Prof. Dr. Salem Alkhalaf | Artificial Intelligence | Best Academic Researcher Award

Prof. Dr. Salem Alkhalaf | Artificial Intelligence | Best Academic Researcher Award

Distinguished Researcher, Qassim University, Saudi Arabia

Prof. Dr. Salem Alkhalaf is a dynamic and accomplished researcher whose work spans information and communication technology, e-learning systems, and digital transformation. He holds a Ph.D. in Information and Communication Technology from Griffith University, supported by prior degrees in ICT and Computer Education. Prof. Dr. Salem Alkhalaf currently serves in senior academic and leadership roles at Qassim University, where he has steered initiatives in enterprise architecture, digital content management, and e-learning strategy. His research interests include collaborative learning environments, information quality in learning management systems, usability evaluation, and culturally adaptive educational technologies. He excels in research skills such as mixed methods design, structural equation modeling, system evaluation, cross-cultural adaptation, and large-scale empirical studies. He maintains an outstanding scholarly footprint: Scopus ID: 41661143900, with 2,021 citations across 1,885 documents, 179 published works, and an h-index of 23. His professional engagements include membership in IEEE, ACM, ACS, contributions as a reviewer and editorial board member, and leadership in national e-government and audit teams. Recognized through institutional awards, research grants, and best paper honors, he is committed to advancing scholarship, mentoring emerging researchers, and expanding global collaborations. Prof. Dr. Salem Alkhalaf combines visionary leadership with rigorous scholarship, making him a prominent figure positioned to drive future breakthroughs in AI, educational technology, and ICT research.

Mohamed Abdalzaher | Artificial Intelligence | Best Researcher Award

Assoc. Prof. Dr. Mohamed Abdalzaher | Artificial Intelligence | Best Researcher Award

Associate Professor at National Research Institute of Astronomy and Geophysics, Egypt

Mohamed Salah Abdalzaher is a distinguished researcher and academic with a strong focus on machine learning, deep learning, and seismology. He currently holds the position of Research Fellow at the Electrical Engineering Department of the American University of Sharjah (AUS) and is on leave from his role as Associate Professor in the Seismology Department at the National Research Institute of Astronomy and Geophysics (NRIAG) in Egypt. Abdalzaher’s work integrates advanced technologies such as machine learning and remote sensing with seismology, addressing issues related to earthquake prediction and disaster management.

Profile

Scopus

Education

Abdalzaher’s academic journey began with a Bachelor’s degree in Electronics and Communications Engineering from Obour High Institute of Engineering and Technology in 2008. He continued his studies with a Master’s degree from Ain Shams University, focusing on Electronics and Communications Engineering, before obtaining his PhD in Electronics and Communications Engineering from the Egypt-Japan University of Science and Technology in 2016. His postdoctoral research at Kyushu University, Japan, in 2019 contributed to his deepening expertise in machine learning applications and earthquake management technologies.

Experience

Abdalzaher’s professional experience spans both academia and research. As a Research Fellow at AUS, he is at the forefront of advancing machine learning applications in the field of electrical engineering. His role involves conducting cutting-edge research and supervising graduate students in their research projects. In addition, he serves as an Associate Professor at NRIAG, where he leads research efforts on seismic hazard assessments and Earthquake Engineering. He has supervised numerous PhD and MSc theses, contributing to the development of future experts in seismology and engineering.

Research Interest

Abdalzaher’s research interests are broad and multidisciplinary, covering topics such as machine learning, deep learning, cybersecurity, remote sensing, Internet of Things (IoT), and optimization techniques. His primary focus, however, is on the application of machine learning and artificial intelligence for earthquake prediction, seismic hazard assessment, and disaster management. He is also deeply engaged in using remote sensing technologies to monitor seismic activities and improve the accuracy of seismic event classification, with the aim of enhancing early warning systems and disaster response strategies.

Awards

Abdalzaher has received numerous awards and recognitions for his contributions to the fields of electrical engineering and seismology. His work on integrating machine learning with seismic monitoring systems has been widely recognized, contributing significantly to the advancement of earthquake early warning systems and seismic hazard prediction models. His publications, which include high-impact journal papers, reflect his contributions to the scientific community and his ongoing efforts to innovate in the fields of earthquake engineering and smart systems.

Publications

Sharshir, S.W., Joseph, A., Abdalzaher, M.S., et al. (2024). “Using multiple machine learning techniques to enhance the performance prediction of heat pump-driven solar desalination unit.” Desalination and Water Treatment.

Etman, A., Abdalzaher, M. S., et al. (2024). “A Survey on Machine Learning Techniques in Smart Grids Based on Wireless Sensor Networks.” IEEE ACCESS.

Habbak E. L., Abdalzaher, M. S., et al. (2024). “Enhancing the Classification of Seismic Events With Supervised Machine Learning and Feature Importance.” Scientific Report.

Abdalzaher, M. S., Soliman, M. S., & Fouda, M. M. (2024). “Using Deep Learning for Rapid Earthquake Parameter Estimation in Single-Station Single-Component Earthquake Early Warning System.” IEEE Transactions on Geoscience and Remote Sensing.

Krichen, M., Abdalzaher, M. S., et al. (2024). “Emerging technologies and supporting tools for earthquake disaster management: A perspective, challenges, and future directions.” Progress in Disaster Science.

Abdalzaher, M. S., Moustafa, S. R., & Yassien, M. (2024). “Development of smoothed seismicity models for seismic hazard assessment in the Red Sea region.” Natural Hazards.

Moustafa, S. S., Mohamed, G. E. A., Elhadidy, M. S., & Abdalzaher, M. S. (2023). “Machine learning regression implementation for high-frequency seismic wave attenuation estimation in the Aswan Reservoir area, Egypt.” Environmental Earth Sciences.

These publications have garnered attention from peers in the field, with many articles cited extensively, contributing to the evolution of seismic hazard assessment techniques and the integration of machine learning in the geophysical sciences.

Conclusion

Mohamed Salah Abdalzaher has established himself as a leading expert in the application of machine learning, deep learning, and remote sensing technologies to seismology and earthquake engineering. His work has greatly advanced seismic hazard assessments and earthquake early warning systems, utilizing innovative methods to enhance the accuracy of seismic predictions. Abdalzaher continues to push the boundaries of research, with a particular focus on optimizing and deploying machine learning algorithms for real-world disaster management applications. His academic and professional contributions make him a valuable asset to both the academic community and the broader scientific field.

Penghao Wu | Artificial Intelligence | Best Researcher Award

Mr. Penghao Wu | Artificial Intelligence | Best Researcher Award

postgraduate | Soochow University | China

Penghao Wu is a dedicated postgraduate student specializing in Control Science and Engineering at Suzhou University, where he is transitioning from the first to the second year of his master’s program. His research centers on explainable neural networks, fault diagnosis in large-scale systems, and multidimensional data analysis, leveraging advanced AI and machine learning methodologies. He has a strong foundation in academic research, evidenced by three high-quality publications and extensive experience with state-of-the-art algorithms. His career goal is to contribute to AI-driven solutions in fields such as large model algorithms, autonomous driving, and data analysis, aligning closely with his expertise.

Profile

Scopus

Education

Penghao Wu began his academic journey with a Bachelor’s degree in Automation from Inner Mongolia University of Technology, graduating in 2023. Excelling academically, he ranked 3rd in his major (top 3%), achieved a GPA of 4.2/5.0, and earned an average credit score of 98.94. Continuing his pursuit of excellence, he joined Suzhou University in 2023 to pursue a master’s degree in Control Science and Engineering. Currently maintaining a GPA of 3.5/4.0 and an average credit score of 87, he has undertaken courses like Advanced Mathematics, Matrix Theory, Modern Control Theory, and Mobile Robot Autonomous Navigation, building a robust technical foundation.

Experience

Penghao Wu has been actively involved in research and development throughout his academic career. His undergraduate graduation project on deep learning-based building change detection algorithms using remote sensing imagery was recognized as one of only three “Outstanding Graduation Designs” in his college. He has also participated in several impactful projects, including vehicle battery fault diagnosis using Variational Mode Decomposition and spiking neural networks for lithium-ion battery fault detection. His practical expertise extends to software systems, having developed a multifunctional intelligent control device awarded a computer software copyright.

Research Interests

Penghao’s research interests revolve around explainable artificial intelligence (XAI), deep learning, and large-scale system fault diagnosis. He focuses on designing interpretable neural network algorithms for critical applications such as autonomous vehicles and aerospace systems. By integrating data-driven approaches with domain knowledge, he aims to enhance the transparency and reliability of AI systems. His work also extends to multidimensional data analysis, with applications in remote sensing and industrial fault detection, underlining his commitment to addressing real-world challenges through cutting-edge technologies.

Awards

Penghao Wu has received multiple accolades for his academic and extracurricular achievements. Notable awards include the Graduate First-Class Scholarship (2023), recognition as an “Outstanding Student” for three consecutive years during his undergraduate studies, and a top-four finish in the CIMC China Intelligent Manufacturing Challenge (university level). His graduation project on remote sensing image analysis earned distinction as one of only three outstanding projects in his college. Additionally, he won third place in the North China University Computer Application Competition.

Publications

Exponential Weighted Moving Average-Based Variational Mode Decomposition Method for Fault Diagnosis of Vehicle Batteries
Published in Data-driven Control and Learning Systems Conference (EI Indexed, 2024).
Cited by: 15 articles.

Data-Driven Spiking Neural Networks for Explainable Fault Detection in Vehicle Lithium-Ion Battery Systems
Under major revision in a Tier-2 SCI journal (2024).
Cited by: 10 articles.

Multi-modal Intelligent Fault Diagnosis for Large Aviation Aircraft Based on Mamba-2
Submitted as an invited article to a Tier-1 SCI journal (2024).
Cited by: 8 articles.

Conclusion

Penghao Wu is a driven researcher and engineer, blending academic excellence with practical expertise in artificial intelligence and control systems. His strong background in fault diagnosis, deep learning, and explainability positions him as an ideal candidate for AI algorithm roles. With a proven track record of research, publications, and accolades, he is poised to make significant contributions to advancing technology in areas such as autonomous systems and intelligent data analysis.

Amir veisi | Artificial Intelligence | Best Researcher Award

Dr. Amir veisi | Artificial Intelligence | Best Researcher Award

PhD | Bu-Ali Sina University | Iran

Amir Veisi is a dedicated PhD student specializing in Control Engineering at Bu-Ali Sina University, Hamedan, Iran, under the guidance of Dr. Hadi Delavari. With a strong academic foundation, he has cultivated expertise in nonlinear fractional-order systems, renewable energy, and artificial intelligence. His research primarily revolves around advanced control methods, such as data-driven and fault-tolerant controls, applied to renewable energy and biomedical systems. Amir is also an award-winning researcher with a notable record of publications in esteemed journals, reflecting his commitment to innovation and knowledge dissemination in control engineering.

Profile

Scholar

Education

Amir began his academic journey with a Bachelor of Science in Electronic Engineering at Islamic Azad University, Zahedan, graduating in 2017. He pursued a Master of Science in Control Engineering at Hamedan University of Technology, completing his thesis on fractional-order sliding mode control for wind turbines in 2021. Currently, he is pursuing a PhD in Control Engineering at Bu-Ali Sina University. His doctoral research focuses on developing nonlinear fractional-order data-driven controllers for complex nonlinear systems.

Experience

Amir’s academic and professional experiences highlight his deep involvement in control systems and engineering education. As a teaching assistant at Hamedan University of Technology, he contributed to courses on linear control systems, providing valuable insights to students. Additionally, Amir worked as an electronic board repair instructor at Pishtaz Electronic Company from 2013 to 2018, bridging theoretical concepts with practical applications. His work demonstrates a seamless integration of academic knowledge and hands-on expertise.

Research Interests

Amir’s research interests span a range of cutting-edge topics in control engineering and related fields. He is deeply invested in renewable energy systems, artificial intelligence, machine learning, reinforcement learning, and data-driven control. His expertise extends to fractional-order nonlinear control, fault-tolerant control, and real-time systems. Amir’s commitment to advancing knowledge in estimation and control of nonlinear dynamic systems reflects his vision for a sustainable and technologically advanced future.

Awards

Amir has received several prestigious accolades throughout his career. He was honored as the best researcher of the year at Hamedan University in 2021 and at Bu-Ali Sina University in 2022. His work on fractional-order nonlinear controllers earned him the best paper award at the 2023 International Conference on Technology and Energy Management (ICTEM). Amir also serves as a reviewer for reputed journals, including Springer Nature, Elsevier, and others, contributing significantly to the academic community.

Publications

Amir Veisi has authored several impactful papers in renowned journals and conferences:

Robust control of a permanent magnet synchronous generators based wind energy conversion
Authors: H Delavari, A Veisi
Year: 2021
Citations: 14

Adaptive fractional order control of photovoltaic power generation system with disturbance observer
Authors: A Veisi, H Delavari
Year: 2021
Citations: 11

A new robust nonlinear controller for fractional model of wind turbine based DFIG with a novel disturbance observer
Authors: H Delavari, A Veisi
Year: 2024
Citations: 10

Adaptive optimized fractional order control of doubly‐fed induction generator (DFIG) based wind turbine using disturbance observer
Authors: A Veisi, H Delavari
Year: 2024
Citations: 10

Fractional‐order backstepping strategy for fractional‐order model of COVID‐19 outbreak
Authors: A Veisi, H Delavari
Year: 2022
Citations: 8

Adaptive fractional backstepping intelligent controller for maximum power extraction of a wind turbine system
Authors: A Veisi, H Delavari
Year: 2023
Citations: 5

Maximum power point tracking in a photovoltaic system by optimized fractional nonlinear controller
Authors: A Veisi, H Delavari, F Shanaghi
Year: 2023
Citations: 5

Power Maximization of Wind Turbine Based on DFIG using Fractional Order Variable Structure Controller
Authors: H Delavari, A Veisi
Year: 2021
Citations: 5

Fuzzy-type 2 fractional fault tolerant adaptive controller for wind turbine based on adaptive RBF neural network observer
Authors: A Veisi, H Delavari
Year: 2024
Citations: 4

Fuzzy fractional-order sliding mode control of COVID-19 virus variants
Authors: H Delavari, A Veisi
Year: 2023
Citations: 4

Conclusion

Amir Veisi’s journey in control engineering exemplifies his dedication to solving complex challenges through innovative research and application-driven solutions. His contributions to renewable energy systems, artificial intelligence, and control systems reflect his commitment to addressing pressing global issues. As a scholar and practitioner, Amir continues to push boundaries, inspiring both academic and industrial advancements in his field.