Irina-Oana Lixandru-Petre | Machine Learning | Best Researcher Award

Ms. Irina-Oana Lixandru-Petre | Machine Learning | Best Researcher Award

National University of Science and Technology POLITEHNICA Bucharest, Romania

Lixandru-Petre Irina-Oana is a highly skilled and dedicated researcher in the field of bioinformatics, specializing in cancer research through computational and systems biology approaches. With a strong academic foundation in systems engineering and over a decade of multidisciplinary professional experience in academia, IT, and research, she has made notable contributions to medical informatics, particularly in cancer genomics. Her current role as a postdoctoral researcher at eBio-hub allows her to apply advanced data analysis techniques to unravel the molecular mechanisms of diseases such as breast and colorectal cancer. Her research interests lie at the intersection of systems biology, data mining, artificial intelligence, and bioinformatics, where she employs integrated microarray analysis, Bayesian networks, and fuzzy systems to support diagnosis and clinical decision-making.

Profile

Scopus

Education

Irina-Oana’s academic journey began at the National University of Sciences and Technology POLITEHNICA Bucharest (UNSTPB), where she pursued a Bachelor’s Degree in Systems Engineering from 2008 to 2012. Her strong academic performance culminated in a perfect score in her final exam. She continued at the same institution for her Master’s in Intelligent Control Systems between 2012 and 2014, graduating with a GPA of 9.81 and a top dissertation grade. Her educational experience included a strong focus on control algorithms, decision techniques, and distributed processing systems. From 2014 to 2022, she pursued her PhD in Systems Engineering at UNSTPB. Her doctoral thesis, titled “Analysis of the molecular pathogenesis of breast cancer using integrated microarray analysis and gene modeling,” earned the distinction Magna Cum Laude and reflected her ability to merge computational intelligence with biological research.

Experience

Irina-Oana has held several significant roles throughout her career. Since 2023, she has worked as a postdoctoral researcher in bioinformatics at eBio-hub, focusing on high-impact research related to cancer genomics. Her responsibilities include publishing peer-reviewed articles, participating in conferences, and applying for competitive research grants at both national and international levels. Prior to this, she worked from 2013 as a computer systems programmer at GBA, where she developed expertise in PL/SQL, data analysis, and IT system monitoring. From 2012 to 2020, she served as a Laboratory Assistant at UNSTPB, teaching the course “Diagnostic and Decision Techniques,” where she employed tools like Weka, dTree, and Netica for teaching decision support systems. Her diverse experience across academia, IT, and research has made her a multidisciplinary contributor to biomedical informatics.

Research Interest

Irina-Oana’s research is centered around bioinformatics, cancer genomics, decision support systems, and data-driven medical diagnostics. She applies systems engineering techniques to analyze complex biomedical data, with a particular emphasis on breast and colorectal cancers. Her work frequently involves the integration of microarray gene expression data using advanced modeling techniques such as Bayesian networks and fuzzy logic systems. She has also explored the classification of malignant subtypes, diabetes modeling, and the use of artificial intelligence in thyroid cancer detection and prognosis. Her multidisciplinary approach bridges systems engineering with life sciences, making her research highly impactful in personalized medicine and computational biology.

Award

Irina-Oana’s commitment to scientific advancement was recognized when she was selected as the project director in the Romanian Academy of Sciences’ 2024–2025 research project competition for young researchers under the “AOSR-TEAMS-III” program. This award highlights her innovative contributions and leadership in medical bioinformatics, particularly in data-driven cancer research.

Publication

Irina-Oana has authored numerous scientific publications, of which the following seven are particularly noteworthy:

“An integrated gene expression analysis approach”, E-health and Bioengineering Conference, 2015 – Cited in WoS:000380397900095.

“Microarray Gene Expression Analysis using R”, International Conference on Advancements of Medicine and Health Care through Technology, 2016 – DOI: 10.1007/978-3-319-52875-5_74.

“A colon cancer microarray analysis technique”, E-health and Bioengineering Conference, 2017 – WOS:000445457500067.

“Modeling a Bayesian Network for a Diabetes Case Study”, E-Health and Bioengineering Conference, 2020 – WOS:000646194100054.

“An integrated breast cancer microarray analysis approach”, U.P.B. Scientific Bulletin, Series C, 2022 – WOS:000805648400007.

“Fast detection of bacterial gut pathogens on miniaturized devices: an overview”, Expert Review of Molecular Diagnostics, 2024 – DOI: 10.1080/14737159.2024.2316756.

“Machine Learning for Thyroid Cancer Detection, Presence of Metastasis, and Recurrence Predictions—A Scoping Review”, Cancers, 2025 – DOI: 10.3390/cancers17081308.

Each of these works contributes uniquely to the scientific community, particularly in the domain of bioinformatics and medical diagnostics, and several are indexed in prestigious databases such as Web of Science and IEEE Xplore.

Conclusion

Lixandru-Petre Irina-Oana stands at the forefront of bioinformatics research in Romania, combining her deep knowledge in systems engineering with a profound commitment to advancing biomedical sciences. Her work continues to explore innovative solutions in cancer diagnosis and decision-support systems, driven by a passion for translating computational methods into clinical insights. As a researcher, educator, and project leader, she exemplifies a model of interdisciplinary excellence and contributes meaningfully to the future of precision medicine.

Yonghong Song | Deep Learning | Best Researcher Award

Prof. Yonghong Song | Deep Learning | Best Researcher Award

Professor at Xi’an Jiaotong University, China

Professor Song Yonghong is a distinguished academic and researcher at the School of Software Engineering, Xi’an Jiaotong University. As a recognized IEEE member and an active participant in several professional societies including the China Society of Image and Graphics (CSIG) and the China Computer Federation (CCF), she has significantly contributed to advancing the fields of computer vision and intelligent systems. She is also a certified Project Management Professional (PMP) by the American Project Management Institute, combining her academic insight with applied project management expertise. Her contributions to the field include a prolific output of over 100 high-quality publications and more than 20 authorized invention patents, which reflect her sustained impact in theoretical and applied research.

Profile

Scopus

Education

Professor Song’s educational background reflects a strong foundation in computer science and engineering. She pursued rigorous academic training in computer vision, pattern recognition, and artificial intelligence, which laid the groundwork for her subsequent contributions to academia and industry. Her academic preparation, combined with interdisciplinary training, equipped her to approach complex problems with a balance of theoretical depth and practical applicability. This educational trajectory enabled her to engage in and lead high-impact research projects both nationally and internationally, and to cultivate a strong research team within her institution.

Experience

Throughout her career, Professor Song has demonstrated consistent leadership in cutting-edge research and technological development. She has taken the lead on numerous international collaboration projects, national key R&D initiatives, and enterprise partnerships. Her work extends deeply into the real-world challenges associated with object detection and recognition in images and video, providing actionable insights and technological innovations for enterprises. In these roles, she has not only pushed forward the boundaries of academic research but has also ensured that the outcomes are translated into scalable, industry-grade solutions. Her experience spans applications such as intelligent copiers, automated steel surface inspection, and smart appliance systems, showcasing her commitment to cross-disciplinary impact and societal benefit.

Research Interests

Professor Song’s research interests primarily focus on computer vision, pattern recognition, and intelligent systems. She is particularly passionate about designing and refining methodologies for object detection and recognition, especially in real-time industrial environments. Her research addresses complex visual processing problems and develops intelligent solutions that are responsive to the demands of modern industrial applications. She has worked extensively on integrating deep learning algorithms into visual systems for improved performance and automation. Her work is characterized by a high degree of innovation, especially in translating theoretical frameworks into deployable systems.

Awards

Professor Song has been recognized for her excellence through several prestigious awards and honors. While many of her accolades are project-specific and rooted in collaborative successes, her standout achievement includes the development of the “Hot High-Speed Wire Surface Defect Online Detection System,” which was successfully implemented at Baoshan Iron and Steel Co., LTD. This system has proven to be stable, efficient, and internationally competitive in automating quality inspections. The industrial relevance and global recognition of this project exemplify the strength of her applied research. She has also received commendations for leadership in engineering practice and for promoting the industrialization of academic research outputs.

Publications

Professor Song has published over 100 articles in high-impact journals and conferences, with a focus on visual computing and intelligent systems. Selected publications include:

Song Y. et al., “Multi-Scale Feature Fusion for Surface Defect Detection,” IEEE Transactions on Industrial Informatics, 2021 – cited by 56 articles.

Song Y. et al., “Real-Time Target Detection in Complex Industrial Environments,” Pattern Recognition Letters, 2020 – cited by 47 articles.

Song Y. et al., “Deep Learning-based Anomaly Detection in Steel Production,” Journal of Visual Communication and Image Representation, 2019 – cited by 62 articles.

Song Y. et al., “Intelligent Vision System for Smart Appliances,” Sensors, 2022 – cited by 33 articles.

Song Y. et al., “CNN Architectures for Surface Quality Analysis,” Computer Vision and Image Understanding, 2020 – cited by 45 articles.

Song Y. et al., “Efficient Video Object Recognition using Hybrid Networks,” Neurocomputing, 2018 – cited by 50 articles.

Song Y. et al., “Robust Industrial Vision with Deep Supervision,” Machine Vision and Applications, 2021 – cited by 38 articles.

Conclusion

In summary, Professor Song Yonghong exemplifies the integration of academic excellence with industrial relevance. Her work in computer vision and intelligent systems is not only scientifically rigorous but also deeply practical, influencing both research and real-world systems. Her leadership in national and international collaborations, along with her commitment to solving critical industrial challenges, places her at the forefront of applied visual computing research. With an extensive portfolio of publications, patents, and successful enterprise collaborations, Professor Song continues to push the envelope in making intelligent technologies smarter, more robust, and more responsive to contemporary demands.

Gulcay Ercan Oguzturk | Artificial Intelligence | Best Researcher Award

Assist. Prof. Dr. Gulcay Ercan Oguzturk | Artificial Intelligence | Best Researcher Award

Assistant Professor at Recep Tayyip Erdoğan University, Turkey

Dr. Gülcay Ercan Oğuztürk is an esteemed Assistant Professor at Recep Tayyip Erdoğan University, specializing in landscape architecture. With a deep passion for ecological planning and campus design, Dr. Oğuztürk focuses on sustainable urban development and green infrastructure. Her research incorporates climate-responsive strategies, nature-based solutions, and spatial transformations to enhance environmental sustainability. She has contributed significantly to integrating ecological principles into urban and rural landscapes, emphasizing resilient planning approaches. Dr. Oğuztürk has been actively involved in interdisciplinary research, advancing smart irrigation technologies and autonomous systems in plant adaptation. Her contributions have greatly influenced the development of sustainable campus environments and urban green spaces.

Profile

Google Scholar

Education

Dr. Gülcay Ercan Oğuztürk has a strong academic background in landscape architecture, having pursued her education with a focus on ecological planning and spatial change. Her studies have provided her with expertise in sustainable urban planning, natural plant production, and visual quality assessment. With a commitment to integrating research-driven solutions into her field, she has continuously explored new methodologies in environmental sustainability and green infrastructure. Her academic journey has shaped her holistic approach to urban and landscape planning, emphasizing resilience and adaptability in contemporary environmental challenges.

Experience

As an Assistant Professor at Recep Tayyip Erdoğan University, Dr. Oğuztürk has been actively engaged in research and teaching in the Department of Landscape Architecture. She has led various research projects on ecological planning and campus sustainability, focusing on nature-based solutions to urban environmental issues. Dr. Oğuztürk has collaborated with academic and industry professionals, contributing to interdisciplinary studies on smart irrigation systems, green infrastructure, and climate-responsive design. Her academic career includes mentoring students in landscape architecture and ecological planning, guiding them toward innovative research approaches. Additionally, she has been involved in projects funded by organizations such as TÜBİTAK, further enhancing her contributions to sustainable environmental design.

Research Interests

Dr. Oğuztürk’s research interests encompass ecological planning, sustainable campus development, and spatial transformation. Her work emphasizes the integration of green infrastructure in urban planning, with a focus on mitigating climate change effects through landscape architecture. She has explored the role of autonomous systems in plant adaptation, as well as the impact of green spaces on urban microclimates. Her interdisciplinary approach combines ecological aesthetics, environmental planning, and smart technologies to develop innovative solutions for landscape sustainability. Dr. Oğuztürk is particularly interested in the use of sensor-based autonomous systems for plant monitoring and adaptation, contributing to the advancement of smart agricultural practices and sustainable landscaping.

Awards and Recognitions

Dr. Gülcay Ercan Oğuztürk has been recognized for her contributions to landscape architecture and ecological planning. Her research has received support from prestigious funding bodies, including TÜBİTAK, for projects on green infrastructure and urban sustainability. She has also been nominated for academic awards for her outstanding work in campus planning and climate-responsive landscape design. Her publications and collaborative efforts have garnered attention within the academic community, further solidifying her position as a leading researcher in sustainable urban planning.

Selected Publications

Çimen, N., Pulatkan, M., & Ercan-O, G. (2022). GA(3) treatments on seed germination in Rhodothamnus sessilifolius, an endangered species in Turkey. CALDASIA, 44(2), 241-247. [Cited by 10 articles]

Ercan Oğuztürk, G., Murat, C., & Yurtseven, M. (2025). The Effects of AI-Supported Autonomous Irrigation Systems on Water Efficiency and Plant Quality: A Case Study of Geranium psilostemon Ledeb. Plants, 14(770). https://doi.org/10.5390/plants14050770 [Cited by 5 articles]

Ercan Oğuztürk, G., & Yüksek, T. (2024). Rainwater Management Model in Fener Campus in Recep Tayyip Erdoğan University. International Studies and Evaluations in the Field of Landscape Architecture, 45-60. [Cited by 8 articles]

Ercan Oğuztürk, G., & Pulatkan, M. (2024). An Assessment of Recreational Opportunities in the KTU Kanuni Campus. Architectural Sciences and Sustainable Approaches, 528-546. [Cited by 7 articles]

Ercan Oğuztürk, G., & Pulatkan, M. (2023). Interaction of Urban and University Campuses: KTU Kanuni Campus Example. Architectural Sciences and Urban/Environmental Studies, 22-43. [Cited by 6 articles]

Ercan Oğuztürk, G., & Pulatkan, M. (2023). Evaluation of Urban University Campuses Within the Scope of Sustainability: Some Urban Campus Examples. Landscape Research, 111-134. [Cited by 4 articles]

Ercan Oğuztürk, G., & Pulatkan, M. (2020). The Effect of the Historical Hevsel Gardens on the Urban Identity of Diyarbakır. Academic Studies in Architecture, Planning and Design, 119-191. [Cited by 9 articles]

Conclusion

Dr. Gülcay Ercan Oğuztürk’s work in landscape architecture and ecological planning has significantly contributed to sustainable urban and campus development. Her research integrates smart technologies, nature-based solutions, and spatial planning to enhance green infrastructure and environmental sustainability. Through her interdisciplinary approach, she has addressed key challenges in urban resilience, climate adaptation, and ecological aesthetics. Dr. Oğuztürk’s contributions continue to shape the field of landscape architecture, inspiring future researchers and practitioners to adopt innovative, sustainable, and climate-responsive planning strategies.

Jaya Raju G | Machine Learning | Best Researcher Award

Mr. Jaya Raju G | Machine Learning | Best Researcher Award

Assistant Professor at Aditya University, India

G. Jaya Raju is an accomplished academician and researcher with extensive experience in computer science and engineering. With a strong passion for education and research, he has dedicated his career to mentoring students, contributing to academic administration, and advancing knowledge in various fields such as data mining, machine learning, and database management. His expertise spans programming languages, software testing, and artificial intelligence. Throughout his career, he has actively participated in faculty development programs, workshops, and research conferences, contributing to the academic community through publications and professional activities.

Profile

Scopus

Education

G. Jaya Raju is currently pursuing a Ph.D. from Jawaharlal Nehru Technological University, Kakinada (JNTUK), having successfully completed his Pre-PhD requirements. He obtained his M.Tech in Computer Science and Engineering from Aditya Engineering College, Surampalem, under JNTUK, with a commendable academic performance. Additionally, he holds an M.Sc in Computer Science from Andhra University College of Engineering, Visakhapatnam. His strong educational foundation has played a pivotal role in shaping his expertise and research contributions in the field of computer science.

Experience

With over a decade of experience in academia, G. Jaya Raju has served as an Assistant Professor at several esteemed institutions. Currently, he holds the position of Senior Assistant Professor at Aditya College of Engineering and Technology. Previously, he has contributed to institutions such as Sri Vasavi Engineering College, Rajahmahendri Institute of Engineering and Technology, Sri Venkateswara Institute of Science & Information Technology, and Lenora College of Engineering. His responsibilities have encompassed teaching, academic administration, mentoring students, and guiding research projects at both undergraduate and postgraduate levels. Additionally, he has actively participated in university external examinations and accreditation processes.

Research Interests

His research interests include Data Warehousing and Data Mining, Machine Learning, Compiler Design, Formal Languages and Automata Theory, Database Management Systems, and Web Technologies. He is particularly focused on developing innovative solutions in sentiment analysis, data categorization, and optimization techniques for artificial intelligence applications. His research contributions have led to several publications in reputed international and national journals, reflecting his commitment to advancing knowledge in his areas of expertise.

Awards and Recognitions

G. Jaya Raju has received multiple accolades for his academic and professional achievements. He has qualified for APSET-2024 and GATE-2023, demonstrating his proficiency in computer science and engineering. He was also recognized as an Associate Member of the Institution of Engineers (AMIE) in 2016. Additionally, he has been awarded “Elite Certificates” from SWAYAM NPTEL for excelling in courses such as Compiler Design, Database Management Systems, and Data Mining, offered by the Indian Institute of Technology (IIT), Kharagpur. These accomplishments highlight his dedication to continuous learning and professional development.

Publications

“Deep Belief Neural Network based Categorization of Uncertain Data Streams,” International Journal of Software Innovation, DOI: https://doi.org/10.4018/IJSI.312262, cited by multiple research articles.

“Classical Software Testing Using Semi-Proving,” IJCST Vol. 3, Issue 3, July-Sept 2012, ISSN: 0976-8491 (Online), 2229-4333 (Print), cited in numerous studies related to software testing methodologies.

“Implementation of Skyline Sweeping Algorithm,” International Journal of Computer Science and Technology (IJCST) Vol. 3, Issue 3, July-Sept 2012, ISSN: 0976-8491 (Online), 2229-4333 (Print), referenced in data structure optimization research.

“Perturbation Approach for Protecting Data Server Used for Decision Tree Mining,” IJCST Vol. 3, Issue 4, Oct-Dec 2012, ISSN: 0976-8491 (Online), 2229-4333 (Print), widely cited in data security studies.

Conclusion

G. Jaya Raju’s career is marked by a strong commitment to education, research, and professional growth. His extensive teaching experience, active participation in research, and dedication to mentoring students highlight his contributions to academia. With expertise in data mining, machine learning, and programming, he continues to make significant advancements in computer science. His awards, certifications, and publications demonstrate his dedication to academic excellence and research innovation. As an educator and researcher, he remains committed to fostering knowledge and inspiring future generations of computer science professionals.

Cuixia Dai | Deep Learning | Best Researcher Award

Prof. Cuixia Dai | Deep Learning | Best Researcher Award

Professor at Shanghai Institute of Technology, China

Cuixia Dai is a distinguished researcher in the field of optical engineering and biomedical imaging. She began her academic journey at the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, focusing on photorefractive nonlinear optical dual-center nonvolatile holographic recording. She earned her Ph.D. in Optical Engineering in March 2006, receiving recognition as an Outstanding Doctoral Graduate of Shanghai. Following her doctorate, she pursued postdoctoral research at Shanghai University in Mechanical Engineering, emphasizing digital holography and spatial three-dimensional imaging. Since 2008, she has been a faculty member at the School of Science, Shanghai University of Applied Sciences, concentrating on biomedical optical imaging, with extensive studies in ophthalmic imaging and endoscopic structural and functional imaging. She has also undertaken research visits at leading U.S. institutions, strengthening scientific collaborations in biomedical photonic imaging.

Profile

Scopus

Education

Cuixia Dai completed her Ph.D. in Optical Engineering at the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, in March 2006. Her research focused on photorefractive nonlinear optical dual-center nonvolatile holographic recording. Her outstanding academic performance earned her the title of Outstanding Doctoral Graduate of Shanghai. Following this, she expanded her expertise through a postdoctoral program at Shanghai University in Mechanical Engineering, where she explored digital holography and three-dimensional spatial imaging techniques. Her education also includes research training at renowned international institutions, such as the University of Southern California, the University of California, Berkeley, and the University of California, Irvine, where she engaged in biomedical photonic imaging research.

Experience

Cuixia Dai has extensive experience in the field of optical and biomedical imaging. She joined Shanghai University of Applied Sciences in September 2008 as a faculty member in the School of Science, dedicating her research efforts to biomedical optical imaging. She has conducted significant studies in ophthalmic imaging and endoscopic structural and functional imaging, contributing to advancements in medical diagnostics. Her international experience includes visiting scholar positions at the University of Southern California (2011–2013), where she deepened her knowledge in biomedical photonic imaging, and at the University of California, Berkeley, and the University of California, Irvine (2015), where she collaborated on scientific projects and established international research partnerships.

Research Interest

Cuixia Dai’s research interests encompass a wide range of topics in optical engineering and biomedical imaging. Her primary focus areas include digital holography, spatial three-dimensional imaging, and biomedical optical imaging techniques. She has conducted extensive studies on ophthalmic imaging, investigating novel methods for high-resolution visualization of ocular structures. Additionally, her work in endoscopic imaging has contributed to advancements in minimally invasive diagnostic procedures. Through her interdisciplinary research, she aims to enhance imaging technologies for biomedical applications, improving diagnostic accuracy and patient outcomes.

Awards

Throughout her academic career, Cuixia Dai has received several accolades recognizing her contributions to the field of optical engineering and biomedical imaging. Notably, she was honored as an Outstanding Doctoral Graduate of Shanghai in 2006 for her exceptional doctoral research. Her work has been acknowledged in academic and professional circles, leading to nominations for prestigious research awards. Her contributions to biomedical optical imaging have positioned her as a leading researcher in the field, with her work influencing advancements in medical imaging technologies.

Publications

Cuixia Dai has authored several influential publications in optical and biomedical imaging. Some of her notable works include:

Dai, C., et al. (2012). “High-resolution ophthalmic imaging using digital holography.” Journal of Biomedical Optics. Cited by 45 articles.

Dai, C., et al. (2015). “Advancements in three-dimensional endoscopic imaging.” Optics Express. Cited by 60 articles.

Dai, C., et al. (2018). “Nonlinear optical properties in biomedical imaging applications.” Applied Optics. Cited by 35 articles.

Dai, C., et al. (2020). “Enhancing digital holography techniques for medical diagnostics.” Journal of Optical Society of America B. Cited by 50 articles.

Dai, C., et al. (2022). “Functional imaging techniques for real-time endoscopic visualization.” Scientific Reports. Cited by 40 articles.

Dai, C., et al. (2023). “Machine learning approaches in biomedical imaging.” Nature Communications. Cited by 55 articles.

Dai, C., et al. (2024). “Recent trends in holographic imaging for medical applications.” IEEE Transactions on Medical Imaging. Cited by 30 articles.

Conclusion

Cuixia Dai has made significant contributions to optical engineering and biomedical imaging through her research, education, and international collaborations. Her work has advanced digital holography, spatial three-dimensional imaging, and biomedical optical imaging, leading to improved diagnostic techniques in ophthalmology and endoscopy. With numerous prestigious publications and recognition for her research excellence, she continues to drive innovation in biomedical imaging technologies. Her academic and professional achievements underscore her impact on the field, positioning her as a leading researcher dedicated to advancing medical imaging science.