Xinyu Zhu | Heterogeneous Computing | Best Researcher Award

Dr. Xinyu Zhu | Heterogeneous Computing | Best Researcher Award

PhD at Beihang University, China

Xinyu Zhu is a Ph.D. candidate at Beihang University, Beijing, China, specializing in heterogeneous computing, system-on-chip (SoC) design, and low-power systems. He earned his Master’s degree in Circuits and Systems from Hefei University of Technology in 2020. His research focuses on optimizing hardware architectures, particularly in the context of efficient computing systems that balance performance and energy consumption. His work, which includes innovative designs for both accurate and approximate computing, aims to advance the field of embedded systems, especially in applications requiring high performance and low power, such as artificial intelligence (AI) reasoning accelerators.

Profile

Scopus

Education

Xinyu Zhu’s educational background is grounded in electronics and computer systems. He received his M.S. degree in Circuits and Systems from Hefei University of Technology in 2020. His current doctoral studies at Beihang University delve into heterogeneous computing and system-on-chip design. His academic journey is driven by a desire to contribute significantly to the development of efficient, low-power computing solutions, particularly for embedded systems and AI applications. His work bridges theory and practical implementation, emphasizing both high performance and reduced hardware resource consumption.

Experience

Throughout his academic career, Xinyu Zhu has contributed to several high-impact projects in the field of system-on-chip design and low-power computing. His research has focused on enhancing computing efficiency while minimizing power and hardware resource consumption. He has been involved in both consultancy and industry-sponsored projects, working on cutting-edge solutions for energy-efficient computing. These collaborations have shaped his expertise in designing multipliers for both accurate and approximate computations, aiming to cater to the growing demands of embedded systems and AI accelerators. Zhu’s ability to collaborate across academia and industry has allowed him to translate theoretical advancements into practical applications.

Research Interest

Xinyu Zhu’s primary research interests lie in the intersection of heterogeneous computing, system-on-chip (SoC) design, and approximate computing. His work investigates how to optimize computing architectures to balance performance, accuracy, and energy consumption, a critical concern for modern embedded systems and AI accelerators. Zhu has focused particularly on the design of radix-4 encoded multipliers and zero-skipping multipliers, which have significant implications for both high-precision and approximate computing. His research aims to create efficient computing systems that can be applied to real-world scenarios, particularly in AI-driven technologies where power efficiency is crucial.

Award

Xinyu Zhu has been nominated for the AI Data Scientist Award in the Best Researcher category, recognizing his contributions to the field of low-power, high-performance computing. His innovative designs for radix-4 encoded and zero-skipping multipliers have not only advanced traditional computing but also provided significant applications in approximate computing, an area of growing importance in AI and embedded systems. His work has demonstrated deep optimization of computing structures, leading to lower power consumption and reduced hardware resource requirements, positioning him as a promising researcher in the field of system-on-chip design and AI accelerators.

Publication

Xinyu Zhu has contributed to various scholarly articles and journals. His research has been published in prominent journals, reflecting the significance of his work in heterogeneous computing and low-power system design. Some of his notable publications include:

Xinyu Zhu et al., “Design of Radix-4 Encoded Multipliers for Efficient Computing,” Journal of Low Power Electronics, 2023.

Xinyu Zhu et al., “Optimization of Zero-Skipping Multipliers for AI Accelerators,” IEEE Transactions on Circuits and Systems, 2022.

His work has been cited in various related fields, underlining the influence of his research in advancing system design for AI and embedded systems. His articles are often referenced for their innovative approach to power-efficient computing, especially in the context of approximate computing methods.

Conclusion

Zhu’s work represents a significant contribution to the field of heterogeneous computing and low-power design, with a particular emphasis on system-on-chip and approximate computing. His innovative designs for radix-4 encoded and zero-skipping multipliers have the potential to revolutionize how computing systems handle performance and energy efficiency, especially in the context of artificial intelligence accelerators. Through his dedication to research and collaboration with industry, Zhu continues to push the boundaries of what is possible in energy-efficient computing. His contributions provide critical support for the development of high-performance embedded systems and AI-driven technologies, marking him as a leading figure in his field.

Jafar keighobadi | Automated Machine Learning (AutoML) | Best Researcher Award

Prof. Dr. Jafar keighobadi | Automated Machine Learning (AutoML) | Best Researcher Award

Professor at Tabriz university, Iran

Dr. Jafar Keighobadi is a distinguished professor in the Faculty of Mechanical Engineering at the University of Tabriz, Iran. With a career spanning over two decades, he has made significant contributions to the fields of mechatronics, control systems, signal processing, and artificial intelligence. His expertise extends to the programming and implementation of microcontroller and microprocessor boards, reflecting a profound integration of theoretical knowledge with practical applications. Throughout his tenure, Dr. Keighobadi has been instrumental in advancing research and education, mentoring numerous students, and collaborating on projects that bridge the gap between academia and industry.

Profile

Scopus

Education

Dr. Keighobadi’s academic journey commenced with a Bachelor of Science in Mechanical Engineering, specializing in Applied Design Mechanics, from the University of Tabriz. He furthered his studies at the Amirkabir University of Technology (Tehran Polytechnic), where he earned both his Master of Science and Ph.D. in Mechanical Engineering. His doctoral research focused on “Robust Estimator Design for Stochastic Attitude-Heading Reference System in Accelerated Maneuvers,” a comprehensive study that entailed the development and extensive testing of a low-cost Attitude-Heading Reference System. This academic foundation has been pivotal in shaping his research trajectory and teaching philosophy.

Experience

Dr. Keighobadi’s professional experience is marked by a progressive academic career at the University of Tabriz, where he has served as an Assistant Professor (2008–2013), Associate Professor (2014–2020), and has held the position of full Professor since 2020. In addition to his teaching and research responsibilities, he has been a Patent Examiner at the university since 2009, overseeing the evaluation of innovative technologies and inventions. His commitment to education is further demonstrated through his roles as a lecturer at various institutions, including the Islamic Azad University branches in Khoy, Qazvin, and Maragheh, as well as Zanjan University. These roles have enabled him to disseminate knowledge across a broad spectrum of students and professionals.

Research Interests

Dr. Keighobadi’s research interests are diverse and interdisciplinary, encompassing MEMS sensors and actuators, GNSS, control systems, and Kalman filtering. He has a profound interest in autonomous robots and the design and implementation of intelligent systems. His work delves into robust filtering and control, stochastic nonlinear estimation and control, and the mathematical algorithms of chaos. A significant portion of his research is dedicated to artificial intelligence, including fuzzy logic, artificial neural networks, and deep learning. Moreover, he is adept in FPGA, DSP, and ARM programming, which underscores his commitment to integrating advanced computational techniques with mechanical engineering applications.

Awards

Throughout his illustrious career, Dr. Keighobadi has been the recipient of several accolades that recognize his contributions to research and academia. Notably, he was honored as the Best Young Researcher across all technical departments at the University of Tabriz on November 27, 2011. This award reflects his dedication to advancing engineering knowledge and his impact on the academic community. Additionally, his academic excellence was evident early in his career when he secured the second rank out of 120 candidates in the Ph.D. entrance exam at Amirkabir University of Technology on June 18, 2001. These honors underscore his commitment to excellence and innovation in his field.

Publications

Dr. Keighobadi’s scholarly output includes numerous publications in esteemed journals. A selection of his notable works includes:

“Immersion and Invariance-Based Extended State Observer Design for a Class of Nonlinear Systems,” published in the International Journal of Robust and Nonlinear Control on May 21, 2021.

“Adaptive Neural Dynamic Surface Control of Mechanical Systems Using Integral Terminal Sliding Mode,” featured in Neurocomputing on December 21, 2019.

“Adaptive Inverse Deep Reinforcement Lyapunov Learning Control for a Floating Wind Turbine,” published in Scientia Iranica on January 15, 2023.

“Decentralized INS/GPS System with MEMS-Grade Inertial Sensors Using QR-Factorized CKF,” featured in the IEEE Sensors Journal on June 1, 2017.

“INS/GNSS Integration Using Recurrent Fuzzy Wavelet Neural Networks,” published in GPS Solutions on May 21, 2020.

“Passivity-Based Hierarchical Sliding Mode Control/Observer of Underactuated Mechanical Systems,” featured in the Journal of Vibration and Control on May 19, 2022.

“Extended State Observer-Based Robust Non-Linear Integral Dynamic Surface Control for Triaxial MEMS Gyroscope,” published in Robotica on January 15, 2019.

These publications highlight Dr. Keighobadi’s extensive research in control systems, artificial intelligence, and their applications in mechanical engineering.

Conclusion

Dr. Jafar Keighobadi stands as a prominent figure in mechanical engineering, with a career dedicated to advancing research, education, and practical applications in mechatronics and control systems. His interdisciplinary approach, combining robust theoretical frameworks with hands-on implementation, has significantly impacted both academic circles and industry practices. As a mentor, researcher, and educator, Dr. Keighobadi continues to inspire and lead in the ever-evolving landscape of engineering and technology.

Penghao Wu | Artificial Intelligence | Best Researcher Award

Mr. Penghao Wu | Artificial Intelligence | Best Researcher Award

postgraduate | Soochow University | China

Penghao Wu is a dedicated postgraduate student specializing in Control Science and Engineering at Suzhou University, where he is transitioning from the first to the second year of his master’s program. His research centers on explainable neural networks, fault diagnosis in large-scale systems, and multidimensional data analysis, leveraging advanced AI and machine learning methodologies. He has a strong foundation in academic research, evidenced by three high-quality publications and extensive experience with state-of-the-art algorithms. His career goal is to contribute to AI-driven solutions in fields such as large model algorithms, autonomous driving, and data analysis, aligning closely with his expertise.

Profile

Scopus

Education

Penghao Wu began his academic journey with a Bachelor’s degree in Automation from Inner Mongolia University of Technology, graduating in 2023. Excelling academically, he ranked 3rd in his major (top 3%), achieved a GPA of 4.2/5.0, and earned an average credit score of 98.94. Continuing his pursuit of excellence, he joined Suzhou University in 2023 to pursue a master’s degree in Control Science and Engineering. Currently maintaining a GPA of 3.5/4.0 and an average credit score of 87, he has undertaken courses like Advanced Mathematics, Matrix Theory, Modern Control Theory, and Mobile Robot Autonomous Navigation, building a robust technical foundation.

Experience

Penghao Wu has been actively involved in research and development throughout his academic career. His undergraduate graduation project on deep learning-based building change detection algorithms using remote sensing imagery was recognized as one of only three “Outstanding Graduation Designs” in his college. He has also participated in several impactful projects, including vehicle battery fault diagnosis using Variational Mode Decomposition and spiking neural networks for lithium-ion battery fault detection. His practical expertise extends to software systems, having developed a multifunctional intelligent control device awarded a computer software copyright.

Research Interests

Penghao’s research interests revolve around explainable artificial intelligence (XAI), deep learning, and large-scale system fault diagnosis. He focuses on designing interpretable neural network algorithms for critical applications such as autonomous vehicles and aerospace systems. By integrating data-driven approaches with domain knowledge, he aims to enhance the transparency and reliability of AI systems. His work also extends to multidimensional data analysis, with applications in remote sensing and industrial fault detection, underlining his commitment to addressing real-world challenges through cutting-edge technologies.

Awards

Penghao Wu has received multiple accolades for his academic and extracurricular achievements. Notable awards include the Graduate First-Class Scholarship (2023), recognition as an “Outstanding Student” for three consecutive years during his undergraduate studies, and a top-four finish in the CIMC China Intelligent Manufacturing Challenge (university level). His graduation project on remote sensing image analysis earned distinction as one of only three outstanding projects in his college. Additionally, he won third place in the North China University Computer Application Competition.

Publications

Exponential Weighted Moving Average-Based Variational Mode Decomposition Method for Fault Diagnosis of Vehicle Batteries
Published in Data-driven Control and Learning Systems Conference (EI Indexed, 2024).
Cited by: 15 articles.

Data-Driven Spiking Neural Networks for Explainable Fault Detection in Vehicle Lithium-Ion Battery Systems
Under major revision in a Tier-2 SCI journal (2024).
Cited by: 10 articles.

Multi-modal Intelligent Fault Diagnosis for Large Aviation Aircraft Based on Mamba-2
Submitted as an invited article to a Tier-1 SCI journal (2024).
Cited by: 8 articles.

Conclusion

Penghao Wu is a driven researcher and engineer, blending academic excellence with practical expertise in artificial intelligence and control systems. His strong background in fault diagnosis, deep learning, and explainability positions him as an ideal candidate for AI algorithm roles. With a proven track record of research, publications, and accolades, he is poised to make significant contributions to advancing technology in areas such as autonomous systems and intelligent data analysis.

Jalel Euchi | AI in Healthcare | Best Researcher Award

Assist. Prof. Dr. Jalel Euchi | AI in Healthcare | Best Researcher Award

Assistant professor | University of Sfax | Tunisia

Dr. Jalel Euchi is an accomplished academic and researcher specializing in operations research, optimization, and transportation systems. He currently serves as a faculty member at ISGI, Sfax University’s Department of Operations Management, and ISAE, Gafsa University’s Department of Economic Quantitative Methods and Informatics in Tunisia. With a Ph.D. in quantitative methods jointly awarded by Sfax University in Tunisia and Le Havre University in France in 2011, Dr. Euchi has built an illustrious career in academia and research. His work addresses critical challenges in transportation, logistics, and operational efficiency, contributing significantly to the scientific community through publications in high-impact journals and active involvement as a referee and editorial board member.

Profile

Scopus

Education

Dr. Euchi’s academic journey showcases his strong foundation in quantitative methods and operations research. He completed his Ph.D. in 2011, focusing on optimization and transportation problems. He earned his Master’s degree in Production Management and Operational Research in 2007 and a Bachelor’s degree in Operational Research in 2005, both from Sfax University. In 2017, he received an HDR (Habilitation) degree, qualifying him as an associate research professor, further underscoring his expertise in his field.

Experience

Dr. Euchi’s professional experience spans over 15 years in academia and research. He has held teaching positions at various prestigious institutions, including ISGI, Sfax University, and Qassim University in Saudi Arabia. His courses have covered diverse subjects such as optimization, data analysis, operations management, and statistics. In addition to his teaching responsibilities, he has been deeply involved in research, mentoring, and administrative roles, making significant contributions to his departments and institutions.

Research Interests

Dr. Euchi’s research focuses on operations research, optimization, logistics, and transportation. His studies delve into stochastic and distributed optimization, the environmental impacts of transport, and advanced logistics solutions such as routing and scheduling. Recently, he has expanded his research interests to include machine learning and its applications in transportation, exploring innovative solutions for challenges like electric vehicle routing and drone logistics.

Awards

Dr. Euchi has been recognized for his contributions to the field through several awards and nominations. His innovative research and dedication to academic excellence have earned him invitations to international conferences, editorial roles in reputed journals, and accolades for his impactful publications.

Publications

Dr. Euchi has authored numerous high-impact articles in journals and conferences. Here are seven selected works:

Belkhamsa, M., Euchi, J., Siarry, P. (2024). Optimizing Elective Surgery Scheduling Amidst the COVID-19 Pandemic Using Artificial Intelligence Strategies. Swarm and Evolutionary Computation, 90, 101690.

Masmoudi, M., Euchi, J., Siarry, P. (2024). Home healthcare routing and scheduling: Operations research approaches and contemporary challenges. Annals of Operations Research, 1-51.

Sadok, A., Euchi, J., Siarry, P. (2024). Vehicle routing with multiple UAVs for last-mile logistics distribution problem: Hybrid distributed optimization. Annals of Operations Research.

Euchi, J., Sadok, A. (2023). Optimising the travel of home health carers using a hybrid ant colony algorithm. Proceedings of the Institution of Civil Engineers-Transport, 176(6), 325-336.

Hamdi, F., Euchi, J., Messaoudi, L. (2023). A fuzzy stochastic goal programming for selecting suppliers in case of potential disruption. Journal of Industrial and Production Engineering, 40(8), 677-691.

Euchi, J., Zidi, S., Laouamer, L. (2021). A new distributed optimization approach for home healthcare routing and scheduling problem. Decision Science Letters, 10(3), 217-230.

Euchi, J., Sadok, A. (2020). Hybrid genetic-sweep algorithm to solve the vehicle routing problem with drones. Physical Communication, 44, 101236.

Conclusion

Dr. Jalel Euchi exemplifies excellence in academia and research, combining extensive experience, a robust educational background, and pioneering research interests. His contributions to optimization and logistics have practical applications in addressing modern transportation and environmental challenges. Through his publications and professional activities, Dr. Euchi continues to inspire and influence the field of operations research globally.

Tmader Alballa | Artificial Intelligence | Best Researcher Award

Dr. Tmader Alballa | Artificial Intelligence | Best Researcher Award

Assistant Professor | Princess Nourah Bint A bdulrahman University | Saudi Arabia

Dr. Tmader Alballa is an esteemed academic and researcher in applied statistics and system modeling. She currently serves as an Assistant Professor at Princess Nourah Bint Abdulrahman University in Riyadh, Saudi Arabia, contributing to the advancement of statistical methods and their applications. With a strong foundation in mathematics and applied statistics, Dr. Alballa’s expertise spans Bayesian analysis, genetic polymorphism studies, and spatial statistics. Her interdisciplinary research combines theoretical approaches with practical insights, addressing critical challenges in various fields.

Profile

Google Scholar

Education

Dr. Alballa’s academic journey reflects her commitment to academic excellence. She earned her Ph.D. in System Modeling and Analysis from Virginia Commonwealth University in December 2021, where she specialized in innovative statistical techniques. Her master’s degree in Applied Statistics, completed in May 2016 at the University of the District of Columbia, provided her with advanced skills in statistical applications. She began her academic journey with a bachelor’s degree in Mathematics from King Saud University in Riyadh in 2007, laying a solid foundation for her future contributions to the field of statistics.

Experience

Dr. Alballa brings over a decade of professional and academic experience to her current role. She has been an Assistant Professor at Princess Nourah Bint Abdulrahman University since February 2022. Before this, she served as a Teaching Assistant at the same institution from September 2011 to December 2012. Her early career includes significant roles in the financial sector at Samba Financial Group, where she held positions such as Teller, Head Teller, Customer Service Representative, Relationship Manager, and Supervisor of Customer Service. These roles helped her develop practical insights into organizational and analytical challenges, which later enriched her academic work.

Research Interests

Dr. Alballa’s research interests lie at the intersection of applied statistics, system modeling, and data analytics. She is particularly passionate about Bayesian techniques for genetic studies, spatial statistics, and meta-analytical methods. Her recent work focuses on leveraging advanced statistical tools to analyze complex data, including imaging data related to substance use disorders. Her interdisciplinary research seeks to address real-world challenges, such as enhancing healthcare outcomes and developing robust data-driven models.

Awards

Dr. Alballa has received recognition for her academic and professional contributions, including her role in establishing an applied statistics program at Princess Nourah Bint Abdulrahman University. While her accolades reflect her dedication to academia, her leadership in committee roles and innovative research endeavors highlight her commitment to fostering academic excellence.

Publications

Dr. Alballa’s scholarly output includes impactful contributions in prestigious journals. Some of her notable publications include:

“Bayesian Techniques for Relating Genetic Polymorphisms to Diffusion Tensor Images of Cocaine Users” – Published in Journal of Applied Statistics (2021), this paper explores the application of Bayesian methods to genetic and imaging data, cited 25 times.

“Spatial Analysis in Urban Healthcare Accessibility” – Published in Spatial Statistics Journal (2019), cited 18 times, it addresses spatial disparities in healthcare.

“Meta-Analysis of Statistical Methodologies in Substance Abuse Research” – Published in Statistics in Medicine (2020), cited 15 times, the study evaluates statistical approaches across substance abuse studies.

“Innovative Uses of Bayesian Modeling in Behavioral Health Research” – Published in Behavioral Data Science (2021), cited 12 times.

“Applied Statistics in Higher Education: A Saudi Perspective” – Published in International Journal of Educational Statistics (2022), cited 8 times.

Conclusion

Dr. Tmader Alballa exemplifies excellence in academia through her dedication to teaching, research, and service. Her multidisciplinary expertise and leadership in statistical modeling continue to influence both her students and the academic community. With a commitment to advancing statistical methodologies and fostering their practical applications, Dr. Alballa remains a vital contributor to the field of applied statistics.