also include lecturing positions at Durban University of Technology, where he taught courses such as Illumination and Digital Signal Processing in the Electrical and Electronic Engineering Department. As a Senior Lecturer, he developed curricula, designed assessment tools, and guided students through complex electrical engineering concepts.

Before transitioning into academia, Dr. Habyarimana worked as a Project Engineer at Rwanda Energy Group, contributing to rural electrification projects. Additionally, he served as a mathematics tutor and lab demonstrator at the University of KwaZulu-Natal, mentoring students in power electronics and electrical machines. His extensive experience bridges theoretical research and practical engineering applications.

Research Interests

Dr. Habyarimana’s research interests lie in electrical machines, power electronics, renewable energy, and intelligent power management systems. He is particularly focused on optimizing induction motors, mitigating in-rush currents, and integrating artificial intelligence into power systems for enhanced energy efficiency. His work aims to address challenges in energy sustainability, improve motor efficiency, and develop hybrid energy systems that balance renewable and conventional energy sources.

Awards

Dr. Habyarimana has received multiple accolades for his contributions to research and innovation. He was awarded the Best Commercialization Project by the UKZN Inqubate Intellectual Property initiative in 2014. In addition, he received a Certificate of Appreciation for judging at the Eskom Expo for Young Scientists in 2015. His academic excellence is further recognized through his University Teaching Assistant certification, highlighting his dedication to education and student mentorship.

Publications

M. Habyarimana, G. Sharma, P. N. Bokoro, and K. A. Ogudo, “Intelligent power source selection for solar energy optimization,” International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems, 2024.

M. Habyarimana, G. Sharma, and P. N. Bokoro, “The Effect of Tuned Compensation Capacitors in the Induction Motors,” WSEAS Transactions on Power Systems, 2024.

Habyarimana, M., Dorrell, D. G., & Musumpuka, R., “Reduction of Starting Current in Large Induction Motors,” Energies, 2022.

Habyarimana, M., Musumpuka, R., & Dorrell, D. G., “Mitigating In-rush Currents for Induction Motor Loads,” IEEE Southern Power Electronics Conference, 2021.

Habyarimana, M., & Dorrell, D. G., “Methods to reduce the starting current of an induction motor,” IEEE International Conference on Power, Control, Signals and Instrumentation Engineering, 2017.

Venugopal, C., Subramaniam, P. R., & Habyarimana, M., “A Fuzzy Based Power Switching Selection for Residential Application to Beat Peak Time Power Demand,” Intelligent Decision Support Systems for Sustainable Computing, 2017.

Habyarimana, M., & Venugopal, C., “Automated hybrid solar and mains system for peak time power demand,” International Conference on the Domestic Use of Energy, 2015.

Conclusion

Dr. Mathew Habyarimana is a distinguished electrical engineer and researcher whose work significantly impacts electrical power systems and renewable energy integration. His extensive experience in academia and industry, coupled with his research contributions, underscores his commitment to innovation in energy optimization and power electronics. Through his lecturing, mentoring, and research initiatives, he continues to shape the next generation of electrical engineers while advancing knowledge in intelligent power management and sustainable energy solutions.

Youlong Lv | Artificial Intelligence | Best Researcher Award

Assoc. Prof. Dr. Youlong Lv | Artificial Intelligence | Best Researcher Award

Associate professor at Institute of Artificial Intelligence, Donghua University, China

Dr. Youlong Lyu is an associate professor at the Institute of Artificial Intelligence, Donghua University. With a strong background in intelligent production, scheduling, and quality control, he has contributed significantly to the field of artificial intelligence applications in industrial settings. He has led multiple national and municipal research projects focused on optimizing manufacturing processes, integrating AI into production systems, and improving efficiency through data-driven methodologies. His expertise spans across various aspects of industrial AI, from smart healthcare to intelligent scheduling systems, making a notable impact in both academic and practical applications.

Profile

Scopus

Education

Dr. Lyu earned his doctoral degree from Shanghai Jiao Tong University, where he specialized in intelligent manufacturing and AI-driven optimization. His academic journey has been marked by a deep exploration of machine learning, genetic algorithms, and big data analytics, which have fueled his research into enhancing production processes. His educational background has equipped him with the technical and analytical skills necessary to advance AI applications in industrial and manufacturing domains.

Experience

Dr. Lyu has a wealth of experience in AI-driven industrial applications, having undertaken pivotal roles in numerous research projects. As a principal investigator, he has spearheaded national and municipal initiatives aimed at enhancing workshop scheduling, production line efficiency, and aerospace product assembly. His work in intelligent control systems and data-driven decision-making has led to the development of innovative methodologies for optimizing manufacturing processes. Additionally, he has played a crucial role in consulting for industry projects, particularly in the aerospace sector, where his expertise in simulation and optimization has been instrumental in improving production line operations.

Research Interests

Dr. Lyu’s research interests lie at the intersection of artificial intelligence, smart manufacturing, and industrial optimization. He focuses on intelligent production scheduling, AI-driven quality control, and big data applications in manufacturing. His work seeks to bridge the gap between theoretical AI models and practical industrial applications, leveraging machine learning algorithms, genetic regulatory networks, and deep reinforcement learning to optimize complex manufacturing processes. Additionally, he has contributed to research in smart healthcare, applying AI techniques to enhance medical imaging and diagnostic accuracy.

Awards

Dr. Lyu’s contributions to AI in industrial applications have been widely recognized. He has received multiple grants from prestigious institutions, including the Natural Science Foundation of China and the Shanghai Municipal Commission of Science and Technology. His work has also been acknowledged through awards in AI research and industrial big data analytics. As a dedicated scholar, he continues to push the boundaries of AI applications in manufacturing, earning accolades for his innovative research and impactful contributions to the field.

Publications

Zuo L, Zhang J, Lyu Y, et al. Multi-graph attention temporal convolutional network-based radius prediction in three-roller bending of thin-walled parts. Advanced Engineering Informatics, 2025. (Cited by X articles)

Yang B, Zhang J, Lyu Y, et al. Automatic computed tomography image segmentation method for liver tumor. Quantitative Imaging in Medicine and Surgery, 2025. (Cited by X articles)

Zhang J, Yang B, Lyu Y. Multi-objective optimization based robotic path planning for CT data reconstruction. Journal of Radiation Research and Applied Sciences, 2024. (Cited by X articles)

Lyu Y, Zhang J, Zuo L. Genetic regulatory network-based optimization of master production scheduling. International Journal of Bio-Inspired Computation, 2022. (Cited by X articles)

Lyu Y, Ji Q, Liu Y, Zhang J. Data-driven sensitivity analysis of contact resistance for fuel cells. Measurement and Control, 2020. (Cited by X articles)

Lyu Y, Zhang J. Genetic regulatory network-based method for sequencing in mixed-model assembly lines. Mathematical Biosciences and Engineering, 2019. (Cited by X articles)

Lyu Y, Qin W, Yang J, Zhang J. Adjustment mode decision using support vector data description. Industrial Management & Data Systems, 2018. (Cited by X articles)

Conclusion

Dr. Youlong Lyu’s research and contributions in AI-driven industrial optimization have made significant strides in intelligent manufacturing and quality control. His extensive experience in leading research projects, publishing in high-impact journals, and developing innovative AI applications has solidified his position as a leading expert in industrial artificial intelligence. His commitment to advancing smart manufacturing and AI-integrated production systems continues to drive progress in the field, setting new benchmarks for AI applications in industrial settings.

Jaya Raju G | Machine Learning | Best Researcher Award

Mr. Jaya Raju G | Machine Learning | Best Researcher Award

Assistant Professor at Aditya University, India

G. Jaya Raju is an accomplished academician and researcher with extensive experience in computer science and engineering. With a strong passion for education and research, he has dedicated his career to mentoring students, contributing to academic administration, and advancing knowledge in various fields such as data mining, machine learning, and database management. His expertise spans programming languages, software testing, and artificial intelligence. Throughout his career, he has actively participated in faculty development programs, workshops, and research conferences, contributing to the academic community through publications and professional activities.

Profile

Scopus

Education

G. Jaya Raju is currently pursuing a Ph.D. from Jawaharlal Nehru Technological University, Kakinada (JNTUK), having successfully completed his Pre-PhD requirements. He obtained his M.Tech in Computer Science and Engineering from Aditya Engineering College, Surampalem, under JNTUK, with a commendable academic performance. Additionally, he holds an M.Sc in Computer Science from Andhra University College of Engineering, Visakhapatnam. His strong educational foundation has played a pivotal role in shaping his expertise and research contributions in the field of computer science.

Experience

With over a decade of experience in academia, G. Jaya Raju has served as an Assistant Professor at several esteemed institutions. Currently, he holds the position of Senior Assistant Professor at Aditya College of Engineering and Technology. Previously, he has contributed to institutions such as Sri Vasavi Engineering College, Rajahmahendri Institute of Engineering and Technology, Sri Venkateswara Institute of Science & Information Technology, and Lenora College of Engineering. His responsibilities have encompassed teaching, academic administration, mentoring students, and guiding research projects at both undergraduate and postgraduate levels. Additionally, he has actively participated in university external examinations and accreditation processes.

Research Interests

His research interests include Data Warehousing and Data Mining, Machine Learning, Compiler Design, Formal Languages and Automata Theory, Database Management Systems, and Web Technologies. He is particularly focused on developing innovative solutions in sentiment analysis, data categorization, and optimization techniques for artificial intelligence applications. His research contributions have led to several publications in reputed international and national journals, reflecting his commitment to advancing knowledge in his areas of expertise.

Awards and Recognitions

G. Jaya Raju has received multiple accolades for his academic and professional achievements. He has qualified for APSET-2024 and GATE-2023, demonstrating his proficiency in computer science and engineering. He was also recognized as an Associate Member of the Institution of Engineers (AMIE) in 2016. Additionally, he has been awarded “Elite Certificates” from SWAYAM NPTEL for excelling in courses such as Compiler Design, Database Management Systems, and Data Mining, offered by the Indian Institute of Technology (IIT), Kharagpur. These accomplishments highlight his dedication to continuous learning and professional development.

Publications

“Deep Belief Neural Network based Categorization of Uncertain Data Streams,” International Journal of Software Innovation, DOI: https://doi.org/10.4018/IJSI.312262, cited by multiple research articles.

“Classical Software Testing Using Semi-Proving,” IJCST Vol. 3, Issue 3, July-Sept 2012, ISSN: 0976-8491 (Online), 2229-4333 (Print), cited in numerous studies related to software testing methodologies.

“Implementation of Skyline Sweeping Algorithm,” International Journal of Computer Science and Technology (IJCST) Vol. 3, Issue 3, July-Sept 2012, ISSN: 0976-8491 (Online), 2229-4333 (Print), referenced in data structure optimization research.

“Perturbation Approach for Protecting Data Server Used for Decision Tree Mining,” IJCST Vol. 3, Issue 4, Oct-Dec 2012, ISSN: 0976-8491 (Online), 2229-4333 (Print), widely cited in data security studies.

Conclusion

G. Jaya Raju’s career is marked by a strong commitment to education, research, and professional growth. His extensive teaching experience, active participation in research, and dedication to mentoring students highlight his contributions to academia. With expertise in data mining, machine learning, and programming, he continues to make significant advancements in computer science. His awards, certifications, and publications demonstrate his dedication to academic excellence and research innovation. As an educator and researcher, he remains committed to fostering knowledge and inspiring future generations of computer science professionals.