Zihan Deng | Artificial Intelligence | Best Researcher Award

Dr. Zihan Deng | Artificial Intelligence | Best Researcher Award

Harbin Institute of Technology, China

Zihan Deng is a young and accomplished researcher in the field of imaging technology and computational tomography, with a strong foundation in deep learning and artificial intelligence. With a robust academic background and an array of interdisciplinary experiences, Deng has made significant contributions through high-impact publications, competitive grants, and patents. His expertise lies at the intersection of optical instrumentation and medical image analysis, and he continues to actively engage in scientific exploration with promising results.

Profile

Orcid

Education

Deng completed his undergraduate studies in Computer Science and Technology at Harbin Engineering University (2019–2023), ranking in the top 5% of his class. His academic curriculum included rigorous coursework in mathematics and computer science, scoring consistently above 90 in core subjects. He was subsequently recommended for direct admission into the graduate program at Harbin Institute of Technology, where he is currently pursuing his Master’s degree at the Institute of Ultra-Precision Optical Instrument Engineering under the mentorship of Professor Junning Cui and Academician Jiubin Tan. His research spans CT reconstruction, deep learning-based image enhancement, and X-ray detection technologies.

Experience

Deng has accumulated diverse experience through internships and collaborative projects. He served in leadership roles within student organizations and academic competitions, including receiving awards in national-level modeling and software contests. He undertook summer research at Tsinghua University’s IDG/McGovern Brain Research Institute and was later selected to join Germany’s PTB “Chief Engineer Class” as a visiting scholar. Professionally, he interned with Chengdu Shuzhilian Technology and Guangzhou CVTE, where he contributed to image processing and video enhancement projects. He has also played key roles in multimillion-yuan research collaborations with institutions like CGN Research Institute and GF High-End Semiconductor Imaging Systems.

Research Interest

Deng’s research interests revolve around imaging technology, deep learning, and CT reconstruction methods. He focuses on developing advanced algorithms for sparse-angle computed tomography, artifact reduction, and multi-view image correction using neural networks. His work integrates domain-specific knowledge from instrumentation science with state-of-the-art machine learning frameworks to improve image quality in both medical diagnostics and industrial inspection. He also investigates beam hardening correction and reconstruction under large field-of-view (FOV) conditions, addressing challenges in high-precision imaging systems.

Award

Over the course of his academic journey, Deng has received 11 scholarships and numerous accolades. These include five first-class and two second-class academic scholarships from Harbin Engineering University, the prestigious Xiaomi Scholarship, and the Outstanding Youth League Member Award. His undergraduate thesis on sparse-angle CT reconstruction was selected as an Excellent Graduation Project (top 2%). He has also won national-level awards in competitions such as the Mathematical Modeling Contest and the English Proficiency Championship.

Publication

Deng has authored or co-authored several influential papers in prestigious journals and conferences. His representative publications include:

  1. Deng Z., Wang Z., et al. (2024). “COO-DuDo: Computation Overhead Optimization Methods for Dual-Domain Sparse-View CT Reconstruction”, Expert Systems with Applications (JCR Q1, IF=7.5, in press) – cited in advanced CT algorithm research.

  2. Deng Z., Wang Z., Lin L., Wang S., Cui J. (2024). “Research on the Effectiveness of Multi-View Slice Correction Technology Based on Deep Learning in High-Pitch Spiral Scanning Reconstruction”, Journal of X-Ray Science and Technology (JCR Q2, IF=3.0) – applied in spiral CT systems.

  3. Wang Z.#, Deng Z.#, Liu F., et al. (2023). “OSNet & MNetO for Linear Computed Tomography in Multi-Scenarios”, IEEE Transactions on Instrumentation and Measurement (JCR Q1, IF=5.6) – widely cited in instrumentation imaging.

  4. Deng Z., Deng K., Wang Z., et al.. “Small Class Discussion-Based Teaching in Instrumentation Education”, The International Journal of Education – cited in engineering education reform discussions.

  5. Li Z., Li K., Deng Z., et al. (2024). “Assessment of Sheetlet Thickness in Human Left Ventricular Free Wall Using X-ray Phase-Contrast Microtomography”, Medical Image Analysis (JCR Q1, IF=10.9, accepted) – applied in cardiovascular research.

  6. Deng Z., Wang Z., Lin L., et al. (2025). “Computation Overhead Optimization Dual-Domain Network for Sparse-View CT Reconstruction”, ICASSP 2025 (CCF-B Conference) – in review, expected to support efficient CT image pipelines.

  7. Deng Z., Wang Z., Lin L., Wang S. “Hel-MUNet: Mamba-Unet with Helical Encoding for Clinical High Pitch Helical CT Reconstruction”, MICCAI 2025 (under review) – aligned with cutting-edge clinical imaging methods.

Conclusion

Zihan Deng exemplifies the next generation of research professionals driving innovation in imaging and artificial intelligence. Through a blend of strong theoretical foundation, hands-on project experience, and impactful publications, he has demonstrated exceptional capability in solving complex technical problems. With continued guidance under leading scholars and global exposure, Deng is well-positioned to become a prominent figure in the advancement of smart medical imaging and intelligent instrumentation.

Penghao Wu | Artificial Intelligence | Best Researcher Award

Mr. Penghao Wu | Artificial Intelligence | Best Researcher Award

postgraduate | Soochow University | China

Penghao Wu is a dedicated postgraduate student specializing in Control Science and Engineering at Suzhou University, where he is transitioning from the first to the second year of his master’s program. His research centers on explainable neural networks, fault diagnosis in large-scale systems, and multidimensional data analysis, leveraging advanced AI and machine learning methodologies. He has a strong foundation in academic research, evidenced by three high-quality publications and extensive experience with state-of-the-art algorithms. His career goal is to contribute to AI-driven solutions in fields such as large model algorithms, autonomous driving, and data analysis, aligning closely with his expertise.

Profile

Scopus

Education

Penghao Wu began his academic journey with a Bachelor’s degree in Automation from Inner Mongolia University of Technology, graduating in 2023. Excelling academically, he ranked 3rd in his major (top 3%), achieved a GPA of 4.2/5.0, and earned an average credit score of 98.94. Continuing his pursuit of excellence, he joined Suzhou University in 2023 to pursue a master’s degree in Control Science and Engineering. Currently maintaining a GPA of 3.5/4.0 and an average credit score of 87, he has undertaken courses like Advanced Mathematics, Matrix Theory, Modern Control Theory, and Mobile Robot Autonomous Navigation, building a robust technical foundation.

Experience

Penghao Wu has been actively involved in research and development throughout his academic career. His undergraduate graduation project on deep learning-based building change detection algorithms using remote sensing imagery was recognized as one of only three “Outstanding Graduation Designs” in his college. He has also participated in several impactful projects, including vehicle battery fault diagnosis using Variational Mode Decomposition and spiking neural networks for lithium-ion battery fault detection. His practical expertise extends to software systems, having developed a multifunctional intelligent control device awarded a computer software copyright.

Research Interests

Penghao’s research interests revolve around explainable artificial intelligence (XAI), deep learning, and large-scale system fault diagnosis. He focuses on designing interpretable neural network algorithms for critical applications such as autonomous vehicles and aerospace systems. By integrating data-driven approaches with domain knowledge, he aims to enhance the transparency and reliability of AI systems. His work also extends to multidimensional data analysis, with applications in remote sensing and industrial fault detection, underlining his commitment to addressing real-world challenges through cutting-edge technologies.

Awards

Penghao Wu has received multiple accolades for his academic and extracurricular achievements. Notable awards include the Graduate First-Class Scholarship (2023), recognition as an “Outstanding Student” for three consecutive years during his undergraduate studies, and a top-four finish in the CIMC China Intelligent Manufacturing Challenge (university level). His graduation project on remote sensing image analysis earned distinction as one of only three outstanding projects in his college. Additionally, he won third place in the North China University Computer Application Competition.

Publications

Exponential Weighted Moving Average-Based Variational Mode Decomposition Method for Fault Diagnosis of Vehicle Batteries
Published in Data-driven Control and Learning Systems Conference (EI Indexed, 2024).
Cited by: 15 articles.

Data-Driven Spiking Neural Networks for Explainable Fault Detection in Vehicle Lithium-Ion Battery Systems
Under major revision in a Tier-2 SCI journal (2024).
Cited by: 10 articles.

Multi-modal Intelligent Fault Diagnosis for Large Aviation Aircraft Based on Mamba-2
Submitted as an invited article to a Tier-1 SCI journal (2024).
Cited by: 8 articles.

Conclusion

Penghao Wu is a driven researcher and engineer, blending academic excellence with practical expertise in artificial intelligence and control systems. His strong background in fault diagnosis, deep learning, and explainability positions him as an ideal candidate for AI algorithm roles. With a proven track record of research, publications, and accolades, he is poised to make significant contributions to advancing technology in areas such as autonomous systems and intelligent data analysis.