Prof. Shoujun Zhou | Artificial Intelligence | Best Scholar Award
Research Professor at Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
Prof. Shoujun Zhou is a distinguished biomedical engineering researcher and a leading figure in the field of medical robotics and image-guided therapy. He currently serves as a specially appointed research professor at the Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, and concurrently holds a professorship at the National Institute for High-Performance Medical Devices. Over his career, Prof. Zhou has led and contributed to numerous national and provincial-level scientific research projects, focusing on developing interventional surgical robotics and advanced medical imaging technologies. His leadership in this interdisciplinary field has positioned him at the forefront of integrating artificial intelligence with minimally invasive therapeutic solutions.
Profile
Education
Prof. Zhou’s academic journey began with a Bachelor’s degree in Test and Control from the Air Force Engineering University (1989–1993). He then earned a Master’s degree in Communication and Information Systems from Lanzhou University (1997–2000), further refining his technical expertise. His academic pursuits culminated in a Ph.D. in Biomedical Engineering from Southern Medical University (2001–2004). This multidisciplinary educational background laid a solid foundation for his future contributions in medical imaging, robotics, and computational modeling.
Experience
With over three decades of professional experience, Prof. Zhou has served in multiple prestigious institutions. From 1993 to 2001, he worked as an engineer in the 94921 Military Unit, followed by a postdoctoral tenure at Beijing Institute of Technology. He transitioned to industry in 2007 as an enterprise postdoctoral researcher at Shenzhen Haibo Technology Co., Ltd., and later joined the 458 Hospital of the PLA as a senior engineer. Since 2010, he has been a principal investigator and research professor at SIAT, where he leads a dedicated research team working on the convergence of robotics, imaging, and AI for medical applications.
Research Interest
Prof. Zhou’s research primarily focuses on interventional surgical robots, image-guided therapy, and medical image analysis. He is particularly interested in developing intelligent, minimally invasive systems that combine AI algorithms with real-time imaging for precise diagnostics and interventions. His work includes modeling and segmentation of vascular structures, semi-supervised learning techniques in medical imaging, and the development of surgical robots tailored for procedures such as liver tumor ablation and cardiovascular interventions. He is also actively involved in improving navigation systems that reduce or eliminate radiation exposure in image-guided procedures.
Award
Prof. Zhou’s contributions have been widely recognized both nationally and internationally. He was honored with the “Best Researcher Award” at the Global Awards on Artificial Intelligence and Robotics in 2022, organized by ScienceFather. He also received a Silver Medal in the Global Medical Robot Innovation Design Competition in 2019 for his work on a vascular interventional robotic system. His earlier work earned the Second Prize of Guangdong Provincial Science and Technology Progress Award in 2009 and contributed to a project that received a First-Class Prize in Science and Technology Progress from the Ministry of Education in 2006. These accolades reflect his sustained excellence and impact in the field of medical technology.
Publication
Prof. Zhou has authored over 100 scientific papers, including several published in top-tier journals. Selected key publications include:
-
Zhang Z. et al. (2024). “Verdiff-Net: A Conditional Diffusion Framework for Spinal Medical Image Segmentation,” Bioengineering, 11(10):1031 – cited in spinal image AI segmentation studies.
-
Zhang X. et al. (2024). “Automatic Segmentation of Pericardial Adipose Tissue from Cardiac MR Images,” Medical Physics, DOI:10.1002/mp.17558 – referenced for semi-supervised MR image segmentation.
-
Tian H. et al. (2024). “EchoSegDiff: a diffusion-based model for left ventricular segmentation,” Medical & Biological Engineering & Computing, DOI:10.1007/s11517-024-03255-0 – cited in cardiac echocardiography image modeling.
-
Li J. et al. (2024). “DiffCAS: Diffusion based Multi-attention Network for 3D Coronary Artery Segmentation,” Signal, Image and Video Processing, DOI:10.1007/s11760-024-03409-5 – relevant in coronary CT imaging analysis.
-
Wang K.N. et al. (2024). “SBCNet: Scale and Boundary Context Attention for Liver Tumor Segmentation,” IEEE Journal of Biomedical and Health Informatics, 28(5):2854-2865 – cited in liver tumor segmentation research.
-
Xiang S. et al. (2024). “Automatic Delineation of the 3D Left Atrium from LGE-MRI,” IEEE Journal of Biomedical and Health Informatics, DOI:10.1109/JBHI.2024.3373127 – frequently cited in atrial structural analysis.
-
Miao J. et al. (2024). “SC-SSL: Self-correcting Collaborative and Contrastive Co-training,” IEEE Transactions on Medical Imaging, 43(4):1347-1364 – referenced in semi-supervised medical image learning.
Conclusion
Prof. Zhou’s work exemplifies the synergy between engineering and medical science, enabling significant advances in minimally invasive diagnosis and treatment. Through his persistent innovation in surgical robotics and medical image computing, he has made a profound impact on the evolution of intelligent healthcare technologies. His dedication to mentoring young researchers and contributing to national and provincial projects reflects a commitment not only to scientific discovery but also to the translation of research into clinical and industrial applications. With a career marked by excellence in research, education, and innovation, Prof. Zhou continues to be a pivotal figure shaping the future of intelligent medicine.