Rajender Singh | Machine Learning and Communication | Best Academic Researcher Award

Mr. Rajender Singh | Machine Learning and Communication | Best Academic Researcher Award

Assistant Professor at JEC, Jabalpur, India

Rajender Singh Yadav is a distinguished academician and researcher with over two decades of experience in the field of Electronics and Communication Engineering. He received his Bachelor of Engineering degree from Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, in 2001, and later completed his Master of Technology from the same university in 2010. Presently, he is serving as an Assistant Professor at BGIEM, Jabalpur, where he has been contributing to academic and research activities since March 2022. Throughout his career, he has demonstrated expertise in various cutting-edge areas such as Artificial Intelligence, Robotics, Embedded Systems, and Signal and Image Processing. His dedication to education and research has significantly impacted both students and the academic community.

Profile

Orcid

Education

Rajender Singh Yadav’s academic foundation is firmly rooted in Electronics and Communication Engineering. He began his academic journey at HCET, Jabalpur, Madhya Pradesh, where he pursued his B.E. from 1997 to 2001, equipping himself with essential engineering skills and a solid understanding of communication technologies. To further enhance his expertise, he enrolled in UPTU, Lucknow, where he completed his M.Tech. in Electronics and Communication Engineering between 2007 and 2010. His advanced studies allowed him to deepen his knowledge of sophisticated communication systems, embedded technologies, and AI-driven processes, laying a strong groundwork for his future research endeavors and teaching career.

Experience

With an extensive teaching career spanning over 22 years, Rajender Singh Yadav has amassed a wealth of experience across reputed institutions. He started as a Lecturer at GNIT, Greater Noida, in 2003, where he served for two years. Following this, he worked at AKGEC, Ghaziabad, as a Lecturer and later as an Assistant Professor from 2005 to 2012. His commitment to academic excellence led him to GGITS, Jabalpur, where he spent a decade nurturing young minds as an Assistant Professor. Since 2022, he has been associated with BGIEM, Jabalpur, continuing his journey of mentoring students and advancing research. Over the years, he has successfully blended academic teaching with research innovations, fostering a learning environment focused on technological advancement and real-world application.

Research Interest

Rajender Singh Yadav’s research interests are broad and interdisciplinary, focusing on AI, Robotics, Embedded Systems, and Signal and Image Processing. His passion lies in developing intelligent systems capable of addressing real-time challenges in wireless communication, autonomous robotics, and integrated system designs. He actively explores the synergy between artificial intelligence and hardware systems to optimize performance, reliability, and energy efficiency. His research delves deep into areas like deep reinforcement learning, optimized channel bonding, and intelligent transmit power control mechanisms, all aimed at enhancing wireless network efficiency. His work reflects a keen understanding of current technological trends and a vision for future innovations in electronics and communication engineering.

Award

Although specific awards have not been documented, Rajender Singh Yadav’s professional journey itself stands as a testament to his dedication and excellence. His consistent progression through reputed institutions, long-standing teaching career, and contribution to the academic field highlight the recognition and trust he has garnered within the educational community. His involvement in publishing impactful research in reputed international journals showcases his commitment to scholarly excellence and innovation.

Publication

Rajender Singh Yadav has contributed notably to academic literature. One of his significant publications is titled “Joint Optimization of Channel Bonding and Transmit Power Using Optimized Actor–Critic Deep Reinforcement Learning for Wireless Networks”, published in the International Journal of Communication Systems on May 10, 2025. This research explores the integration of optimized actor–critic deep reinforcement learning models to simultaneously enhance channel bonding and transmit power efficiency in wireless networks. The article has already begun to gain citations and is recognized for its practical approach to complex wireless communication challenges. This work stands out for its novel methodology and potential applications in next-generation network systems, demonstrating his ability to merge theoretical research with practical technological needs.

Conclusion

In conclusion, Mr. Rajender Singh Yadav is a seasoned educator and dedicated researcher whose contributions to Electronics and Communication Engineering have been remarkable. With a solid academic background, a wealth of teaching experience, and a keen interest in advanced research areas like AI and embedded systems, he continues to influence and inspire the academic and research communities. His efforts in mentoring students, developing innovative research solutions, and publishing impactful studies reflect his unwavering commitment to advancing technology and education. As he moves forward in his career, his passion for innovation and excellence promises to bring about significant contributions to the field of communication engineering and beyond.

Mohamed Abdalzaher | Artificial Intelligence | Best Researcher Award

Assoc. Prof. Dr. Mohamed Abdalzaher | Artificial Intelligence | Best Researcher Award

Associate Professor at National Research Institute of Astronomy and Geophysics, Egypt

Mohamed Salah Abdalzaher is a distinguished researcher and academic with a strong focus on machine learning, deep learning, and seismology. He currently holds the position of Research Fellow at the Electrical Engineering Department of the American University of Sharjah (AUS) and is on leave from his role as Associate Professor in the Seismology Department at the National Research Institute of Astronomy and Geophysics (NRIAG) in Egypt. Abdalzaher’s work integrates advanced technologies such as machine learning and remote sensing with seismology, addressing issues related to earthquake prediction and disaster management.

Profile

Scopus

Education

Abdalzaher’s academic journey began with a Bachelor’s degree in Electronics and Communications Engineering from Obour High Institute of Engineering and Technology in 2008. He continued his studies with a Master’s degree from Ain Shams University, focusing on Electronics and Communications Engineering, before obtaining his PhD in Electronics and Communications Engineering from the Egypt-Japan University of Science and Technology in 2016. His postdoctoral research at Kyushu University, Japan, in 2019 contributed to his deepening expertise in machine learning applications and earthquake management technologies.

Experience

Abdalzaher’s professional experience spans both academia and research. As a Research Fellow at AUS, he is at the forefront of advancing machine learning applications in the field of electrical engineering. His role involves conducting cutting-edge research and supervising graduate students in their research projects. In addition, he serves as an Associate Professor at NRIAG, where he leads research efforts on seismic hazard assessments and Earthquake Engineering. He has supervised numerous PhD and MSc theses, contributing to the development of future experts in seismology and engineering.

Research Interest

Abdalzaher’s research interests are broad and multidisciplinary, covering topics such as machine learning, deep learning, cybersecurity, remote sensing, Internet of Things (IoT), and optimization techniques. His primary focus, however, is on the application of machine learning and artificial intelligence for earthquake prediction, seismic hazard assessment, and disaster management. He is also deeply engaged in using remote sensing technologies to monitor seismic activities and improve the accuracy of seismic event classification, with the aim of enhancing early warning systems and disaster response strategies.

Awards

Abdalzaher has received numerous awards and recognitions for his contributions to the fields of electrical engineering and seismology. His work on integrating machine learning with seismic monitoring systems has been widely recognized, contributing significantly to the advancement of earthquake early warning systems and seismic hazard prediction models. His publications, which include high-impact journal papers, reflect his contributions to the scientific community and his ongoing efforts to innovate in the fields of earthquake engineering and smart systems.

Publications

Sharshir, S.W., Joseph, A., Abdalzaher, M.S., et al. (2024). “Using multiple machine learning techniques to enhance the performance prediction of heat pump-driven solar desalination unit.” Desalination and Water Treatment.

Etman, A., Abdalzaher, M. S., et al. (2024). “A Survey on Machine Learning Techniques in Smart Grids Based on Wireless Sensor Networks.” IEEE ACCESS.

Habbak E. L., Abdalzaher, M. S., et al. (2024). “Enhancing the Classification of Seismic Events With Supervised Machine Learning and Feature Importance.” Scientific Report.

Abdalzaher, M. S., Soliman, M. S., & Fouda, M. M. (2024). “Using Deep Learning for Rapid Earthquake Parameter Estimation in Single-Station Single-Component Earthquake Early Warning System.” IEEE Transactions on Geoscience and Remote Sensing.

Krichen, M., Abdalzaher, M. S., et al. (2024). “Emerging technologies and supporting tools for earthquake disaster management: A perspective, challenges, and future directions.” Progress in Disaster Science.

Abdalzaher, M. S., Moustafa, S. R., & Yassien, M. (2024). “Development of smoothed seismicity models for seismic hazard assessment in the Red Sea region.” Natural Hazards.

Moustafa, S. S., Mohamed, G. E. A., Elhadidy, M. S., & Abdalzaher, M. S. (2023). “Machine learning regression implementation for high-frequency seismic wave attenuation estimation in the Aswan Reservoir area, Egypt.” Environmental Earth Sciences.

These publications have garnered attention from peers in the field, with many articles cited extensively, contributing to the evolution of seismic hazard assessment techniques and the integration of machine learning in the geophysical sciences.

Conclusion

Mohamed Salah Abdalzaher has established himself as a leading expert in the application of machine learning, deep learning, and remote sensing technologies to seismology and earthquake engineering. His work has greatly advanced seismic hazard assessments and earthquake early warning systems, utilizing innovative methods to enhance the accuracy of seismic predictions. Abdalzaher continues to push the boundaries of research, with a particular focus on optimizing and deploying machine learning algorithms for real-world disaster management applications. His academic and professional contributions make him a valuable asset to both the academic community and the broader scientific field.