Sohong Dhar | Data Science | Analytics Excellence Award

Dr. Sohong Dhar | Data Science | Analytics Excellence Award

Data Scientist at Jadavpur University | India

Dr. Sohong Dhar is a distinguished Information Scientist whose career bridges the fields of data science, digital marketing, and business analytics with remarkable proficiency. He is recognized for his ability to transform complex data into actionable insights that drive innovation, efficiency, and strategic growth across diverse industries. With expertise spanning machine learning, artificial intelligence, cloud computing, and advanced statistical analysis, he demonstrates an exceptional command of both theoretical and applied aspects of data-driven problem-solving. His multidisciplinary academic foundation, strengthened through advanced studies in data science and information science, has empowered him to approach challenges with analytical precision and creative foresight. Sohong has made impactful contributions to research, data modeling, and algorithmic development, delivering intelligent systems that enhance operational performance and decision-making processes. His fluency in multiple languages, combined with an understanding of literature and information systems, reflects a rare synthesis of technical acumen and intellectual versatility. He has collaborated effectively in cross-functional environments, employing platforms such as Microsoft Azure, SQL, and GCP to implement scalable and efficient data solutions. Beyond his technical mastery, Sohong’s work reflects a strong commitment to continuous learning, innovation, and excellence in the evolving domain of information and data science. His professional journey stands as a testament to the integration of analytical rigor, technological depth, and strategic thinking, establishing him as a forward-thinking expert dedicated to advancing the digital transformation landscape through intelligent, evidence-based insights and data-led decision frameworks.

Profile: Scopus

Featured Publications

Melba Kani, R., Karimli Maharram, V., Dhar, S., Samisha, B., Rajendran, P., & Ahmed, S. A. (2025). Automating grading to enhance student feedback and efficiency in higher education with a hybrid ensemble learning model.

Deepti, Nalluri, M., Mupparaju, C. B., Rongali, A. S., Dhar, S., & Ajitha, P. (2023). Retracted: Analyzing the impact of deep learning approaches on real-time data analysis in machine learning.

Ms. Wenqing Bao | Computer Science | Best Researcher Award

Ms. Wenqing Bao | Computer Science | Best Researcher Award

Ms. Wenqing Bao | Computer Science | The Home Depot | United States

Ms. Wenqing Bao is a highly skilled Data Analyst and Quantitative Researcher with expertise in SQL, Python, predictive analytics, and machine learning. With a strong foundation in finance, e-commerce, and customer insights, she has consistently demonstrated her ability to transform complex datasets into actionable strategies that drive business growth and operational efficiency. She possesses a unique blend of technical proficiency and analytical problem-solving, enabling her to design predictive models, automate data pipelines, and develop intelligent dashboards. Throughout her professional journey, she has collaborated with cross-functional teams to optimize pricing strategies, improve customer retention, and streamline business operations, establishing herself as a result-driven data specialist committed to innovation and excellence.

Professional Profile

SCOPUS

GOOGLE SCHOLAR

Summary of Suitability

Ms. Wenqing Bao is a highly skilled Data Analyst and Quantitative Researcher with a strong academic background and practical expertise in data science, machine learning, predictive analytics, and financial modeling. With a Master’s in Analytical Finance – Data Science from Emory University (GPA 4.0/4.0) and a Bachelor’s in Mathematics & Finance from The Ohio State University, she has demonstrated an exceptional ability to combine theoretical knowledge with real-world applications.Her research-oriented projects, innovative data-driven solutions, and application of advanced analytical techniques position her as a highly suitable candidate for the Best Researcher Award.

Education

Ms. Wenqing Bao holds a Master of Science in Analytical Finance – Data Science from Emory University, Goizueta Business School, where she achieved a perfect GPA of 4.0/4.0. Her rigorous training in data-driven finance, portfolio modeling, and machine learning enabled her to build a strong foundation in financial analytics and quantitative techniques. She also earned a Bachelor of Science with a double major in Mathematics and Finance from The Ohio State University, where she developed critical problem-solving skills, statistical modeling expertise, and financial risk assessment capabilities. This multidisciplinary background has equipped her with a deep understanding of both technical data science methodologies and business-focused decision-making.

Experience

Ms. Wenqing Bao brings a diverse professional background across logistics, finance, and technology, demonstrating her adaptability and leadership in analytical roles. At Americold Logistics, she serves as a Business Analyst, where she develops automated SQL scripts to extract and analyze performance data, enabling strategic site and customer profitability decisions. She has designed and implemented Power BI dashboards for real-time insights, conducted annual pricing analyses, and collaborated on profitability models, reducing analysis time by 50% and improving operational workflows.Previously, at Invesco, she worked as a Quantitative Researcher, conducting web scraping, portfolio back-testing, and Monte Carlo simulations to enhance investment performance. She developed an LSTM-based price prediction model in Python, improving forecasting accuracy and optimizing portfolio returns.As a Product Data Analyst at HIWOO LLC, she built an ETL pipeline for multi-client data integration and visualization using Tableau, achieving a 12% improvement in customer retention and identifying opportunities that drove a 50% increase in service enrollments. At American Yuncheng Gravure Cylinder, she analyzed large datasets, created dashboards for tracking business KPIs, and contributed to $1M in cost savings through actionable insights.

Research Interests

Ms. Wenqing Bao research focuses on predictive modeling, financial risk analytics, and customer behavior analysis. She is passionate about developing machine learning models for credit risk prediction, portfolio optimization, and customer segmentation. Her academic and professional work explores applying AI-driven techniques to enhance decision-making in finance, logistics, and e-commerce. With growing expertise in time-series forecasting, neural networks, and natural language processing, she aims to bridge the gap between advanced data science methodologies and real-world business applications.

Awards

Ms. Wenqing Bao has been consistently recognized for her academic excellence, professional impact, and analytical contributions. Her achievements include outstanding academic performance, excellence in predictive modeling, and impactful contributions to data-driven decision-making. She has received recognition for developing advanced pricing models, implementing data automation pipelines, and creating innovative dashboards that enhanced business performance. Her work reflects a strong commitment to leveraging data science to deliver measurable outcomes and support organizational growth.

Publication Top Notes

Innovative application of artificial intelligence technology in bank credit risk management
Year: 2024
Citations: 26

Research on the application of data analysis in predicting financial risk
Year: 2024
Citations: 24

The challenges and opportunities of financial technology innovation to bank financing business and risk management
Year: 2024
Citations: 22

Customer-centric AI in banking: Using AIGC to improve personalized services
Year: 2024
Citations: 17

Application progress of natural language processing technology in financial research
Year: 2024
Citations: 17

Conclusion

Ms. Wenqing Bao is an accomplished data analyst and quantitative researcher whose expertise bridges the fields of data science, finance, and predictive analytics. Her career demonstrates a proven record of success in automating processes, optimizing decision-making, and delivering actionable insights that drive performance and growth. With a strong academic foundation, diverse professional experience, and impactful research contributions, she stands out as an innovative problem-solver dedicated to advancing data-driven strategies across industries. Her achievements reflect not only technical mastery but also a commitment to applying advanced analytics to create tangible business value, making her a highly deserving candidate for prestigious research and professional awards.

Jaya Raju G | Machine Learning | Best Researcher Award

Mr. Jaya Raju G | Machine Learning | Best Researcher Award

Assistant Professor at Aditya University, India

G. Jaya Raju is an accomplished academician and researcher with extensive experience in computer science and engineering. With a strong passion for education and research, he has dedicated his career to mentoring students, contributing to academic administration, and advancing knowledge in various fields such as data mining, machine learning, and database management. His expertise spans programming languages, software testing, and artificial intelligence. Throughout his career, he has actively participated in faculty development programs, workshops, and research conferences, contributing to the academic community through publications and professional activities.

Profile

Scopus

Education

G. Jaya Raju is currently pursuing a Ph.D. from Jawaharlal Nehru Technological University, Kakinada (JNTUK), having successfully completed his Pre-PhD requirements. He obtained his M.Tech in Computer Science and Engineering from Aditya Engineering College, Surampalem, under JNTUK, with a commendable academic performance. Additionally, he holds an M.Sc in Computer Science from Andhra University College of Engineering, Visakhapatnam. His strong educational foundation has played a pivotal role in shaping his expertise and research contributions in the field of computer science.

Experience

With over a decade of experience in academia, G. Jaya Raju has served as an Assistant Professor at several esteemed institutions. Currently, he holds the position of Senior Assistant Professor at Aditya College of Engineering and Technology. Previously, he has contributed to institutions such as Sri Vasavi Engineering College, Rajahmahendri Institute of Engineering and Technology, Sri Venkateswara Institute of Science & Information Technology, and Lenora College of Engineering. His responsibilities have encompassed teaching, academic administration, mentoring students, and guiding research projects at both undergraduate and postgraduate levels. Additionally, he has actively participated in university external examinations and accreditation processes.

Research Interests

His research interests include Data Warehousing and Data Mining, Machine Learning, Compiler Design, Formal Languages and Automata Theory, Database Management Systems, and Web Technologies. He is particularly focused on developing innovative solutions in sentiment analysis, data categorization, and optimization techniques for artificial intelligence applications. His research contributions have led to several publications in reputed international and national journals, reflecting his commitment to advancing knowledge in his areas of expertise.

Awards and Recognitions

G. Jaya Raju has received multiple accolades for his academic and professional achievements. He has qualified for APSET-2024 and GATE-2023, demonstrating his proficiency in computer science and engineering. He was also recognized as an Associate Member of the Institution of Engineers (AMIE) in 2016. Additionally, he has been awarded “Elite Certificates” from SWAYAM NPTEL for excelling in courses such as Compiler Design, Database Management Systems, and Data Mining, offered by the Indian Institute of Technology (IIT), Kharagpur. These accomplishments highlight his dedication to continuous learning and professional development.

Publications

“Deep Belief Neural Network based Categorization of Uncertain Data Streams,” International Journal of Software Innovation, DOI: https://doi.org/10.4018/IJSI.312262, cited by multiple research articles.

“Classical Software Testing Using Semi-Proving,” IJCST Vol. 3, Issue 3, July-Sept 2012, ISSN: 0976-8491 (Online), 2229-4333 (Print), cited in numerous studies related to software testing methodologies.

“Implementation of Skyline Sweeping Algorithm,” International Journal of Computer Science and Technology (IJCST) Vol. 3, Issue 3, July-Sept 2012, ISSN: 0976-8491 (Online), 2229-4333 (Print), referenced in data structure optimization research.

“Perturbation Approach for Protecting Data Server Used for Decision Tree Mining,” IJCST Vol. 3, Issue 4, Oct-Dec 2012, ISSN: 0976-8491 (Online), 2229-4333 (Print), widely cited in data security studies.

Conclusion

G. Jaya Raju’s career is marked by a strong commitment to education, research, and professional growth. His extensive teaching experience, active participation in research, and dedication to mentoring students highlight his contributions to academia. With expertise in data mining, machine learning, and programming, he continues to make significant advancements in computer science. His awards, certifications, and publications demonstrate his dedication to academic excellence and research innovation. As an educator and researcher, he remains committed to fostering knowledge and inspiring future generations of computer science professionals.

Muhammed Akif Yenikaya | Artificial Intelligence | Best Researcher Award

Assist. Prof. Dr. Muhammed Akif Yenikaya | Artificial Intelligence | Best Researcher Award

Assistant Professor at Kafkas University, Turkey

Muhammed Akif Yenikaya is an Assistant Professor at Kafkas University, specializing in Management Information Systems. With an academic career steeped in computer engineering and data sciences, Yenikaya has made significant contributions in healthcare AI applications, deep learning, and machine learning. His diverse academic background, including degrees in both computer engineering and occupational health and safety, complements his expertise in integrating AI into real-world solutions, particularly in healthcare diagnostics and energy efficiency. Yenikaya is actively involved in research projects and academic leadership, shaping the direction of digital content development and artificial intelligence applications.

Profile

Orcid

Education

Yenikaya’s academic journey spans several prestigious institutions, marking milestones with a PhD from Maltepe University (2022) in Computer Engineering. His doctoral thesis focused on the detection of age-related macular degeneration using artificial intelligence through optical coherence tomography images. Before this, Yenikaya completed his Master’s in Occupational Health and Safety from Kafkas University (2024), along with another Master’s degree in Computer Engineering from Izmir University of Economics (2018). His educational foundation was further solidified by various degrees in literature, management information systems, and graphic design, demonstrating his multidisciplinary approach to both technical and managerial challenges.

Experience

Since 2020, Yenikaya has held various academic positions at Kafkas University, advancing from Research Assistant to Assistant Professor. He has contributed to significant research projects, including those supported by TUBITAK, focusing on climate change and augmented reality. Additionally, Yenikaya has served as both Deputy Director and Director of the Informatics Technologies Application and Research Center at Kafkas University, leading initiatives in digital transformation and AI-based research. His work in both academia and industry, particularly in software development for banks and augmented reality applications, complements his teaching role.

Research Interests

Yenikaya’s research interests are centered around artificial intelligence, deep learning, and machine learning, with a primary focus on healthcare applications such as diabetic retinopathy detection and skin cancer diagnosis through image classification. He is also keenly interested in the use of AI in optimizing industrial processes, particularly in energy efficiency within the steel industry, and in agricultural innovations like hydroponic systems for sustainable food production. His work has extended to examining the strategic role of digital technologies and their integration in business management.

Awards

Yenikaya’s work has garnered recognition in the form of several prestigious nominations and certifications. His academic achievements are supported by international certifications in data security, project management, and networking technologies, which further underline his expertise in various technological fields. Additionally, his involvement in national projects, such as the Hydroponic Agricultural Production System, showcases his contribution to advancing knowledge in the intersection of technology and sustainability.

Publications

YENİKAYA, MUHAMMED AKİF, KERSE, GÖKHAN, OKTAYSOY, ONUR (2024). Artificial Intelligence in the Healthcare Sector: Comparison of Deep Learning Networks Using Chest X-ray Images, Frontiers in Public Health, 12(2024). Doi: 10.3389/fpubh.2024.1386110

YENİKAYA, MUHAMMED AKİF, KAVAK, ONUR (2023). Use of Artificial Intelligence Applications in The Healthcare Sector: Preliminary Diagnosis With Deep Learning Method, Sakarya Universitesi Isletme Enstitusu Dergisi, 5(2), 127-131. Doi: 10.47542/sauied.1394746

YENİKAYA, MUHAMMED AKİF, GÜVENOĞLU, ERDAL (2021). Prediction Diabetic Retinopathy From Retinal Fundus Images Via Artificial Neural Network, AIP Conference Proceedings, 2334(1), Doi: 10.1063/5.0042204

YENİKAYA, MUHAMMED AKİF, OKTAYSOY, ONUR (2024). Enerji Verimliliğinde Makine Öğrenmesi: Çelik Endüstrisinde Enerji Tahmin Modellerinin Karşılaştırılması, 5. Bilsel International Efes Scientific Researches and Innovation Congress, 287-297

YENİKAYA, MUHAMMED AKİF, KAVAK, ONUR (2023). Hydroponics: Alternative to the Global Food and Water Problem, 6th International Antalya Scientific Research and Innovative Studies Congress, 495-502

YENİKAYA, MUHAMMED AKİF, GÜVENOĞLU, ERDAL (2023). Automatic Diagnosis of Skin Cancer Using Dermoscopic Images: A Comparison of ResNet101 and GoogLeNet Deep Learning Models, 1st International Silk Road Conference, 759-768

YENİKAYA, MUHAMMED AKİF, KERSE, GÖKHAN (2022). ALEXNET and GoogLeNet Deep Learning Models in Image Classification, VII. International European Conference on Social Sciences, 713-720

Conclusion

Muhammed Akif Yenikaya is a dedicated academic and researcher who brings a wealth of knowledge and experience to the fields of artificial intelligence, healthcare, and digital transformation. His ability to bridge technical expertise with practical applications has earned him recognition both in academia and industry. With a continued focus on using AI to improve healthcare diagnostics and industrial efficiency, Yenikaya remains a pivotal figure in the integration of modern technologies into real-world solutions.