Dr. Zihan Deng | Artificial Intelligence | Best Researcher Award
Harbin Institute of Technology, China
Zihan Deng is a young and accomplished researcher in the field of imaging technology and computational tomography, with a strong foundation in deep learning and artificial intelligence. With a robust academic background and an array of interdisciplinary experiences, Deng has made significant contributions through high-impact publications, competitive grants, and patents. His expertise lies at the intersection of optical instrumentation and medical image analysis, and he continues to actively engage in scientific exploration with promising results.
Profile
Education
Deng completed his undergraduate studies in Computer Science and Technology at Harbin Engineering University (2019–2023), ranking in the top 5% of his class. His academic curriculum included rigorous coursework in mathematics and computer science, scoring consistently above 90 in core subjects. He was subsequently recommended for direct admission into the graduate program at Harbin Institute of Technology, where he is currently pursuing his Master’s degree at the Institute of Ultra-Precision Optical Instrument Engineering under the mentorship of Professor Junning Cui and Academician Jiubin Tan. His research spans CT reconstruction, deep learning-based image enhancement, and X-ray detection technologies.
Experience
Deng has accumulated diverse experience through internships and collaborative projects. He served in leadership roles within student organizations and academic competitions, including receiving awards in national-level modeling and software contests. He undertook summer research at Tsinghua University’s IDG/McGovern Brain Research Institute and was later selected to join Germany’s PTB “Chief Engineer Class” as a visiting scholar. Professionally, he interned with Chengdu Shuzhilian Technology and Guangzhou CVTE, where he contributed to image processing and video enhancement projects. He has also played key roles in multimillion-yuan research collaborations with institutions like CGN Research Institute and GF High-End Semiconductor Imaging Systems.
Research Interest
Deng’s research interests revolve around imaging technology, deep learning, and CT reconstruction methods. He focuses on developing advanced algorithms for sparse-angle computed tomography, artifact reduction, and multi-view image correction using neural networks. His work integrates domain-specific knowledge from instrumentation science with state-of-the-art machine learning frameworks to improve image quality in both medical diagnostics and industrial inspection. He also investigates beam hardening correction and reconstruction under large field-of-view (FOV) conditions, addressing challenges in high-precision imaging systems.
Award
Over the course of his academic journey, Deng has received 11 scholarships and numerous accolades. These include five first-class and two second-class academic scholarships from Harbin Engineering University, the prestigious Xiaomi Scholarship, and the Outstanding Youth League Member Award. His undergraduate thesis on sparse-angle CT reconstruction was selected as an Excellent Graduation Project (top 2%). He has also won national-level awards in competitions such as the Mathematical Modeling Contest and the English Proficiency Championship.
Publication
Deng has authored or co-authored several influential papers in prestigious journals and conferences. His representative publications include:
-
Deng Z., Wang Z., et al. (2024). “COO-DuDo: Computation Overhead Optimization Methods for Dual-Domain Sparse-View CT Reconstruction”, Expert Systems with Applications (JCR Q1, IF=7.5, in press) – cited in advanced CT algorithm research.
-
Deng Z., Wang Z., Lin L., Wang S., Cui J. (2024). “Research on the Effectiveness of Multi-View Slice Correction Technology Based on Deep Learning in High-Pitch Spiral Scanning Reconstruction”, Journal of X-Ray Science and Technology (JCR Q2, IF=3.0) – applied in spiral CT systems.
-
Wang Z.#, Deng Z.#, Liu F., et al. (2023). “OSNet & MNetO for Linear Computed Tomography in Multi-Scenarios”, IEEE Transactions on Instrumentation and Measurement (JCR Q1, IF=5.6) – widely cited in instrumentation imaging.
-
Deng Z., Deng K., Wang Z., et al.. “Small Class Discussion-Based Teaching in Instrumentation Education”, The International Journal of Education – cited in engineering education reform discussions.
-
Li Z., Li K., Deng Z., et al. (2024). “Assessment of Sheetlet Thickness in Human Left Ventricular Free Wall Using X-ray Phase-Contrast Microtomography”, Medical Image Analysis (JCR Q1, IF=10.9, accepted) – applied in cardiovascular research.
-
Deng Z., Wang Z., Lin L., et al. (2025). “Computation Overhead Optimization Dual-Domain Network for Sparse-View CT Reconstruction”, ICASSP 2025 (CCF-B Conference) – in review, expected to support efficient CT image pipelines.
-
Deng Z., Wang Z., Lin L., Wang S. “Hel-MUNet: Mamba-Unet with Helical Encoding for Clinical High Pitch Helical CT Reconstruction”, MICCAI 2025 (under review) – aligned with cutting-edge clinical imaging methods.
Conclusion
Zihan Deng exemplifies the next generation of research professionals driving innovation in imaging and artificial intelligence. Through a blend of strong theoretical foundation, hands-on project experience, and impactful publications, he has demonstrated exceptional capability in solving complex technical problems. With continued guidance under leading scholars and global exposure, Deng is well-positioned to become a prominent figure in the advancement of smart medical imaging and intelligent instrumentation.