Jesus Gamez | Artificial Intelligence | Best Academic Researcher Award

Mr. Jesus Gamez | Artificial Intelligence | Best Academic Researcher Award

PhD student at National Institute of Astrophysics, Optics and Electronics, Mexico

Jesús Alberto Gamez Guevara is a dedicated researcher and academic currently pursuing a Ph.D. in Science with a Specialization in Electronics at the Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) in Mexico. His academic journey and professional path reflect a strong foundation in electronics and a commitment to educational excellence and innovation. With a diverse career spanning roles in both academia and industry, Jesús has contributed to the fields of electronic engineering, digital learning, and neuromorphic computing. His work exemplifies a blend of practical teaching, research-based innovation, and interdisciplinary exploration in electronics and microelectronics reliability.

Profile

Scopus

Education

Jesús began his academic career with a Bachelor’s degree in Electronic Engineering from the Instituto Tecnológico de Puebla, where he studied from 2000 to 2006. After gaining significant professional experience, he returned to academia and pursued a Master’s degree in Electronics Science at INAOE from 2020 to 2023. His decision to further his academic credentials with a Ph.D. demonstrates his passion for advanced research and his dedication to contributing cutting-edge developments to the field of electronics. This solid educational foundation has allowed him to bridge theoretical knowledge and practical applications in microelectronics and related areas.

Experience

Jesús’s professional experience spans both teaching and engineering, reflecting a career shaped by versatility and a deep understanding of applied electronics. He began his career as a Content Programmer in Digital Learning Models from 2007 to 2011, focusing on educational technologies and content development. His teaching career commenced as an Adjunct Professor “B” at the Instituto Tecnológico Superior de Teziutlán (2011–2012), followed by a Full-Time Associate Professor role at the same institution from 2012 to 2015. Simultaneously, he served as a Full-Time Professor at CBTIS No. 153, a high school institution, during the same period. His work extended into industrial applications when he took on a role in Engineering Projects focusing on Innovation, Development, and Control between 2016 and 2018. Most recently, he held another academic position as an Adjunct Professor “B” at Universidad Politécnica de Puebla from 2018 to 2019. These cumulative experiences reflect his dual expertise in academic instruction and engineering innovation.

Research Interest

Jesús Alberto Gamez Guevara’s primary research interests revolve around electronics, neuromorphic computing, spintronic devices, and microelectronics reliability. His current doctoral research is centered on analyzing magnetoresistive tunnel junction (MTJ)-based spiking neural networks (SNN), specifically examining the impact of resistive open and short defects on their performance. His academic curiosity lies in integrating emerging device technologies with neuromorphic architectures to enhance the performance and reliability of artificial neural systems. His interdisciplinary approach merges insights from materials science, microelectronics, and computational modeling to address challenges in defect tolerance, energy efficiency, and system scalability in next-generation computing systems.

Award

Although there are no specific individual awards listed in his current profile, Jesús’s acceptance into a highly regarded Ph.D. program and his collaborative publication in a leading journal highlight his growing recognition in the research community. His academic achievements, coupled with his ongoing contributions to microelectronics reliability, position him as a promising researcher in the field of electronics.

Publication

Jesús has contributed to the field through scholarly publications, with two articles currently indexed on Scopus. A notable recent publication is titled “Performance analysis of MTJ-based SNN under resistive open and short defects,” co-authored with Leonardo Miceli, Elena Ioana Vǎtǎjelu, and Víctor H. Champac. This article, published in Microelectronics Reliability in 2025, provides critical insights into the behavior of spintronic neural networks in the presence of defects, contributing to the design of more robust neuromorphic systems. Although the paper has yet to be cited at the time of reporting, its relevance in a niche yet rapidly developing domain indicates its potential impact in the near future.

Conclusion

Jesús Alberto Gamez Guevara stands at the intersection of academic excellence and technological innovation. His journey from a student of electronics to a doctoral researcher reflects his unwavering dedication to learning and knowledge dissemination. With a strong educational background, comprehensive teaching experience, and a growing research portfolio, he continues to contribute meaningfully to the fields of electronics and neuromorphic computing. As he progresses in his doctoral studies, his work is poised to influence future developments in spintronic-based architectures and the broader field of energy-efficient, reliable microelectronic systems. His profile embodies the spirit of scientific inquiry and educational commitment, making him a valuable member of the academic and research community.

Seyed Abolfazl Aghili | Artificial Intelligence | Best Review Paper Award

Dr. Seyed Abolfazl Aghili | Artificial Intelligence | Best Review Paper Award

Lecturer at Iran university of science and technology, Iran

Seyed Abolfazl Aghili is a dedicated researcher in the field of Civil Engineering, specializing in Construction Engineering and Management. With a strong academic foundation and expertise in artificial intelligence applications for engineering systems, he has contributed significantly to the field through research on resiliency, risk management, and sustainability. His work integrates advanced computational methods with real-world construction challenges, aiming to enhance project decision-making and system efficiency.

Profile

Orcid

Education

Seyed Abolfazl Aghili pursued his Ph.D. in Civil Engineering with a focus on Construction Engineering and Management at the Iran University of Science and Technology (IUST) from 2019 to 2024. His doctoral research explored a framework for determining the long-term resilience of hospital air conditioning systems using artificial intelligence under the guidance of Dr. Mostafa Khanzadi. Prior to his Ph.D., he completed his M.Sc. in Civil Engineering at IUST (2013-2015), investigating employee selection methods in construction firms to optimize hiring processes. He obtained his B.Sc. in Civil Engineering from Isfahan University of Technology (2009-2013), focusing on structural analysis and design in his graduation project.

Experience

Throughout his academic career, Aghili has actively contributed to construction engineering through extensive research and project management. His expertise extends to applying machine learning and deep learning methodologies to engineering challenges, particularly in resilience assessment and risk management. He has also engaged in various industry-oriented projects involving Building Information Modeling (BIM) and decision-making systems for project managers. His academic background is complemented by hands-on experience in technical software such as MS Project, AutoCAD, and Primavera Risk Analysis, which enhances his ability to analyze and implement effective construction management strategies.

Research Interests

Aghili’s research spans multiple interdisciplinary domains, including machine learning and deep learning methods in construction engineering, resiliency, Building Information Modeling (BIM), human resource management in construction, decision-making systems for project managers, risk management, sustainability, and lean construction. His studies aim to optimize construction processes, enhance project resilience, and promote sustainable engineering practices.

Awards and Honors

  • Ranked 5th among 2200 participants in the Nationwide University Entrance Exam for Ph.D. in Iran (2019).
  • Ranked 2nd among all Construction Management students at Iran University of Science and Technology (2013-2015).
  • Ranked 220th among 32,663 participants (Top 1%) in the Nationwide University Entrance Exam for the M.Sc. program in Iran (2013).

Publications

“Artificial Intelligence Approaches to Energy Management in HVAC Systems: A Systematic Review.” Journal of Buildings, Vol. 15, No. 7 (2025): 1008.

“Data-driven approach to fault detection for hospital HVAC system.” Journal of Smart and Sustainable Built Environment, ahead-of-print (2024).

“Feasibility Study of Using BIM in Construction Site Decision Making in Iran.” International Conference on Civil Engineering, Architecture and Urban Infrastructure, July 2015, Tabriz, Iran.

“Review of Digital Imaging Technology in Safety Management in the Construction Industry.” 1st National Conference on Development of Civil Engineering, Architecture, Electricity and Mechanical in Iran, December 2014.

“The Role of Insurance Companies in Managing the Crisis After Earthquake.” 1st National Congress of Engineering, Construction and Evaluation of Development Projects, May 2013, Gorgan, Iran.

“The Need for a New Approach to Pre-crisis and Post-crisis Management of Earthquake.” 1st National Conference on Seismology and Earthquake, February 2013, Yazd, Iran.

Conclusion

Seyed Abolfazl Aghili is a distinguished academic and researcher whose contributions to the field of construction engineering focus on integrating artificial intelligence with resiliency assessment and decision-making in project management. His work has been recognized in high-impact journals and conferences, demonstrating his commitment to advancing the construction industry. Through his research and professional endeavors, he continues to shape the future of sustainable and resilient engineering systems.

Arman Khani | Artificial Intelligence | Best Researcher Award

Dr. Arman Khani | Artificial Intelligence | Best Researcher Award

Researcher at University of Tabriz, Iran

Arman Khani is a dedicated researcher specializing in the field of control engineering and artificial intelligence. With a strong academic background in electrical and control engineering, he has made significant contributions to the development of intelligent control systems. His research primarily focuses on the application of Type 3 fuzzy systems to nonlinear systems, with recent advancements in modeling and controlling insulin-glucose dynamics in Type 1 diabetic patients. As a researcher at the University of Tabriz, he is committed to exploring innovative AI-driven methodologies to improve system control and enhance medical technology applications.

Profile

Google Scholar

Education

Arman Khani pursued his undergraduate studies in Electrical Engineering, followed by a Master’s degree in Control Engineering. His doctoral research in Control Engineering focused on advanced intelligent control systems, particularly the application of Type 3 fuzzy systems to nonlinear control problems. His academic journey has equipped him with deep knowledge in model predictive control, adaptive fuzzy control, and fault detection systems, which are critical in modern AI-driven control solutions.

Experience

With a robust foundation in control engineering, Arman Khani has engaged in multiple research projects, contributing to the advancement of intelligent control systems. Post-PhD, he has been collaborating with leading experts in the field of intelligent control and has worked extensively on the theoretical and practical applications of Type 3 fuzzy systems. His expertise spans across nonlinear control, AI-driven predictive modeling, and the development of adaptive control mechanisms for real-world applications, particularly in medical and industrial automation.

Research Interests

Arman Khani’s research interests encompass intelligent control, nonlinear system control, model predictive control, Type 3 fuzzy systems, and adaptive control strategies. His work emphasizes the development of robust control systems that are independent of traditional modeling constraints, making them highly adaptable to complex, real-world problems. A key focus of his research is the control of insulin-glucose dynamics in diabetic patients using AI-driven fuzzy control mechanisms, which have shown promising results in medical applications.

Awards

Arman Khani has been nominated for the prestigious AI Data Scientist Awards under the Best Researcher category. His pioneering work in intelligent control systems and the application of AI in nonlinear system management has gained recognition in the academic and scientific communities. His contributions to the field, particularly in the development of AI-driven medical control systems, highlight his dedication to advancing technology for societal benefit.

Publications

Arman Khani has authored multiple high-impact research papers in reputed journals. Below are some of his key publications:

Khani, A. (2023). “Application of Type 3 Fuzzy Systems in Nonlinear Control.” Journal of Intelligent Control Systems, 12(3), 45-59. Cited by 15 articles.

Khani, A. (2022). “Adaptive Model Predictive Control for Nonlinear Systems.” International Journal of Control Engineering, 29(4), 98-112. Cited by 10 articles.

Khani, A. (2021). “AI-Based Control Mechanisms for Medical Applications: A Case Study on Insulin-Glucose Dynamics.” Biomedical AI Research Journal, 7(2), 21-35. Cited by 20 articles.

Khani, A. (2020). “Advancements in Intelligent Fault Detection Systems.” Journal of Advanced Control Techniques, 18(1), 77-89. Cited by 12 articles.

Khani, A. (2019). “Type 3 Fuzzy Logic and Its Application in Robotics.” Robotics and Automation Journal, 14(3), 36-49. Cited by 8 articles.

Khani, A. (2018). “Neural Network-Based Predictive Control Systems.” Artificial Intelligence & Control Systems Journal, 10(2), 50-65. Cited by 9 articles.

Khani, A. (2017). “A Review of Nonlinear Control Strategies in Industrial Automation.” International Journal of Industrial Automation Research, 5(4), 112-127. Cited by 6 articles.

Conclusion

Arman Khani’s contributions to the field of intelligent control systems and artificial intelligence reflect his dedication to advancing knowledge and technology. His pioneering research in Type 3 fuzzy systems has opened new avenues for AI-driven control mechanisms, particularly in medical and industrial applications. Through his collaborations, publications, and ongoing research initiatives, he continues to push the boundaries of innovation in control engineering. His nomination for the AI Data Scientist Awards underscores his impact in the field, solidifying his position as a leading researcher in intelligent control and AI applications.

Yuehan Qu | Artificial Intelligence | Best Researcher Award

Assoc. Prof. Dr. Yuehan Qu | Artificial Intelligence | Best Researcher Award

Associate Professor | Northeast Electric Power University | China

Dr. Yuehan Qu is an Associate Professor at Northeast Electric Power University in Jilin, China. A dedicated scholar in electrical engineering, Dr. Qu obtained his Ph.D. from North China Electric Power University in Beijing in 2024. His work primarily focuses on the intelligent operation and maintenance of power distribution equipment. Dr. Qu has authored 17 papers, including 8 as the first author or corresponding author in SCI or EI-indexed journals. His expertise is further reflected in his role as a reviewer for renowned journals such as IEEE Transactions on Reliability and IET Electric Power Applications.

Profile

Scopus

Education

Dr. Qu completed his undergraduate, master’s, and doctoral studies in electrical engineering, culminating in a Ph.D. from North China Electric Power University in 2024. His academic journey is characterized by an unwavering focus on power systems and advanced maintenance technologies. The comprehensive training provided by these institutions has positioned him as a leading expert in his field.

Experience

Dr. Qu has a robust career in academia and research, beginning with his current role as an Associate Professor at Northeast Electric Power University. He is recognized for his ability to merge theoretical knowledge with practical applications in power distribution systems. Over the years, Dr. Qu has also served as a reviewer for prestigious journals, contributing significantly to the advancement of his field.

Research Interests

Dr. Qu’s research interests include the intelligent operation and maintenance of power distribution equipment, with a focus on applying innovative technologies to enhance the reliability and efficiency of power systems. His work explores predictive maintenance strategies and advanced diagnostic techniques for modern power networks.

Awards

Dr. Qu has been nominated for the Best Researcher Award in recognition of his groundbreaking work in electrical engineering. His contributions to intelligent maintenance strategies and his extensive publication record have set him apart as a leader in his field.

Publications

Dr. Qu has authored 17 papers, with 8 of them published as the first author or corresponding author in SCI or EI-indexed journals. Below are seven key publications:

“Intelligent Diagnostics for Power Distribution Systems” (IEEE Transactions on Reliability, 2022, cited by 56 articles).

“Advanced Maintenance Techniques in Electrical Grids” (IET Electric Power Applications, 2023, cited by 42 articles).

“Predictive Maintenance in Smart Grids” (Energy Systems Journal, 2023, cited by 30 articles).

“AI in Power System Management” (International Journal of Electrical Power and Energy Systems, 2022, cited by 25 articles).

“Machine Learning Applications in Power Equipment Diagnostics” (Electric Power Systems Research, 2024, cited by 18 articles).

“Reliability Enhancement through Intelligent Monitoring” (Journal of Power Systems Engineering, 2021, cited by 20 articles).

“A Comprehensive Review of Distribution Network Maintenance” (Renewable and Sustainable Energy Reviews, 2024, cited by 15 articles).

Conclusion

Dr. Yuehan Qu stands as a beacon of innovation and academic excellence in the field of electrical engineering. His contributions, ranging from impactful research to his dedication as an educator and reviewer, underscore his commitment to advancing the reliability and efficiency of modern power systems.