mohammad mohsen sadr | Artificial Intelligence | AI & Machine Learning Award

Mr. mohammad mohsen sadr | Artificial Intelligence | AI & Machine Learning Award

Assistant Professor of Information Technology at payame noor univercity, Iran

Dr. Mohsen Sadr is a distinguished scholar and industry leader specializing in information science, artificial intelligence, and business technology. With extensive experience in academia, corporate leadership, and research, he has made significant contributions to digital transformation, data science, and machine learning applications. Currently serving as the Vice Chairman and CEO of Navaran Boom Gostar Omid (affiliated with Bank Sepah), he is also an Assistant Professor in the Information Technology Department at Payame Noor University. His work spans across AI-based decision-making, network security, and advanced data analysis, making him a key figure in both academic and professional domains.

profile

scopus

Education

Dr. Sadr has an interdisciplinary academic background, holding a Ph.D. in Information Science. He completed his M.Sc. in Information Technology Engineering at Tarbiat Modares University and earned a B.Sc. in Computer Engineering – Software. Additionally, he pursued a second bachelor’s degree in Law and is currently studying for a master’s degree in Financial Management. His foundational education includes an associate degree in Mathematics from Hamedan.

Experience

Dr. Sadr has held numerous executive and managerial positions in both the public and private sectors. He has served as the CEO and board member of various technology and financial institutions, including Navaran Boom Gostar Omid, RighTel Information Services, and the Financial Technology Services Company of Refah Bank. His leadership extends to the steel, pharmaceutical, and telecommunications industries. Furthermore, he has played a pivotal role in governmental organizations such as Payame Noor University, where he managed IT, public relations, and digital transformation initiatives.

Research Interests

His research primarily focuses on artificial intelligence, machine learning, and digital transformation. Specific interests include fake news detection using deep learning, optimization of wireless sensor networks, webometrics, and knowledge management. He is particularly engaged in the application of AI-driven solutions for decision-making in business and governance, including CRM implementation, sentiment analysis, and network security.

Awards & Recognitions

Dr. Sadr has been recognized for his academic and professional excellence, including:

Outstanding Student Award in Associate Mathematics

Best Lecturer Award at Payame Noor University in 2012

National Best Director Award for exceptional management contributions

Publications

Dr. Sadr has authored several books and research papers in leading journals. Below are some of his notable publications:

Sadr, M.M., & Torkashvand, S. (Year). Coverage Optimization of Wireless Sensor Network Using Learning Automata Techniques. Published in Chemical and Process Engineering.

Sadr, M.M., & Dadstani, M. (Year). Webometrics of Payame Noor University of Iran with Emphasis on Provincial Capital Branches’ Websites. Published in Library Philosophy and Practice.

Sadr, M.M., et al. (Year). A Predictive Model Based on Machine Learning Methods to Recognize Fake Persian News on Twitter. Published in Turkish Journal of Computer and Mathematics Education.

Sadr, M.M., & Akhavan Safar, M. (Year). The Use of LSTM Neural Networks to Detect Fake News on Persian Twitter. Published in Applied Research in Sports Management.

Sadr, M.M., & Asgari, P. (Year). Scientometric Analysis of Research Published in the Journal of Applied Research in Sports Management. Published in Organizational Behavior Management Studies in Sports.

Khani, M., & Sadr, M.M. (Year). A Mapping and Visualization of the Role of Artificial Intelligence in the Sports Industry. Published in Concurrency and Computation: Practice and Experience.

Sadr, M.M., et al. (Year). Deep Reinforcement Learning-Based Resource Allocation in Multi-Access Edge Computing. Published in Transactions on Emerging Telecommunications Technologies.

Conclusion

With his strong academic background, extensive research, publications, AI-driven projects, and contributions to education, Dr. Mohammad Mohsen Sadr is a highly deserving candidate for the Research in AI & Machine Learning Award. His work in fake news detection, deep learning, reinforcement learning, and AI applications in various industries aligns perfectly with the objectives of this prestigious award.

Mohamed Abdalzaher | Artificial Intelligence | Best Researcher Award

Assoc. Prof. Dr. Mohamed Abdalzaher | Artificial Intelligence | Best Researcher Award

Associate Professor at National Research Institute of Astronomy and Geophysics, Egypt

Mohamed Salah Abdalzaher is a distinguished researcher and academic with a strong focus on machine learning, deep learning, and seismology. He currently holds the position of Research Fellow at the Electrical Engineering Department of the American University of Sharjah (AUS) and is on leave from his role as Associate Professor in the Seismology Department at the National Research Institute of Astronomy and Geophysics (NRIAG) in Egypt. Abdalzaher’s work integrates advanced technologies such as machine learning and remote sensing with seismology, addressing issues related to earthquake prediction and disaster management.

Profile

Scopus

Education

Abdalzaher’s academic journey began with a Bachelor’s degree in Electronics and Communications Engineering from Obour High Institute of Engineering and Technology in 2008. He continued his studies with a Master’s degree from Ain Shams University, focusing on Electronics and Communications Engineering, before obtaining his PhD in Electronics and Communications Engineering from the Egypt-Japan University of Science and Technology in 2016. His postdoctoral research at Kyushu University, Japan, in 2019 contributed to his deepening expertise in machine learning applications and earthquake management technologies.

Experience

Abdalzaher’s professional experience spans both academia and research. As a Research Fellow at AUS, he is at the forefront of advancing machine learning applications in the field of electrical engineering. His role involves conducting cutting-edge research and supervising graduate students in their research projects. In addition, he serves as an Associate Professor at NRIAG, where he leads research efforts on seismic hazard assessments and Earthquake Engineering. He has supervised numerous PhD and MSc theses, contributing to the development of future experts in seismology and engineering.

Research Interest

Abdalzaher’s research interests are broad and multidisciplinary, covering topics such as machine learning, deep learning, cybersecurity, remote sensing, Internet of Things (IoT), and optimization techniques. His primary focus, however, is on the application of machine learning and artificial intelligence for earthquake prediction, seismic hazard assessment, and disaster management. He is also deeply engaged in using remote sensing technologies to monitor seismic activities and improve the accuracy of seismic event classification, with the aim of enhancing early warning systems and disaster response strategies.

Awards

Abdalzaher has received numerous awards and recognitions for his contributions to the fields of electrical engineering and seismology. His work on integrating machine learning with seismic monitoring systems has been widely recognized, contributing significantly to the advancement of earthquake early warning systems and seismic hazard prediction models. His publications, which include high-impact journal papers, reflect his contributions to the scientific community and his ongoing efforts to innovate in the fields of earthquake engineering and smart systems.

Publications

Sharshir, S.W., Joseph, A., Abdalzaher, M.S., et al. (2024). “Using multiple machine learning techniques to enhance the performance prediction of heat pump-driven solar desalination unit.” Desalination and Water Treatment.

Etman, A., Abdalzaher, M. S., et al. (2024). “A Survey on Machine Learning Techniques in Smart Grids Based on Wireless Sensor Networks.” IEEE ACCESS.

Habbak E. L., Abdalzaher, M. S., et al. (2024). “Enhancing the Classification of Seismic Events With Supervised Machine Learning and Feature Importance.” Scientific Report.

Abdalzaher, M. S., Soliman, M. S., & Fouda, M. M. (2024). “Using Deep Learning for Rapid Earthquake Parameter Estimation in Single-Station Single-Component Earthquake Early Warning System.” IEEE Transactions on Geoscience and Remote Sensing.

Krichen, M., Abdalzaher, M. S., et al. (2024). “Emerging technologies and supporting tools for earthquake disaster management: A perspective, challenges, and future directions.” Progress in Disaster Science.

Abdalzaher, M. S., Moustafa, S. R., & Yassien, M. (2024). “Development of smoothed seismicity models for seismic hazard assessment in the Red Sea region.” Natural Hazards.

Moustafa, S. S., Mohamed, G. E. A., Elhadidy, M. S., & Abdalzaher, M. S. (2023). “Machine learning regression implementation for high-frequency seismic wave attenuation estimation in the Aswan Reservoir area, Egypt.” Environmental Earth Sciences.

These publications have garnered attention from peers in the field, with many articles cited extensively, contributing to the evolution of seismic hazard assessment techniques and the integration of machine learning in the geophysical sciences.

Conclusion

Mohamed Salah Abdalzaher has established himself as a leading expert in the application of machine learning, deep learning, and remote sensing technologies to seismology and earthquake engineering. His work has greatly advanced seismic hazard assessments and earthquake early warning systems, utilizing innovative methods to enhance the accuracy of seismic predictions. Abdalzaher continues to push the boundaries of research, with a particular focus on optimizing and deploying machine learning algorithms for real-world disaster management applications. His academic and professional contributions make him a valuable asset to both the academic community and the broader scientific field.

Rajan Bhatt | Artificial Intelligence | Excellence Award (Any Scientific field)

Dr. Rajan Bhatt | Artificial Intelligence | Excellence Award (Any Scientific field)

Associate Professor| Punjab Agricultural University, Ludhiana | India

Dr. Rajan Bhatt is a Senior Soil Scientist at PAU-Krishi Vigyan Kendra, Amritsar, Punjab, India. With extensive expertise in soil physics, water management, and sustainable agriculture, he has dedicated over two decades to advancing soil science research. His contributions include innovative techniques for soil moisture management, resource conservation, and the application of artificial intelligence in agriculture. Recognized globally for his work, Dr. Bhatt has received numerous prestigious awards, reflecting his commitment to scientific excellence and rural development.

Profile

Scopus

Education

Dr. Bhatt holds a Ph.D. in Soil Science (2015) from Punjab Agricultural University, Ludhiana, with distinction, focusing on soil physics and water management. His academic journey began with a B.Sc. in Agriculture (2000) from Guru Nanak Dev University, followed by an M.Sc. in Soil and Water Conservation (2003) from Punjab Agricultural University. Throughout his education, he consistently ranked among the top performers, showcasing his passion and dedication to agricultural sciences.

Experience

Currently an Associate Professor in Soil Science, Dr. Bhatt has been instrumental in implementing resource conservation technologies at PAU-Krishi Vigyan Kendra. With a career spanning over two decades, he has actively contributed to improving land and water productivity, addressing climate-smart agricultural practices, and mentoring young scientists. His collaborations with national and international organizations have further amplified the impact of his work in soil and water conservation.

Research Interests

Dr. Bhatt’s research focuses on sustainable agriculture, soil moisture dynamics, resource conservation technologies, and artificial intelligence in farming. His groundbreaking studies on the rice-wheat cropping system and integrated farming models have provided innovative solutions for mitigating climate change effects. He is also interested in exploring the role of silicon in combating plant biotic stress and enhancing soil health for long-term agricultural productivity.

Awards

Dr. Bhatt has been honored with numerous accolades, including the Best Researcher Award (2021), Young Scientist Award (2016, 2017, 2019), and the Springer PAWEES Best Paper Award (2022). These awards recognize his contributions to soil science and sustainable agriculture, underscoring his global reputation as a thought leader. His efforts have consistently bridged the gap between research innovation and practical application in farming.

Publications

Prospects of Artificial Intelligence for the Sustainability of Sugarcane Production in the Modern Era of Climate Change: An Overview of Related Global Findings

  • Authors: Bhatt, R.; Hossain, A.; Majumder, D.; Brestic, M.; Maitra, S.
  • Publication Year: 2024
  • Citations: 0

Management of Yield Losses in Vigna radiata (L.) R. Wilczek Crop Caused by Charcoal-Rot Disease Through Synergistic Application of Biochar and Zinc Oxide Nanoparticles as Boosting Fertilizers and Nanofungicides

  • Authors: Mazhar, M.W.; Ishtiaq, M.; Maqbool, M.; Siddiqui, M.H.; Bhatt, R.
  • Publication Year: 2024
  • Citations: 1

Designing a Productive, Profitable Integrated Farming System Model With Low Water Footprints for Small and Marginal Farmers of Telangana

  • Authors: Karthik, R.; Ramana, M.V.; Kumari, C.P.; Elhindi, K.M.; Mattar, M.A.
  • Publication Year: 2024
  • Citations: 0

Long-Term Application of Agronomic Management Strategies Effects on Soil Organic Carbon, Energy Budgeting, and Carbon Footprint Under Rice–Wheat Cropping System

  • Authors: Naresh, R.K.; Singh, P.K.; Bhatt, R.; Al-Ansari, N.; Mattar, M.A.
  • Publication Year: 2024
  • Citations: 2

Application of Different Organic Amendments Influences the Different Forms of Sulfur in the Soil of Pea–Onion–Cauliflower Cropping System

  • Authors: Paul, S.C.; Bharti, R.; Lata, S.; Bhatt, R.; Siddiqui, M.H.
  • Publication Year: 2024
  • Citations: 0

Revealing the Hidden World of Soil Microbes: Metagenomic Insights Into Plant, Bacteria, and Fungi Interactions for Sustainable Agriculture and Ecosystem Restoration

  • Authors: Jagadesh, M.; Dash, M.; Kumari, A.; Bhatt, R.; Sharma, S.K.
  • Publication Year: 2024
  • Citations: 7

Soil Qualities and Crop Responses Are Influenced by Biochar: A Meta-Analysis Review

  • Authors: Bhatt, R.; Rajput, V.D.; Chandra, M.S.; Garg, A.K.; Verma, K.K.
  • Publication Year: 2024
  • Citations: 0

Optimizing Nutrient and Energy Efficiency in a Direct-Seeded Rice Production System: A Northwestern Punjab Case Study

  • Authors: Kaur, R.; Chhina, G.S.; Kaur, M.; Elhindi, K.M.; Mattar, M.A.
  • Publication Year: 2024
  • Citations: 1

Potassium and Jasmonic Acid—Induced Nitrogen and Sulfur Metabolisms Improve Resilience Against Arsenate Toxicity in Tomato Seedlings

  • Authors: Siddiqui, M.H.; Mukherjee, S.; Gupta, R.K.; Bhatt, R.; Kesawat, M.S.
  • Publication Year: 2024
  • Citations: 3

Conclusion

Dr. Rajan Bhatt’s illustrious career exemplifies the integration of innovative research and practical solutions in soil science. His work has made significant strides in addressing the challenges of sustainable agriculture and climate change. As a mentor, researcher, and leader, Dr. Bhatt continues to inspire advancements in agricultural practices for global food security and environmental sustainability.