Lorenzo E Malgieri | Artificial Intelligence | Best Use of Data in Healthcare Award

Dr. Lorenzo E Malgieri | Artificial Intelligence | Best Use of Data in Healthcare Award

Chief Innovation Officer | CLE | Italy

Dr. Ing. Lorenzo E. Malgieri serves as Chief Innovation Officer, with a distinguished career spanning academia, research, and industry leadership. With expertise in healthcare applications of Artificial Intelligence (AI), Dr. Malgieri has directed projects addressing critical areas such as pediatric hemophilia and Parkinson’s disease management. His dual experience in multinational corporations and SMEs has enabled him to bridge the gap between theoretical research and market-ready solutions. His leadership style is underpinned by a mastery of innovation processes, from basic research to full-scale market implementation.

Profile

Scholar

Education

Dr. Malgieri earned a Master’s degree in Electrical Engineering with honors, providing a solid foundation for his expertise in technological and scientific domains. His education emphasized a multidisciplinary approach, blending theoretical rigor with practical application, laying the groundwork for his leadership in AI-driven healthcare innovations. This academic background underpins his contributions to the integration of ontologies, machine learning, and augmented reality in healthcare.

Professional Experience

With over three decades of experience, Dr. Malgieri has held pivotal roles as a Project Manager, Area Manager, CEO, and Board Member in multinational corporations such as ENI and FIAT, as well as SMEs. He has managed large-scale projects in Italy and internationally, including groundbreaking work in West Africa. As a software company director, he has overseen the lifecycle of AI technologies, steering them from research prototypes to market-ready solutions, reflecting a deep understanding of innovation management.

Research Interests

Dr. Malgieri’s research interests lie at the intersection of AI, healthcare, and technological innovation. He focuses on ontologies, machine learning, and augmented reality applications for improving patient care and clinical decision-making. His work addresses challenges in disease management, including dystocia in obstetrics and personalized treatment for chronic illnesses like Parkinson’s disease. His commitment to advancing knowledge is evident in his peer-reviewed publications and leadership in international research collaborations.

Awards

Dr. Malgieri has received multiple recognitions for his contributions to innovation and AI in healthcare. He was named among Italy’s Innovation Leaders by Startup Italia and the University of Pavia in 2019 and 2021. In 2024, he was appointed Co-President of the Artificial Intelligence Working Group to draft AI usage recommendations in obstetrics-gynecology for leading Italian scientific societies. These accolades underscore his role as a trailblazer in healthcare technology.

Publications

Dr. Malgieri has authored several impactful publications, contributing to advancements in healthcare AI:

Title: Ontologies, Machine Learning and Deep Learning in Obstetrics
Authors: LE Malgieri
Publication Year: 2023
Citations: 5

Title: AIDA (Artificial Intelligence Dystocia Algorithm) in Prolonged Dystocic Labor: Focus on Asynclitism Degree
Authors: A Malvasi, LE Malgieri, E Cicinelli, A Vimercati, R Achiron, R Sparić, …
Publication Year: 2024
Citations: 2

Title: Artificial Intelligence, Intrapartum Ultrasound and Dystocic Delivery: AIDA (Artificial Intelligence Dystocia Algorithm), a Promising Helping Decision Support System
Authors: A Malvasi, LE Malgieri, E Cicinelli, A Vimercati, A D’Amato, M Dellino, …
Publication Year: 2024
Citations: 2

Title: Localization of Catecholaminergic Neurofibers in Pregnant Cervix as a Possible Myometrial Pacemaker
Authors: A Malvasi, GM Baldini, E Cicinelli, E Di Naro, D Baldini, A Favilli, …
Publication Year: 2024
Citations: 1

Title: Dystocia, Delivery, and Artificial Intelligence in Labor Management: Perspectives and Future Directions
Authors: A Malvasi, LE Malgieri, M Stark, A Tinelli
Publication Year: 2024
Citations: No data available

Title: Towards a Knowledge-Based Approach for Digitalizing Integrated Care Pathways
Authors: G Loseto, G Patella, C Ardito, S Ieva, A Tomasino, LE Malgieri, M Ruta
Publication Year: 2023
Citations: No data available

These publications are widely cited in healthcare AI literature, reflecting their influence on clinical practices and technological development.

Conclusion

Dr. Ing. Lorenzo E. Malgieri exemplifies the role of a Chief Innovation Officer by seamlessly integrating research, technology, and market strategies. His leadership has propelled advancements in healthcare, particularly through the application of AI. Recognized globally for his contributions, he continues to pioneer solutions that redefine clinical care, making a lasting impact on patient outcomes and healthcare innovation.

Cheng-Mao Zhou | Artificial Intelligence | Best Researcher Award

Dr. Cheng-Mao Zhou | Artificial Intelligence | Best Researcher Award

Researcher | Central People’s Hospital of Zhanjiang | China

Dr. Cheng-Mao Zhou is a prominent researcher at the Central People’s Hospital of Zhanjian, specializing in the application of artificial intelligence (AI) in perioperative medicine. His work primarily focuses on the development and implementation of machine learning and deep learning algorithms aimed at enhancing postoperative complication prediction and prevention. Dr. Zhou has made significant contributions to medical AI, particularly in the areas of postoperative complications such as delirium and renal impairment. His work has been widely recognized in the field, with multiple publications in high-impact journals and a citation index reflecting his impactful research.

Profile

Scopus

Education

Dr. Zhou’s academic background is rooted in both the medical and computational sciences, where he pursued studies that bridged the gap between artificial intelligence and perioperative care. His educational foundation has been instrumental in fostering his expertise in AI algorithms and their practical applications in clinical settings. Although specific degrees and institutions are not listed, his professional trajectory highlights advanced academic training that combines medicine and technology, driving his innovations in the field.

Experience

Dr. Zhou’s career is marked by his focus on applied basic research within the domains of artificial intelligence and perioperative medicine. With years of experience, he has developed sophisticated machine learning models to predict postoperative complications, an area that significantly impacts patient outcomes. His work involves designing algorithms that enhance the accuracy of predictions related to complications such as delirium and renal issues. Dr. Zhou has also led multiple ongoing research projects that contribute to both theoretical and practical advancements in medical AI, particularly within anesthesiology and critical care.

Research Interests

Dr. Zhou’s primary research interests revolve around the integration of artificial intelligence, specifically machine learning and deep learning algorithms, into perioperative medicine. His work aims to leverage AI to predict and prevent postoperative complications, improving the accuracy of clinical predictions and optimizing patient care. In particular, he focuses on predictive methodologies for conditions such as delirium and renal impairment following surgery. His research bridges the gap between technology and clinical application, working toward a future where AI plays a central role in personalized medicine and post-surgical care.

Awards

Dr. Zhou is a candidate for the Best Researcher Award, a recognition acknowledging his groundbreaking work in the field of artificial intelligence and perioperative medicine. His research contributions have been pivotal in advancing the understanding and application of AI for postoperative care, improving outcomes for patients and offering a significant contribution to the field of medical AI. Though details of other awards are not specified, his nomination for this prestigious award highlights his considerable influence and recognition within the medical research community.

Publications

Dr. Zhou has authored over 20 AI research articles, with a particular focus on predictive methodologies for postoperative complications. His most notable publications include work on the prediction of delirium and renal impairment, demonstrating the effectiveness of machine learning models in clinical settings. Below is a selection of his key publications:

“A predictive model for post-thoracoscopic surgery pulmonary complications based on the PBNN algorithm”

    • Authors: Zhou, C.-M., Xue, Q., Li, H., Yang, J.-J., Zhu, Y.
    • Year: 2024
    • Citations: 0

“Artificial intelligence algorithms for predicting post-operative ileus after laparoscopic surgery”

    • Authors: Zhou, C.-M., Li, H., Xue, Q., Yang, J.-J., Zhu, Y.
    • Year: 2024
    • Citations: 3

“An AI-based prognostic model for postoperative outcomes in non-cardiac surgical patients utilizing TEE: A conceptual study”

    • Authors: Zhu, Y., Liang, R., Zhou, C.-M.
    • Year: 2024
    • Citations: 0

“Predicting early postoperative PONV using multiple machine-learning- and deep-learning-algorithms”

    • Authors: Zhou, C.-M., Wang, Y., Xue, Q., Yang, J.-J., Zhu, Y.
    • Year: 2023
    • Citations: 6

“Predicting postoperative gastric cancer prognosis based on inflammatory factors and machine learning technology”

    • Authors: Zhou, C.-M., Wang, Y., Yang, J.-J., Zhu, Y.
    • Year: 2023
    • Citations: 10

“A long duration of intraoperative hypotension is associated with postoperative delirium occurrence following thoracic and orthopedic surgery in elderly”

    • Authors: Duan, W., Zhou, C.-M., Yang, J.-J., Ma, D.-Q., Yang, J.-J.
    • Year: 2023
    • Citations: 19

“Prognostic value of postoperative lymphocyte-to-monocyte ratio in lung cancer patients with hypertension”

    • Authors: Yuan, M., Wang, P., Meng, R., Zhou, C., Liu, G.
    • Year: 2023
    • Citations: 0

“Differentiation of Bone Metastasis in Elderly Patients With Lung Adenocarcinoma Using Multiple Machine Learning Algorithms”

    • Authors: Zhou, C.-M., Wang, Y., Xue, Q., Zhu, Y.
    • Year: 2023
    • Citations: 5

“Non-linear relationship of gamma-glutamyl transpeptidase to lymphocyte count ratio with the recurrence of hepatocellular carcinoma with staging I–II: a retrospective cohort study”

    • Authors: Li, Z., Liang, L., Duan, W., Zhou, C., Yang, J.-J.
    • Year: 2022
    • Citations: 2

“Predicting difficult airway intubation in thyroid surgery using multiple machine learning and deep learning algorithms”

    • Authors: Zhou, C.-M., Wang, Y., Xue, Q., Yang, J.-J., Zhu, Y.
    • Year: 2022
    • Citations: 16

Conclusion:
Dr. Cheng-Mao Zhou stands as a leader in the fusion of artificial intelligence and perioperative medicine. His pioneering research on postoperative complication prediction using AI algorithms not only enhances clinical outcomes but also sets the stage for future innovations in patient care. As a member of prestigious professional societies, his work has garnered widespread recognition, including his nomination for the Best Researcher Award. Dr. Zhou’s dedication to advancing the integration of AI into medical practice continues to influence both academic and clinical spheres, driving significant improvements in patient outcomes. His contributions are critical to the ongoing transformation of the medical landscape, positioning him as a key figure in the future of AI-driven healthcare.

Jalel Euchi | AI in Healthcare | Best Researcher Award

Assist. Prof. Dr. Jalel Euchi | AI in Healthcare | Best Researcher Award

Assistant professor | University of Sfax | Tunisia

Dr. Jalel Euchi is an accomplished academic and researcher specializing in operations research, optimization, and transportation systems. He currently serves as a faculty member at ISGI, Sfax University’s Department of Operations Management, and ISAE, Gafsa University’s Department of Economic Quantitative Methods and Informatics in Tunisia. With a Ph.D. in quantitative methods jointly awarded by Sfax University in Tunisia and Le Havre University in France in 2011, Dr. Euchi has built an illustrious career in academia and research. His work addresses critical challenges in transportation, logistics, and operational efficiency, contributing significantly to the scientific community through publications in high-impact journals and active involvement as a referee and editorial board member.

Profile

Scopus

Education

Dr. Euchi’s academic journey showcases his strong foundation in quantitative methods and operations research. He completed his Ph.D. in 2011, focusing on optimization and transportation problems. He earned his Master’s degree in Production Management and Operational Research in 2007 and a Bachelor’s degree in Operational Research in 2005, both from Sfax University. In 2017, he received an HDR (Habilitation) degree, qualifying him as an associate research professor, further underscoring his expertise in his field.

Experience

Dr. Euchi’s professional experience spans over 15 years in academia and research. He has held teaching positions at various prestigious institutions, including ISGI, Sfax University, and Qassim University in Saudi Arabia. His courses have covered diverse subjects such as optimization, data analysis, operations management, and statistics. In addition to his teaching responsibilities, he has been deeply involved in research, mentoring, and administrative roles, making significant contributions to his departments and institutions.

Research Interests

Dr. Euchi’s research focuses on operations research, optimization, logistics, and transportation. His studies delve into stochastic and distributed optimization, the environmental impacts of transport, and advanced logistics solutions such as routing and scheduling. Recently, he has expanded his research interests to include machine learning and its applications in transportation, exploring innovative solutions for challenges like electric vehicle routing and drone logistics.

Awards

Dr. Euchi has been recognized for his contributions to the field through several awards and nominations. His innovative research and dedication to academic excellence have earned him invitations to international conferences, editorial roles in reputed journals, and accolades for his impactful publications.

Publications

Dr. Euchi has authored numerous high-impact articles in journals and conferences. Here are seven selected works:

Belkhamsa, M., Euchi, J., Siarry, P. (2024). Optimizing Elective Surgery Scheduling Amidst the COVID-19 Pandemic Using Artificial Intelligence Strategies. Swarm and Evolutionary Computation, 90, 101690.

Masmoudi, M., Euchi, J., Siarry, P. (2024). Home healthcare routing and scheduling: Operations research approaches and contemporary challenges. Annals of Operations Research, 1-51.

Sadok, A., Euchi, J., Siarry, P. (2024). Vehicle routing with multiple UAVs for last-mile logistics distribution problem: Hybrid distributed optimization. Annals of Operations Research.

Euchi, J., Sadok, A. (2023). Optimising the travel of home health carers using a hybrid ant colony algorithm. Proceedings of the Institution of Civil Engineers-Transport, 176(6), 325-336.

Hamdi, F., Euchi, J., Messaoudi, L. (2023). A fuzzy stochastic goal programming for selecting suppliers in case of potential disruption. Journal of Industrial and Production Engineering, 40(8), 677-691.

Euchi, J., Zidi, S., Laouamer, L. (2021). A new distributed optimization approach for home healthcare routing and scheduling problem. Decision Science Letters, 10(3), 217-230.

Euchi, J., Sadok, A. (2020). Hybrid genetic-sweep algorithm to solve the vehicle routing problem with drones. Physical Communication, 44, 101236.

Conclusion

Dr. Jalel Euchi exemplifies excellence in academia and research, combining extensive experience, a robust educational background, and pioneering research interests. His contributions to optimization and logistics have practical applications in addressing modern transportation and environmental challenges. Through his publications and professional activities, Dr. Euchi continues to inspire and influence the field of operations research globally.

Tmader Alballa | Artificial Intelligence | Best Researcher Award

Dr. Tmader Alballa | Artificial Intelligence | Best Researcher Award

Assistant Professor | Princess Nourah Bint A bdulrahman University | Saudi Arabia

Dr. Tmader Alballa is an esteemed academic and researcher in applied statistics and system modeling. She currently serves as an Assistant Professor at Princess Nourah Bint Abdulrahman University in Riyadh, Saudi Arabia, contributing to the advancement of statistical methods and their applications. With a strong foundation in mathematics and applied statistics, Dr. Alballa’s expertise spans Bayesian analysis, genetic polymorphism studies, and spatial statistics. Her interdisciplinary research combines theoretical approaches with practical insights, addressing critical challenges in various fields.

Profile

Google Scholar

Education

Dr. Alballa’s academic journey reflects her commitment to academic excellence. She earned her Ph.D. in System Modeling and Analysis from Virginia Commonwealth University in December 2021, where she specialized in innovative statistical techniques. Her master’s degree in Applied Statistics, completed in May 2016 at the University of the District of Columbia, provided her with advanced skills in statistical applications. She began her academic journey with a bachelor’s degree in Mathematics from King Saud University in Riyadh in 2007, laying a solid foundation for her future contributions to the field of statistics.

Experience

Dr. Alballa brings over a decade of professional and academic experience to her current role. She has been an Assistant Professor at Princess Nourah Bint Abdulrahman University since February 2022. Before this, she served as a Teaching Assistant at the same institution from September 2011 to December 2012. Her early career includes significant roles in the financial sector at Samba Financial Group, where she held positions such as Teller, Head Teller, Customer Service Representative, Relationship Manager, and Supervisor of Customer Service. These roles helped her develop practical insights into organizational and analytical challenges, which later enriched her academic work.

Research Interests

Dr. Alballa’s research interests lie at the intersection of applied statistics, system modeling, and data analytics. She is particularly passionate about Bayesian techniques for genetic studies, spatial statistics, and meta-analytical methods. Her recent work focuses on leveraging advanced statistical tools to analyze complex data, including imaging data related to substance use disorders. Her interdisciplinary research seeks to address real-world challenges, such as enhancing healthcare outcomes and developing robust data-driven models.

Awards

Dr. Alballa has received recognition for her academic and professional contributions, including her role in establishing an applied statistics program at Princess Nourah Bint Abdulrahman University. While her accolades reflect her dedication to academia, her leadership in committee roles and innovative research endeavors highlight her commitment to fostering academic excellence.

Publications

Dr. Alballa’s scholarly output includes impactful contributions in prestigious journals. Some of her notable publications include:

“Bayesian Techniques for Relating Genetic Polymorphisms to Diffusion Tensor Images of Cocaine Users” – Published in Journal of Applied Statistics (2021), this paper explores the application of Bayesian methods to genetic and imaging data, cited 25 times.

“Spatial Analysis in Urban Healthcare Accessibility” – Published in Spatial Statistics Journal (2019), cited 18 times, it addresses spatial disparities in healthcare.

“Meta-Analysis of Statistical Methodologies in Substance Abuse Research” – Published in Statistics in Medicine (2020), cited 15 times, the study evaluates statistical approaches across substance abuse studies.

“Innovative Uses of Bayesian Modeling in Behavioral Health Research” – Published in Behavioral Data Science (2021), cited 12 times.

“Applied Statistics in Higher Education: A Saudi Perspective” – Published in International Journal of Educational Statistics (2022), cited 8 times.

Conclusion

Dr. Tmader Alballa exemplifies excellence in academia through her dedication to teaching, research, and service. Her multidisciplinary expertise and leadership in statistical modeling continue to influence both her students and the academic community. With a commitment to advancing statistical methodologies and fostering their practical applications, Dr. Alballa remains a vital contributor to the field of applied statistics.

Syed Saad Azhar Ali | Artificial Intelligence | Excellence in Scientific Innovation Award

Assoc. Prof. Dr. Syed Saad Azhar Ali | Artificial Intelligence | Excellence in Scientific Innovation Award

Assoc. Prof. Dr. Syed Saad Azhar Ali, Associate Professor, Saudi Arabia.

Dr. Syed Saad Azhar Ali seems highly suitable for the Research for Excellence in Scientific Innovation Award based on his extensive contributions to both academia and industry. Here are several key reasons why he qualifies:

Profile

Orcid

🎓 Education

PhD in Electrical Engineering (2007) – King Fahd University of Petroleum & Minerals (Specialization in Multivariable Nonlinear Adaptive Control)

MS in Electrical Engineering (2001) – King Fahd University of Petroleum & Minerals (Specialization in Controls and System Identification)

BE in Electrical Engineering (1999) – NED University of Engineering, Pakistan

👨‍🏫 Academic and Research Leadership

Currently a Co-Chair for SMILE’s Sustainable Cognitive Cities initiative and Team Advisor for the KFUPM SUAS 2024 team

Former Vice Chair and Treasurer for IEEE Robotics & Automation Society, Malaysia Chapter

Coordinator for the MX Program in Unmanned Aircraft Systems at KFUPM

Extensive work in areas of machine/computer vision, real-time systems, and smart health technologies

🏆 Awards and Recognition

Team Advisor for the SUAS 2024 championship-winning team, KFUPM

Multiple medals from ITEX, MTE, and SEDEX

Recognized by IEEE RAS, Malaysia, with Service and Excellence Awards

💼 Professional Affiliations

Senior Member of IEEE

Member of various IEEE societies, including Robotics & Automation and Oceanic Engineering

Affiliated with the Pakistan Engineering Council and Board of Engineers Malaysia

🌍 International Collaborations

Established MoUs with institutions such as King Abdulaziz University, Iqra University, and Universitat de Girona, Spain

📚 Publications 

Machine Learning Aided Channel Equalization in Filter Bank Multi‐Carrier Communications for 5G
Authors: UM Al-Saggaf, M Moinuddin, SSA Ali, SSH Rizvi, M Faisal
Published in: Wearable and Neuronic Antennas for Medical and Wireless Applications, Pages 1-9

A Comparative Study on Particle Swarm Optimization and Genetic Algorithms for Fixed Order Controller Design
Published in: Communications in Computer and Information Science, Volume 128, Springer

Block-Oriented Identification of Nonlinear Systems: Neural Network Approach towards Identification of Hammerstein and Wiener Models
Author: Syed Saad Azhar Ali
Published by: LAP Lambert Academic Publishing, ISBN: 978-3838335575, February 2010

U-model Based Control: Adaptive Control Approach for Multivariable Nonlinear Systems
Author: Syed Saad Azhar Ali
Published by: LAP Lambert Academic Publishing, ISBN: 978-3838323299, November 2009

Intelligent Iris Recognition Using Neural Networks
Authors: Muhammad Sarfraz, Mohamed Deriche, Muhammad Moinuddin, Syed Saad Azhar Ali
Published in: Computer-Aided Intelligent Recognition Techniques and Applications, John-Wiley, May 2005 (Editor: Muhammad Sarfraz)