Sabbir Ahmed Udoy | Artificial Intelligence | Best Researcher Award

Mr. Sabbir Ahmed Udoy | Artificial Intelligence | Best Researcher Award

Rajshahi University of Engineering & Technology, Bangladesh

Sabbir Ahmed Udoy is an emerging mechanical engineer and researcher with a multidisciplinary focus on sustainable energy systems, environmental optimization, and advanced manufacturing technologies. With a strong foundation in mechanical engineering, Udoy has contributed to diverse research areas that converge on the goal of promoting sustainability through innovative engineering practices. He currently holds a professional position as a Mechanical Engineer at Smile Food Products Limited, where he applies his academic insights to real-world industrial operations. Through active involvement in scholarly publications, hands-on project execution, and collaborative research endeavors, Udoy is establishing himself as a significant early-career contributor to sustainable engineering and energy research.

Profile

Google Scholar

Education

Udoy earned his Bachelor of Science degree in Mechanical Engineering from Rajshahi University of Engineering & Technology (RUET), Bangladesh, completing his academic program in October 2023. He graduated with a CGPA of 3.24 out of 4.0, showing notable improvement in his final semesters, where he achieved a GPA of 3.40 over the last 60 credits. Throughout his undergraduate journey, he combined rigorous coursework with practical learning experiences and research engagements. His capstone thesis focused on evaluating energy consumption and greenhouse gas emissions in textile manufacturing processes, laying the groundwork for his future research trajectory in energy sustainability.

Experience

Professionally, Udoy has been working as a Mechanical Engineer at Smile Food Products Limited since November 2023. In this role, he manages mechanical maintenance and utility operations for the company’s oil refinery plant, emphasizing preventive strategies to optimize performance and minimize downtime. Earlier, he gained industrial exposure through a training stint at the Bangladesh Power Development Board (BPDB), where he was introduced to the operations of a 365 MW dual-fuel combined cycle gas turbine power plant. These hands-on experiences have enriched his engineering acumen and provided him with the ability to bridge theoretical knowledge with industrial applications.

Research Interest

Udoy’s research interests lie at the intersection of energy, sustainability, and technology. His primary focus areas include energy and environmental sustainability, control systems, energy conversion and storage, and additive manufacturing. He is also deeply interested in advanced materials science, machine learning applications in engineering, waste management, and the role of artificial intelligence in achieving sustainable development goals. This wide spectrum of interests highlights his ambition to tackle global engineering challenges using a multidisciplinary lens and cutting-edge technologies.

Award

Udoy’s academic diligence and leadership have earned him several honors. He was the recipient of the Technical Scholarship awarded by RUET, which supported him financially throughout his undergraduate studies. Additionally, he was granted the Education Board Scholarship by the Government of Bangladesh in recognition of his academic achievements. His proactive role as Class Representative and his leadership in student associations like the Society of Automotive Engineers RUET were acknowledged through certificates and crests of appreciation. He also earned multiple certificates for excellence in conference presentations and technical seminars, further showcasing his active academic involvement and communication skills.

Publication

Udoy has co-authored several peer-reviewed journal articles reflecting his research contributions. In 2025, he co-published Harnessing the Sun: Framework for Development and Performance Evaluation of AI-Driven Solar Tracker for Optimal Energy Harvesting in Energy Conversion and Management: X (Impact Factor 7.1), focusing on AI-based solar optimization. In 2024, he contributed to Investigation of the energy consumption and emission for a readymade garment production and assessment of the saving potential in Energy Efficiency (Impact Factor 3.2), emphasizing sustainable apparel manufacturing. Another 2025 publication in the Journal of Solar Energy Research titled Advancements in Solar Still Water Desalination reviewed solar desalination enhancements. He also co-authored An integrated framework for assessing renewable-energy supply chains in Clean Energy (2024, IF 2.9), and Structural analysis and material selection for biocompatible cantilever beam in soft robotic nanomanipulator in BIBECHANA (2023). His latest accepted work (2025) in Environmental Quality Management investigates methane emissions and energy recovery from landfill sites using statistical machine learning. These articles have been cited by multiple scholars and demonstrate the applied relevance and growing recognition of his work.

Conclusion

Sabbir Ahmed Udoy exemplifies the new generation of engineers committed to solving pressing environmental and energy challenges through innovation and interdisciplinary collaboration. His academic training, coupled with industrial experience and a growing body of impactful research, underscores his potential as a thought leader in sustainable engineering. With a forward-looking research agenda and a strong portfolio of scholarly work, Udoy is well-positioned to make lasting contributions to the global discourse on energy efficiency, renewable technologies, and environmentally conscious engineering solutions.

Zhouchen Lin | Deep Learning | Global Impact in Research Award

Prof. Dr. Zhouchen Lin | Deep Learning | Global Impact in Research Award

Associate Dean at Peking University, China

Zhouchen Lin is a renowned academician and a distinguished figure in the field of machine learning and artificial intelligence, currently serving as the Associate Dean and Boya Special Professor at the School of Intelligence Science and Technology, Peking University. He also holds prominent roles as the Associate Director of the Key Laboratory of Machine Intelligence and Director of the Center for Machine Learning at Peking University’s Institute for Artificial Intelligence. With a strong foundation in mathematics and a career that spans academia and industrial research, his contributions to the theoretical and applied domains of AI have positioned him as a leading voice in the field.

Profile

Google Scholar

Education

Zhouchen Lin’s educational journey is deeply rooted in mathematics. He earned his Ph.D. from the School of Mathematics, Peking University in July 2000. Prior to this, he completed his M.Phil. at the Hong Kong Polytechnic University in July 1997, his M.S. in Mathematics at Peking University in July 1995, and his B.S. in Mathematics from Nankai University in July 1993. His robust academic background in mathematical theory has been instrumental in shaping his pioneering work in artificial intelligence and optimization algorithms.

Experience

Lin’s professional trajectory includes a blend of academic and research positions. Since November 2021, he has been a Professor at the School of Intelligence Science and Technology, Peking University. He was previously a professor in the Department of Machine Intelligence at Peking University’s School of EECS from 2012 to 2021. His industry research career was primarily at Microsoft Research Asia, where he worked in multiple roles from 2000 to 2012, including as a Lead Researcher in the Visual Computing Group. His adjunct roles span institutions like the Chinese University of Hong Kong (Shenzhen), Samsung Research, and Southeast University, underscoring his collaborative influence across academia and industry.

Research Interest

Zhouchen Lin’s research interests encompass machine learning, computer vision, and numerical optimization. Within machine learning, he specializes in sparse and low-rank representation, deep learning, and spiking neural networks. His computer vision work includes object detection, segmentation, and recognition. He also delves into optimization techniques, focusing on both convex and nonconvex optimization as well as stochastic and asynchronous optimization, contributing extensively to the development of scalable algorithms in AI.

Award

Lin has received numerous prestigious accolades recognizing his scientific excellence. These include the First Prize of the CAA and CAAI Natural Science Awards in 2024 and 2023, respectively, and the CCF Natural Science Award in 2020. He is a recipient of the Okawa Research Grant and the Microsoft SPOT Award. Additionally, he was named a Distinguished Young Scholar by the Natural Science Foundation of China and has been honored multiple times as an Excellent Ph.D. Supervisor. He is a Fellow of IEEE, IAPR, CSIG, and AAIA, reflecting his eminent standing in the global research community.

Publication

Among Lin’s prolific research outputs, several key papers stand out. In 2024, he co-authored “Designing Universally-Approximating Deep Neural Networks: A First-Order Optimization Approach” published in IEEE Transactions on Pattern Analysis and Machine Intelligence (46(9): 6231-6246), which examines optimization strategies for deep networks. Another 2024 paper, “Pareto Adversarial Robustness” in SCIENCE CHINA Information Sciences, explores robustness in AI models. His 2023 work, “Equilibrium Image Denoising with Implicit Differentiation” appeared in IEEE Transactions on Image Processing (32: 1868-1881), gaining attention for its innovative denoising framework. “SPIDE: A Purely Spike-based Method for Training Feedback Spiking Neural Networks” (Neural Networks, 161, 2023) is influential in neuromorphic computing. Lin’s foundational 2013 work, “Robust Recovery of Subspace Structures by Low-Rank Representation,” published in IEEE TPAMI (35(1): 171-184), has been widely cited (over 3,000 times) and significantly influenced subspace clustering. Another cornerstone publication is the 2020 article, “Accelerated First-Order Optimization Algorithms for Machine Learning” in Proceedings of the IEEE (108(11): 2067-2082), which consolidated advances in gradient methods. Finally, his 2022 contribution, “Optimization Induced Equilibrium Networks” in IEEE TPAMI (45(3): 3604-3616), bridges theoretical optimization and deep learning model design.

Conclusion

Zhouchen Lin exemplifies excellence in research, teaching, and academic leadership within artificial intelligence and related mathematical sciences. His influential research, global recognition, and deep commitment to mentorship have collectively enriched the AI research landscape. As both a thought leader and innovator, he continues to push the boundaries of AI, enabling robust, interpretable, and efficient machine learning solutions for real-world challenges.

Muyang Li | Deep learning | Best Researcher Award

Mr Muyang Li | Deep learning | Best Researcher Award

Tianjin University,  China

Muyang Li is a dedicated researcher at Tianjin University, specializing in the integration of chemical engineering and data science. Currently pursuing his Master’s degree, he has already made significant contributions to the fields of crystallization process optimization, material property prediction, and AI-driven image analysis.

Profile:

🎓 Education:

  • M.S. in Chemical Engineering and Technology (2022–Present), Tianjin University
  • B.S. in Chemical Engineering and Technology (2018–2022), Tianjin University

🔬 Research Focus:

Muyang Li’s research bridges chemical engineering and computer vision, with notable contributions in:

  • Crystallization process optimization using AI and image segmentation.
  • Developing novel methodologies for virtual dataset synthesis and material property prediction.
  • Implementing deep learning techniques (e.g., CNNs, Transformers, YOLOv8) for enhanced industrial applications.

🏆 Achievements:

  • Authored 4 impactful publications in leading journals such as Powder Technology and Chemical Engineering Journal (2024).
  • Recipient of prestigious awards, including the Samsung Scholarship (2020) and First-Class Scholarship for Master Students (2022).
  • Recognized as an Excellent Graduate of Tianjin University (2022).

🧪 Key Research Contributions:

  • Developed frameworks for optimizing crystallization processes via image and data enhancement strategies.
  • Pioneered methods for synthesizing virtual datasets using advanced neural networks like CoCosNet.
  • Advanced deep-learning applications for material properties prediction and dynamic emulsion analysis.

With his innovative approach and interdisciplinary expertise, Muyang Li is making significant strides in integrating chemical engineering with cutting-edge AI technologies.

Publication Top Notes:

1. Enhanced Powder Characteristics of Succinic Acid through Crystallization Techniques for Food Industry Application

  • Authors: Hutagaol, T.J., Liu, J., Li, M., Gao, Z., Gong, J.
  • Journal: Journal of Food Engineering
  • Year: 2025, Volume: 388, Article: 112376
  • Focus: Improved powder properties of succinic acid via advanced crystallization techniques tailored for food industry applications.
  • Citations: 0

2. Modeling and Validation of Multi-Objective Optimization for Mixed Xylene Hybrid Distillation/Crystallization Process

  • Authors: Chen, W., Yao, T., Liu, J., Gao, Z., Gong, J.
  • Journal: Separation and Purification Technology
  • Year: 2025, Volume: 354, Article: 128778
  • Focus: Multi-objective optimization model validation for hybrid distillation/crystallization in mixed xylene processing.
  • Citations: 0

3. A Deep Learning-Powered Intelligent Microdroplet Analysis Workflow for In-Situ Monitoring and Evaluation of a Dynamic Emulsion

  • Authors: Liu, J., Li, M., Cai, J., Gao, Z., Gong, J.
  • Journal: Chemical Engineering Journal
  • Year: 2024, Volume: 499, Article: 155927
  • Focus: Advanced deep-learning workflows for real-time dynamic emulsion monitoring.
  • Citations: 0

4. Predicting Crystalline Material Properties with AI: Bridging Molecular to Particle Scales

  • Authors: Chen, W., Li, M., Yao, T., Gao, Z., Gong, J.
  • Journal: Industrial and Engineering Chemistry Research
  • Year: 2024, Volume: 63(43), pp. 18241–18262
  • Type: Review
  • Focus: Utilizing AI for predicting crystalline material properties from molecular to particle scales.
  • Citations: 0

5. Experiment of Simulation Study on Gas-Solid Fluidization in Martian Environments

  • Authors: Ma, Y., Li, M., Ma, Z., Zhang, L., Liu, M.
  • Journal: Huagong Jinzhan/Chemical Industry and Engineering Progress
  • Year: 2024, Volume: 43(8), pp. 4203–4209
  • Focus: Simulation studies of gas-solid fluidization under Martian environmental conditions.
  • Citations: 0

6. Deep-Learning Based In-Situ Micrograph Analysis of High-Density Crystallization Slurry Using Image and Data Enhancement Strategy

  • Authors: Li, M., Liu, J., Yao, T., Gao, Z., Gong, J.
  • Journal: Powder Technology
  • Year: 2024, Volume: 437, Article: 119582
  • Focus: Application of deep-learning techniques for analyzing high-density crystallization slurry micrographs.
  • Citations: 2